In this paper, we are interested in the existence of multiple nontrivial $ T $-periodic solutions of the nonlinear second ordinary differential equation $ \ddot{x}+V_x(t, x) = 0 $ in $ N(\geq 1) $ dimensions. Using homological linking and morse theory, we get at least two critical points of the functional corresponding to our problem. And, we also prove that two critical points are different by critical groups. Then, we obtain there are at least two nontrivial $ T $-periodic solutions of the problem.
Citation: Keqiang Li, Shangjiu Wang. Multiple periodic solutions of nonlinear second order differential equations[J]. AIMS Mathematics, 2023, 8(5): 11259-11269. doi: 10.3934/math.2023570
In this paper, we are interested in the existence of multiple nontrivial $ T $-periodic solutions of the nonlinear second ordinary differential equation $ \ddot{x}+V_x(t, x) = 0 $ in $ N(\geq 1) $ dimensions. Using homological linking and morse theory, we get at least two critical points of the functional corresponding to our problem. And, we also prove that two critical points are different by critical groups. Then, we obtain there are at least two nontrivial $ T $-periodic solutions of the problem.
[1] | G. Q. Zhang, Lecture Notes on Calculus of Variations (in Chinese), Higher Education Press, 2011. |
[2] | J. B. Su, R. Y. Zeng, Multiple periodic solutions of superlinear ordinary differential equations with a parameter, Nonlinear Anal., 74 (2011), 6442–6450. https://doi.org/10.1016/j.na.2011.06.027 doi: 10.1016/j.na.2011.06.027 |
[3] | P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, 65 (1986). Available from: http://www.ams.org/books/cbms/065/ |
[4] | P. H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations, Ann. Scuola Norm.-Sci., 5 (1978), 215–223. |
[5] | P. H. Rabinowitz, Periodic solutions of Hamiltonian systems: A survey, SIAM J. Math. Anal., 13 (1982), 343–352. https://doi.org/10.1137/0513027 doi: 10.1137/0513027 |
[6] | S. J. Li, Periodic solutions of non-autonomous second order systems with superlinear terms, Differential Integral Equ., 5 (1992), 1419–1424. |
[7] | J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, New York: Springer-Verlag, 1989. https://doi.org/10.1007/978-1-4757-2061-7 |
[8] | K. C. Chang, Infinite dimensional morse theory and multiple solution problems, In: Progress in Nonlinear Differential Equations and Their Applications, 6 (1993). |
[9] | T. Bartsch, S. J. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal., 28 (1997), 419–441. https://doi.org/10.1016/0362-546X(95)00167-T doi: 10.1016/0362-546X(95)00167-T |
[10] | S. J. Li, J. B. Su, Existence of multiple critical points for an asymtotically quadratic functional with applications, Abstr. Appl. Anal., 1 (1996), 277–289. https://doi.org/10.1155/S1085337596000140 doi: 10.1155/S1085337596000140 |
[11] | X. L. Li, J. B. Su, R. S. Tian, Multiple periodic solutions of the second order Hamiltonian systems with superlinear terms, J. Math. Anal. Appl., 385 (2012), 1–11. https://doi.org/10.1016/j.jmaa.2011.06.061 doi: 10.1016/j.jmaa.2011.06.061 |
[12] | J. Q. Liu, S. J. Li, An existence theorems on multiple critical points and their applications, Kexue Tongbao (in Chinese), 17 (1984), 1025–1027. |
[13] | I. Astashova, M. Bartusek, Z. Dosla, M. Marini, Asymptotic proximity to higher order nonlinear differential equations, Adv. Nonlinear Anal., 11 (2022), 1598–1613. https://doi.org/10.1515/anona-2022-0254 doi: 10.1515/anona-2022-0254 |
[14] | P. H. Rabinowitz, Periodic solutions of Hamiltonian systems, Commun. Pure Appl. Math., 31 (1978), 157–184. https://doi.org/10.1002/cpa.3160310203 doi: 10.1002/cpa.3160310203 |
[15] | P. H. Rabinowitz, J. B. Su, Z. Q. Wang, Multiple solutions of superlinear elliptic equations, Rend. Lincei Mat. Appl., 18 (2007), 97–108. |
[16] | N. S. Papageorgiou, V. D. Radulescu, D. D. Repovs, Nonlinear Analysis-Theory and Methods, Springer Cham, 2019. https://doi.org/10.1007/978-3-030-03430-6 |
[17] | D. Gromoll, W. Meyer, On differential functions with critical point, Topology, 8 (1969), 361–369. https://doi.org/10.1016/0040-9383(69)90022-6 doi: 10.1016/0040-9383(69)90022-6 |
[18] | J. Q. Liu, The Morse index for a saddle point, J. Syst. Sci. Complex., 2 (1989), 32–39. |