We prove a version of the fundamental theorems of Morse theory in the setting of finite partially ordered sets. By using these results we extend Forman's discrete Morse theory to more general cell complexes and derive the Morse-Pitcher inequalities in that context.
Citation: D. Fernández-Ternero, E. Macías-Virgós, D. Mosquera-Lois, N. A. Scoville, J. A. Vilches. Fundamental theorems of Morse theory on posets[J]. AIMS Mathematics, 2022, 7(8): 14922-14945. doi: 10.3934/math.2022818
We prove a version of the fundamental theorems of Morse theory in the setting of finite partially ordered sets. By using these results we extend Forman's discrete Morse theory to more general cell complexes and derive the Morse-Pitcher inequalities in that context.
[1] | P. Alexandroff, Diskrete Räume, Rec. Math. Moscou, n. Ser., 2 (1937), 501–519. |
[2] | T. F. Banchoff, Critical points and curvature for embedded polyhedra, J. Differ. Geom., 1 (1967), 245–256. https://doi.org/10.4310/jdg/1214428092 doi: 10.4310/jdg/1214428092 |
[3] | T. F. Banchoff, Critical points and curvature for embedded polyhedra. Ⅱ. Differential geometry (College Park, Md., 1981/1982), 34–55, Progr. Math., 32, Birkhäuser Boston, Boston, MA, 1983. |
[4] | J. A. Barmak, Algebraic topology of finite topological spaces and applications, Lecture Notes in Mathematics 2032, Springer, Heidelberg, 2011. |
[5] | J. A Barmak, E. G. Minian, One-point reductions of finite spaces, $h$-regular CW-complexes and collapsibility, Algebr. Geom. Topol., 8 (2008), 1763–1780. https://doi.org/10.2140/agt.2008.8.1763 doi: 10.2140/agt.2008.8.1763 |
[6] | J. A. Barmak, E. G. Minian, Automorphism groups of finite posets, Discrete Math., 309 (2009), 3424–3426. https://doi.org/10.1016/j.disc.2008.09.026 doi: 10.1016/j.disc.2008.09.026 |
[7] | J. A. Barmak, E. G. Minian, Strong homotopy types, nerves and collapses, Discrete Comput. Geom., 47 (2012), 301–328. https://doi.org/10.1007/s00454-011-9357-5 doi: 10.1007/s00454-011-9357-5 |
[8] | M. Bestvina, N. Brady, Morse theory and finiteness properties of groups, Invent. Math., 129 (1997), 445–470. https://doi.org/10.1007/s002220050168 doi: 10.1007/s002220050168 |
[9] | E. D. Bloch, Polyhedral representation of discrete Morse functions, Discrete Math., 313 (2013), 1342–1348. https://doi.org/10.1016/j.disc.2013.02.020 doi: 10.1016/j.disc.2013.02.020 |
[10] | K. S. Brown, Euler characteristics of groups: The $p$-fractional part, Invent. Math., 29 (1975), 1–5. https://doi.org/10.1007/BF01405170 doi: 10.1007/BF01405170 |
[11] | M. K. Chari, On discrete Morse functions and combinatorial decompositions, Discrete Math., 217 (2000), 101–113. https://doi.org/10.1016/S0012-365X(99)00258-7 doi: 10.1016/S0012-365X(99)00258-7 |
[12] | P. J. Chocano, M. A. Morón, F. Ruiz del Portal, Topological realizations of groups in Alexandroff spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, 115 (2021), Id/No 25. https://doi.org/10.1007/s13398-020-00964-7 doi: 10.1007/s13398-020-00964-7 |
[13] | N. Cianci, M. Ottina, Poset splitting and minimality of finite models, J. Comb. Theory, Series A, 157 (2018), 120–161. https://doi.org/10.1016/j.jcta.2018.02.010 doi: 10.1016/j.jcta.2018.02.010 |
[14] | F. D. Farmer, Cellular homology for posets, Math. Japon., 23 (1978/79), 607–613. |
[15] | R. Forman, Morse theory for cell complexes, Adv. Math., 134 (1998), 90–145. https://doi.org/10.1006/aima.1997.1650 doi: 10.1006/aima.1997.1650 |
[16] | R. Forman, Witten-Morse theory for cell complexes, Topology, 37 (1998), 945–979. https://doi.org/10.1016/S0040-9383(97)00071-2 doi: 10.1016/S0040-9383(97)00071-2 |
[17] | R. Forman, A user's guide to discrete Morse theory, Sém. Lothar. Combin, 48 (2002), Art. B48c, 35 pp. |
[18] | R. Ghrist, Elementary Applied Topology, Createspace, 2014. |
[19] | K. A. Hardie, J. J. C. Vermeulen, P. J. Witbooi, A nontrivial pairing of finite t0 spaces, Topol. Appl., 125 (2002), 533–542. https://doi.org/10.1016/S0166-8641(01)00298-X doi: 10.1016/S0166-8641(01)00298-X |
[20] | A. Hatcher, Algebraic Topology, Cambridge University Press, 2002. |
[21] | A. T. Lundell, S. Weingram, The topology of CW complexes, The University Series in Higher Mathematics, Van Nostrand Reinhold Co., New York, 1969. |
[22] | M. C. McCord, Singular homology groups and homotopy groups of finite topological spaces, Duke Math. J., 33 (1966), 465–474. https://doi.org/10.1215/S0012-7094-66-03352-7 doi: 10.1215/S0012-7094-66-03352-7 |
[23] | J. Milnor, Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51. Princeton University Press, Princeton, N.J., 1963. |
[24] | E. G. Minian, Some remarks on Morse theory for posets, homological Morse theory and finite manifolds, Topology Appl., 159 (2012), 2860–2869. https://doi.org/10.1016/j.topol.2012.05.027 doi: 10.1016/j.topol.2012.05.027 |
[25] | M. Morse, The calculus of variations in the large, Amer. Math. Soc. Colloq. Publ. 18 AMS, Providence, RI, 1996. |
[26] | E. Pitcher, Inequalities of critical point theory, Bull. Am. Math. Soc., 64 (1958), 1–30. https://doi.org/10.1090/S0002-9904-1958-10137-8 doi: 10.1090/S0002-9904-1958-10137-8 |
[27] | D. Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv. Math., 28 (1978), 101–128. https://doi.org/10.1016/0001-8708(78)90058-0 doi: 10.1016/0001-8708(78)90058-0 |
[28] | G. Raptis, Homotopy theory of posets, Homology Homotopy Appl., 12 (2010), 211–230. https://doi.org/10.4310/HHA.2010.v12.n2.a7 doi: 10.4310/HHA.2010.v12.n2.a7 |
[29] | R. E. Stong, Finite topological spaces, Trans. Amer. Math. Soc., 123 (1966), 325–340. https://doi.org/10.1090/S0002-9947-1966-0195042-2 doi: 10.1090/S0002-9947-1966-0195042-2 |
[30] | R. E. Stong, Group actions on finite spaces, Discrete Math., 49 (1984), 95–100. https://doi.org/10.1016/0012-365X(84)90156-0 doi: 10.1016/0012-365X(84)90156-0 |
[31] | M. L. Wachs, Poset topology: Tools and applications, In: Geometric combinatorics, 497–615. IAS/Park City Math. Ser., 13, Amer. Math. Soc., Providence, RI, 2007. |