Citation: Hava Arıkan, Halit Orhan, Murat Çağlar. Fekete-Szegö inequality for a subclass of analytic functions defined by Komatu integral operator[J]. AIMS Mathematics, 2020, 5(3): 1745-1756. doi: 10.3934/math.2020118
[1] | H. R. Abdel-Gawad, D. K. Thomas, The Fekete Szegö problem for strongly close-to-convex functions, Proc. Amer. Math. Soc., 114 (1992), 345-349. |
[2] |
J. W. Alexander, Function which map the interior of the unit circle upon simple regions, Annals of Math. Second Series, 17 (1915), 12-22. doi: 10.2307/2007212 |
[3] | S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1965), 429-446. |
[4] | S. Bulut, Fekete-Szegö problem for subclasses of analytic functions defined by Komatu integral operator, Arab. J. Math., 2 (2013), 177-183. doi: 10.1007/s40065-012-0062-x |
[5] | A. Chonweerayoot, D. K. Thomas, W. Upakarnitikaset, On the Fekete Szegö theorem for close-toconvex functions, Publ. Inst. Math., 66 (1992), 18-26. |
[6] | M. Darus, D. K. Thomas, On the Fekete Szegö theorem for close-to-convex functions, Mathematica Japonica, 47 (1998), 125-132. |
[7] | E. Deniz, H. Orhan, The Fekete Szegö problem for a generalized subclass of analytic functions, Kyungpook Math. J., 50 (2010), 37-47. |
[8] | M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. London Math. Soc., 8 (1933), 85-89. |
[9] | T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequation, J. Math. Anal. Appl., 38 (1972), 746-765. doi: 10.1016/0022-247X(72)90081-9 |
[10] | I. B. Jung, Y. C. Kim, H. M. Srivastava, The Hardy space of analytic function associated with certain one-paprameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138-147. doi: 10.1006/jmaa.1993.1204 |
[11] | S. Kanas, H. E. Darwish, Fekete Szegö problem for starlike and convex functions of complex order, Appl. Math. Lett., 23 (2010), 777-782. |
[12] | F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12. doi: 10.1090/S0002-9939-1969-0232926-9 |
[13] | W. Koepf, On the Fekete Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc., 101 (1987), 89-95. |
[14] | Y. Komatu, On analytical prolongation of a family of operators, Mathematica (cluj), 32 (1990), 141-145. |
[15] | R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755-758. doi: 10.1090/S0002-9939-1965-0178131-2 |
[16] | R. R. London, Fekete Szegö inequalities for close-to-convex functions, Proc. Amer. Math. Soc., 117 (1993), 947-950. |
[17] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceeding of Conference on Complex Analytic, (1994), 157-169. |
[18] | R. N. Mohapatra, T. Panigrahi, Second Hankel determinant for a class of analytic functions defined by Komatu integral operator, Rend. Mat. Appl., 7 (2019), 1-8. |
[19] | M. A. Nasr, M. K. Aouf, Starlike function of complex order, J. Natural Sci. Math., 25 (1985), 1-12. |
[20] | M. A. Nasr, M. K. Aouf, On convex functions of complex order, Mansoura Science Bulletin, 9 (1982), 565-582. |
[21] | H. Orhan, E. Deniz, D. Rãducanu, The Fekete-Szegö problem for subclasses of analytic functions defined by a differential operator related to conic domains, Comput. Math. Appl., 59 (2010), 283-295. doi: 10.1016/j.camwa.2009.07.049 |
[22] | H. Orhan, D. Rãducanu, Fekete-Szegö problem for strongly starlike functions associated with generalized hypergeometric functions, Math. Comput. Model., 50 (2009), 430-438. doi: 10.1016/j.mcm.2009.04.014 |
[23] | H. Orhan, E. Deniz, M. Çağlar, Fekete-Szegö problem for certain subclasses of analytic functions, Demonstratio Math., 45 (2012), 835-846. |
[24] | A. Pfluger, The Fekete-Szegö inequality by a variational method, Annales Academiae Scientiorum Fennicae Seria A. I., 10 (1985), 447-454. |
[25] | C. Pommerenke, Univalent functions, In: Studia Mathematica Mathematische Lehrbucher, Vandenhoeck and Ruprecht, 1975. |
[26] | G. S. Sãlãgean, Subclasses of univalent functions, Complex analysis-Proceedings 5th RomanianFinnish Seminar, Bucharest, 1013 (1983), 362-372. |
[27] | B. A. Uralegaddi, C. Somanatha, Certain classes of univalent functions, In: Current topics in analytic function theory, 1992, 371-374. |
[28] | P. Wiatrowski, The coefficients of a certain family of holomorphic functions, Univ. Lodzk. Nauk. Math. Przyrod. Ser. II, Zeszyt, 39 (1971), 75-85. |