Citation: Zongbing Lin, Shaofang Hong. The least common multiple of consecutive terms in a cubic progression[J]. AIMS Mathematics, 2020, 5(3): 1757-1778. doi: 10.3934/math.2020119
[1] | P. Bateman, J. Kalb and A. Stenger, A limit involving least common multiples, Amer. Math. Monthly, 109 (2002), 393-394. |
[2] | P. L. Chebyshev, Memoire sur les nombres premiers, J. Math. Pures Appl., 17 (1852), 366-390. |
[3] | B. Farhi, Minorations non triviales du plus petit commun multiple de certaines suites finies d'entiers, C. R. Acad. Sci. Paris, Ser. I, 341 (2005), 469-474. doi: 10.1016/j.crma.2005.09.019 |
[4] | B. Farhi, Nontrivial lower bounds for the least common multiple of some finite sequences of integers, J. Number Theory, 125 (2007), 393-411. doi: 10.1016/j.jnt.2006.10.017 |
[5] | B. Farhi, An identity involving the least common multiple of binomial coeffcients and its application, Amer. Math. Monthly, 116 (2009), 836-839. doi: 10.4169/000298909X474909 |
[6] | B. Farhi, On the derivatives of the integer-valued polynomials, arXiv:1810.07560. |
[7] | B. Farhi and D. Kane, New results on the least common multiple of consecutive integers, Proc. Amer. Math. Soc., 137 (2009), 1933-1939. |
[8] | C. J. Goutziers, On the least common multiple of a set of integers not exceeding N, Indag. Math., 42 (1980), 163-169. |
[9] | D. Hanson, On the product of the primes, Canad. Math. Bull., 15 (1972), 33-37. doi: 10.4153/CMB-1972-007-7 |
[10] | S. F. Hong and W. D. Feng, Lower bounds for the least common multiple of finite arithmetic progressions, C. R. Acad. Sci. Paris, Ser. I, 343 (2006), 695-698. doi: 10.1016/j.crma.2006.11.002 |
[11] | S. F. Hong, Y. Y. Luo, G. Y. Qian, et al. Uniform lower bound for the least common multiple of a polynomial sequence, C.R. Acad. Sci. Paris, Ser. I, 351 (2013), 781-785. doi: 10.1016/j.crma.2013.10.005 |
[12] | S. F. Hong and G. Y. Qian, The least common multiple of consecutive arithmetic progression terms, Proc. Edinb. Math. Soc., 54 (2011), 431-441. doi: 10.1017/S0013091509000431 |
[13] | S. F. Hong and G. Y. Qian, The least common multiple of consecutive quadratic progression terms, Forum Math., 27 (2015), 3335-3396. |
[14] | S. F. Hong and G. Y. Qian, New lower bounds for the least common multiple of polynomial sequences, J. Number Theory, 175 (2017), 191-199. doi: 10.1016/j.jnt.2016.11.026 |
[15] | S. F. Hong, G. Y. Qian and Q. R. Tan, The least common multiple of a sequence of products of linear polynomials, Acta Math. Hungar., 135 (2012), 160-167. doi: 10.1007/s10474-011-0173-4 |
[16] | S. F. Hong and Y. J. Yang, On the periodicity of an arithmetical function, C. R. Acad. Sci. Paris Sér. I, 346 (2008), 717-721. |
[17] | S. F. Hong and Y. J. Yang, Improvements of lower bounds for the least common multiple of arithmetic progressions, Proc. Amer. Math. Soc., 136 (2008), 4111-4114. doi: 10.1090/S0002-9939-08-09565-8 |
[18] | L.-K. Hua, Introduction to number theory, Springer-Verlag, Berlin Heidelberg, 1982. |
[19] | N. Koblitz, p-Adic numbers, p-adic analysis, and zeta-functions, Springer-Verlag, Heidelberg, 1977. |
[20] | M. Nair, On Chebyshev-type inequalities for primes, Amer. Math. Monthly, 89 (1982), 126-129. doi: 10.1080/00029890.1982.11995398 |
[21] | J. Neukirch, Algebraic number theory, Springer-Verlag, 1999. |
[22] | S. M. Oon, Note on the lower bound of least common multiple, Abstr. Appl. Anal., 2013. |
[23] | G. Y. Qian and S. F. Hong, Asymptotic behavior of the least common multiple of consecutive arithmetic progression terms, Arch. Math., 100 (2013), 337-345. doi: 10.1007/s00013-013-0510-7 |
[24] | G. Y. Qian, Q. R. Tan and S. F. Hong, The least common multiple of consecutive terms in a quadratic progression, Bull. Aust. Math. Soc., 86 (2012), 389-404. doi: 10.1017/S0004972712000202 |
[25] | R. J. Wu, Q. R. Tan and S. F. Hong, New lower bounds for the least common multiple of arithmetic progressions, Chinese Annals of Mathematics, Series B, 34 (2013), 861-864. doi: 10.1007/s11401-013-0805-9 |