Research article

The least common multiple of consecutive terms in a cubic progression

  • Received: 30 October 2019 Accepted: 07 February 2020 Published: 14 February 2020
  • MSC : 11B25, 11N13, 11A05

  • Let $k$ be a positive integer and $f(x)$ a polynomial with integer coefficients. Associated to the least common multiple ${\rm lcm}_{0\le i\le k}\{f(n+i)\}$, we define the function $\mathcal{G}_{k, f}$ for all positive integers $n\in \mathbb{N}^*\setminus Z_{k, f}$ by $\mathcal{G}_{k, f}(n): = \frac{\prod_{i = 0}^k |f(n+i)|}{{\rm lcm}_{0\le i\le k}\{f(n+i)\}}, $ where $Z_{k, f}: = \bigcup_{i = 0}^k\{n\in \mathbb{N}^*: f(n+i) = 0\}.$ If $f(x) = x$, then Farhi showed in 2007 that $\mathcal{G}_{k, f}$ is periodic with $k!$ as its period. Consequently, Hong and Yang improved Farhi's period $k!$ to ${\rm lcm}(1, ..., k)$. Later on, Farhi and Kane confirmed a conjecture of Hong and Yang and determined the smallest period of $\mathcal{G}_{k, f}$. For the general linear polynomial $f(x)$, Hong and Qian showed in 2011 that $\mathcal{G}_{k, f}$ is periodic and got a formula for its smallest period. In 2015, Hong and Qian characterized the quadratic polynomial $f(x)$ such that $\mathcal{G}_{k, f}$ is almost periodic and also arrived at an explicit formula for the smallest period of $\mathcal{G}_{k, f}$. If $\deg f(x)\ge 3$, then one naturally asks the following interesting question: Is the arithmetic function $\mathcal{G}_{k, f}$ almost periodic and, if so, what is the smallest period? In this paper, we asnwer this question for the case $f(x) = x^3+2$. First of all, with the help of Hua's identity, we prove that $\mathcal{G}_{k, x^3+2}$ is periodic. Consequently, we use Hensel's lemma, develop a detailed $p$-adic analysis to $\mathcal{G}_{k, x^3+2}$ and particularly investigate arithmetic properties of the congruences $x^3+2\equiv 0 \pmod{p^e}$ and $x^6+108\equiv 0\pmod{p^e}$, and with more efforts, its smallest period is finally determined. Furthermore, an asymptotic formula for ${\rm log \ lcm}_{0 \le i \le k}\{(n+i)^3+2\}$ is given.

    Citation: Zongbing Lin, Shaofang Hong. The least common multiple of consecutive terms in a cubic progression[J]. AIMS Mathematics, 2020, 5(3): 1757-1778. doi: 10.3934/math.2020119

    Related Papers:

  • Let $k$ be a positive integer and $f(x)$ a polynomial with integer coefficients. Associated to the least common multiple ${\rm lcm}_{0\le i\le k}\{f(n+i)\}$, we define the function $\mathcal{G}_{k, f}$ for all positive integers $n\in \mathbb{N}^*\setminus Z_{k, f}$ by $\mathcal{G}_{k, f}(n): = \frac{\prod_{i = 0}^k |f(n+i)|}{{\rm lcm}_{0\le i\le k}\{f(n+i)\}}, $ where $Z_{k, f}: = \bigcup_{i = 0}^k\{n\in \mathbb{N}^*: f(n+i) = 0\}.$ If $f(x) = x$, then Farhi showed in 2007 that $\mathcal{G}_{k, f}$ is periodic with $k!$ as its period. Consequently, Hong and Yang improved Farhi's period $k!$ to ${\rm lcm}(1, ..., k)$. Later on, Farhi and Kane confirmed a conjecture of Hong and Yang and determined the smallest period of $\mathcal{G}_{k, f}$. For the general linear polynomial $f(x)$, Hong and Qian showed in 2011 that $\mathcal{G}_{k, f}$ is periodic and got a formula for its smallest period. In 2015, Hong and Qian characterized the quadratic polynomial $f(x)$ such that $\mathcal{G}_{k, f}$ is almost periodic and also arrived at an explicit formula for the smallest period of $\mathcal{G}_{k, f}$. If $\deg f(x)\ge 3$, then one naturally asks the following interesting question: Is the arithmetic function $\mathcal{G}_{k, f}$ almost periodic and, if so, what is the smallest period? In this paper, we asnwer this question for the case $f(x) = x^3+2$. First of all, with the help of Hua's identity, we prove that $\mathcal{G}_{k, x^3+2}$ is periodic. Consequently, we use Hensel's lemma, develop a detailed $p$-adic analysis to $\mathcal{G}_{k, x^3+2}$ and particularly investigate arithmetic properties of the congruences $x^3+2\equiv 0 \pmod{p^e}$ and $x^6+108\equiv 0\pmod{p^e}$, and with more efforts, its smallest period is finally determined. Furthermore, an asymptotic formula for ${\rm log \ lcm}_{0 \le i \le k}\{(n+i)^3+2\}$ is given.


