In this paper, we consider the existence and multiplicity of nontrivial solutions to second order partial difference equation with Dirichlet boundary conditions by Morse theory. Given suitable conditions, we establish multiple results that the problem admits at least two nontrivial solutions. Moreover, we provide five examples to illustrate applications of our theorems.
Citation: Huan Zhang, Yin Zhou, Yuhua Long. Results on multiple nontrivial solutions to partial difference equations[J]. AIMS Mathematics, 2023, 8(3): 5413-5431. doi: 10.3934/math.2023272
In this paper, we consider the existence and multiplicity of nontrivial solutions to second order partial difference equation with Dirichlet boundary conditions by Morse theory. Given suitable conditions, we establish multiple results that the problem admits at least two nontrivial solutions. Moreover, we provide five examples to illustrate applications of our theorems.
[1] | J. S. Yu, J. Li, Discrete-time models for interactive wild and sterile mosquitoes with general time steps, Math. Biosci., 346 (2022), 108797. https://doi.org/10.1016/j.mbs.2022.108797 doi: 10.1016/j.mbs.2022.108797 |
[2] | Y. H. Long, L. Wang, Global dynamics of a delayed two-patch discrete SIR disease model, Commun. Nonlinear Sci., 83 (2020), 105117. https://doi.org/10.1016/j.cnsns.2019.105117 doi: 10.1016/j.cnsns.2019.105117 |
[3] | Y. H. Long, Q. Q. Zhang, Sign-changing solutions of a discrete fourth-order Lidstone problem with three parameters, J. Appl. Anal. Comput., 12 (2022), 1118–1140. https://doi.org/10.11948/20220148 doi: 10.11948/20220148 |
[4] | Y. H. Long, Existence of multiple and sign-changing solutions for a second-order nonlinear functional difference equation with periodic coefficients, J. Differ. Equ. Appl., 26 (2020), 966–986. https://doi.org/10.1080/10236198.2020.1804557 doi: 10.1080/10236198.2020.1804557 |
[5] | Y. H. Long, Existence of two homoclinic solutions for a nonperiodic difference equation with a perturbation, AIMS Math., 6 (2021), 4786–4802. https://doi.org/10.3934/math.2021281 doi: 10.3934/math.2021281 |
[6] | Y. H. Long, J. L. Chen, Existence of multiple solutions to second-order discrete Neumann boundary value problems, Appl. Math. Lett., 83 (2018), 7–14. https://doi.org/10.1016/j.aml.2018.03.006 doi: 10.1016/j.aml.2018.03.006 |
[7] | S. S. Cheng, Partial difference equations, CRC Press, 2003. |
[8] | Y. H. Long, X. Q. Deng, Existence and multiplicity solutions for discrete Kirchhoff type problems, Appl. Math. Lett., 126 (2022), 107817. https://doi.org/10.1016/j.aml.2021.107817 doi: 10.1016/j.aml.2021.107817 |
[9] | S. J. Du, Z. Zhou, On the existence of multiple solutions for a partial discrete Dirichlet boundary value problem with mean curvature operator, Adv. Nonlinear Anal., 11 (2022), 198–211. https://doi.org/10.1515/anona-2020-0195 doi: 10.1515/anona-2020-0195 |
[10] | S. H Wang, Z. Zhou, Three solutions for a partial discrete Dirichlet boundary value problem with p-Laplacian, Bound. Value Probl., 2021 (2021), 39. https://doi.org/10.1186/s13661-021-01514-9 doi: 10.1186/s13661-021-01514-9 |
[11] | M. Imbesi, G. M. Bisci, Discrete elliptic Dirichlet problems and nonlinear algebraic systems, Mediterr. J. Math., 13 (2016), 263–278. https://doi.org/10.1007/s00009-014-0490-2 doi: 10.1007/s00009-014-0490-2 |
[12] | H. S. Tang, W. Luo, X. Li, M. J. Ma, Nontrivial solutions of discrete elliptic boundary value problems, Comput. Math. Appl., 55 (2008), 1854–1860. https://doi.org/10.1016/j.camwa.2007.08.030 doi: 10.1016/j.camwa.2007.08.030 |
[13] | G. Zhang, Existence of nontrivial solutions for discrete elliptic boundary value problems, Numer. Meth. Part. D. E., 22 (2006), 1479–1488. https://doi.org/10.1002/num.20164 doi: 10.1002/num.20164 |
[14] | Y. H. Long, Multiple results on nontrivial solutions of discrete Kirchhoff type problems, J. Appl. Math. Comput., 2022 (2022). https://doi.org/10.1007/s12190-022-01731-0 doi: 10.1007/s12190-022-01731-0 |
[15] | K. C. Chang, Solutions of asymptotically linear operator via Morse theory, Commun. Pur. Appl. Math., 34 (1981), 693–712. https://doi.org/10.1002/cpa.3160340503 doi: 10.1002/cpa.3160340503 |
[16] | K. C. Chang, Infinite dimensional Morse theory, In: Infinite dimensional Morse theory and multiple solution problems, Boston, 1993. https://doi.org/10.1007/978-1-4612-0385-8_1 |
[17] | J. B. Su, Multiplicity results for asymptotically linear elliptic problems at resonance, J. Math. Anal. Appl., 278 (2003), 397–408. https://doi.org/10.1016/S0022-247X(02)00707-2 doi: 10.1016/S0022-247X(02)00707-2 |
[18] | Y. H. Long, H. P. Shi, X. Q. Peng, Nontrivial periodic solutions to delay difference equations via Morse theory, Open Math., 16 (2018), 885–896. https://doi.org/10.1515/math-2018-0077 doi: 10.1515/math-2018-0077 |
[19] | Y. H. Long, Nontrivial solutions of discrete Kirchhoff type problems via Morse theory, Adv. Nonlinear Anal., 11 (2022), 1352–1364. https://doi.org/10.1515/anona-2022-0251 doi: 10.1515/anona-2022-0251 |
[20] | Y. H. Long, H. Zhang, Three nontrivial solutions for second-order partial difference equation via morse theory, J. Funct. Space., 2022 (2022), 1564961. https://doi.org/10.1155/2022/1564961 doi: 10.1155/2022/1564961 |
[21] | Y. H. Long, H. Zhang, Existence and multiplicity of nontrivial solutions to discrete elliptic Dirichlet problems, Electron. Res. Arch., 30 (2022), 2681–2699. https://doi.org/10.3934/era.2022137 doi: 10.3934/era.2022137 |
[22] | P. Bartolo, V. Benci, D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal. Theor., 7 (1983), 981–1012. https://doi.org/10.1016/0362-546X(83)90115-3 doi: 10.1016/0362-546X(83)90115-3 |
[23] | G. Cerami, Un criterio di esistenza per i punti critici su variet illimitate, Rend. Instituto Lombardo Sci. Lett., 112 (1978), 332–336. |
[24] | J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, In: Applied mathematical sciences, New York: Springer, 1989. https://doi.org/https://doi.org/10.1007/978-1-4757-2061-7 |
[25] | Z. P. Liang, J. B. Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance, J. Math. Anal. Appl., 354 (2009), 147–158. https://doi.org/10.1016/j.jmaa.2008.12.053 doi: 10.1016/j.jmaa.2008.12.053 |
[26] | J. B. Su, L. G. Zhao, An elliptic resonance problem with multiple solutions, J. Math. Anal. Appl., 319 (2006), 604–616. https://doi.org/10.1016/j.jmaa.2005.10.059 doi: 10.1016/j.jmaa.2005.10.059 |