    加载中


    [1] P. Bateman, J. Kalb and A. Stenger, A limit involving least common multiples, Amer. Math. Monthly, 109 (2002), 393-394.
    [2] P. L. Chebyshev, Memoire sur les nombres premiers, J. Math. Pures Appl., 17 (1852), 366-390.
    [3] B. Farhi, Minorations non triviales du plus petit commun multiple de certaines suites finies d'entiers, C. R. Acad. Sci. Paris, Ser. I, 341 (2005), 469-474. doi: 10.1016/j.crma.2005.09.019
    [4] B. Farhi, Nontrivial lower bounds for the least common multiple of some finite sequences of integers, J. Number Theory, 125 (2007), 393-411. doi: 10.1016/j.jnt.2006.10.017
    [5] B. Farhi, An identity involving the least common multiple of binomial coeffcients and its application, Amer. Math. Monthly, 116 (2009), 836-839. doi: 10.4169/000298909X474909
    [6] B. Farhi, On the derivatives of the integer-valued polynomials, arXiv:1810.07560.
    [7] B. Farhi and D. Kane, New results on the least common multiple of consecutive integers, Proc. Amer. Math. Soc., 137 (2009), 1933-1939.
    [8] C. J. Goutziers, On the least common multiple of a set of integers not exceeding N, Indag. Math., 42 (1980), 163-169.
    [9] D. Hanson, On the product of the primes, Canad. Math. Bull., 15 (1972), 33-37. doi: 10.4153/CMB-1972-007-7
    [10] S. F. Hong and W. D. Feng, Lower bounds for the least common multiple of finite arithmetic progressions, C. R. Acad. Sci. Paris, Ser. I, 343 (2006), 695-698. doi: 10.1016/j.crma.2006.11.002
    [11] S. F. Hong, Y. Y. Luo, G. Y. Qian, et al. Uniform lower bound for the least common multiple of a polynomial sequence, C.R. Acad. Sci. Paris, Ser. I, 351 (2013), 781-785. doi: 10.1016/j.crma.2013.10.005
    [12] S. F. Hong and G. Y. Qian, The least common multiple of consecutive arithmetic progression terms, Proc. Edinb. Math. Soc., 54 (2011), 431-441. doi: 10.1017/S0013091509000431
    [13] S. F. Hong and G. Y. Qian, The least common multiple of consecutive quadratic progression terms, Forum Math., 27 (2015), 3335-3396.
    [14] S. F. Hong and G. Y. Qian, New lower bounds for the least common multiple of polynomial sequences, J. Number Theory, 175 (2017), 191-199. doi: 10.1016/j.jnt.2016.11.026
    [15] S. F. Hong, G. Y. Qian and Q. R. Tan, The least common multiple of a sequence of products of linear polynomials, Acta Math. Hungar., 135 (2012), 160-167. doi: 10.1007/s10474-011-0173-4
    [16] S. F. Hong and Y. J. Yang, On the periodicity of an arithmetical function, C. R. Acad. Sci. Paris Sér. I, 346 (2008), 717-721.
    [17] S. F. Hong and Y. J. Yang, Improvements of lower bounds for the least common multiple of arithmetic progressions, Proc. Amer. Math. Soc., 136 (2008), 4111-4114. doi: 10.1090/S0002-9939-08-09565-8
    [18] L.-K. Hua, Introduction to number theory, Springer-Verlag, Berlin Heidelberg, 1982.
    [19] N. Koblitz, p-Adic numbers, p-adic analysis, and zeta-functions, Springer-Verlag, Heidelberg, 1977.
    [20] M. Nair, On Chebyshev-type inequalities for primes, Amer. Math. Monthly, 89 (1982), 126-129. doi: 10.1080/00029890.1982.11995398
    [21] J. Neukirch, Algebraic number theory, Springer-Verlag, 1999.
    [22] S. M. Oon, Note on the lower bound of least common multiple, Abstr. Appl. Anal., 2013.
    [23] G. Y. Qian and S. F. Hong, Asymptotic behavior of the least common multiple of consecutive arithmetic progression terms, Arch. Math., 100 (2013), 337-345. doi: 10.1007/s00013-013-0510-7
    [24] G. Y. Qian, Q. R. Tan and S. F. Hong, The least common multiple of consecutive terms in a quadratic progression, Bull. Aust. Math. Soc., 86 (2012), 389-404. doi: 10.1017/S0004972712000202
    [25] R. J. Wu, Q. R. Tan and S. F. Hong, New lower bounds for the least common multiple of arithmetic progressions, Chinese Annals of Mathematics, Series B, 34 (2013), 861-864. doi: 10.1007/s11401-013-0805-9
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3445) PDF downloads(362) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog