Research article

Multiplicity of nontrivial solutions for a class of fractional Kirchhoff equations

  • Received: 12 November 2023 Revised: 11 December 2023 Accepted: 19 December 2023 Published: 15 January 2024
  • MSC : 35B38, 35D30, 35J10, 35J20, 35J62

  • In this article, we study a class of fractional Kirchhoff with a superlinear nonlinearity:

    $ \begin{equation} \begin{cases} M(\int_{\mathbb{R}^{N}}|(-\triangle)^{\frac{\alpha}{2}}u|^{2}dx)(-\triangle)^{\alpha}u+\lambda V(x)u = f(x, u)\; \; \mbox{in}\; \; \mathbb{R}^{N}, \\ u\in H^{\alpha}(\mathbb{R}^{N}), \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; N\geq1, \; \; \; \; \; \; \; \; (1.1)\notag \end{cases} \end{equation} $

    where $ \lambda > 0 $ is a parameter, $ a $ and $ b $ are positive numbers satisfying $ M(t) = am(t)+b $, $ m:\mathbb{R}^{+}\rightarrow \mathbb{R}^{+} $ is continuous. $ V: \mathbb{R}^{N}\times\mathbb{R}\rightarrow \mathbb{R} $ is continuous. $ f $ satisfies $ \lim\limits_{|t|\rightarrow \infty}f(x, t)/|t|^{k-1} = Q(x) $ uniformly in $ x\in\mathbb{R}^{N} $ for each $ 2 < k < 2_{\alpha}^{\ast}, (2_{\alpha}^{\ast} = \frac{2N}{N-2\alpha}) $. We investigated the effects of functions $ m $ and $ Q $ on the solution. By applying the variational method, we obtain the existence of multiple solutions. Furthermore, it is worth mentioning that the ground state solution has also been obtained.

    Citation: Liuyang Shao, Haibo Chen, Yicheng Pang, Yingmin Wang. Multiplicity of nontrivial solutions for a class of fractional Kirchhoff equations[J]. AIMS Mathematics, 2024, 9(2): 4135-4160. doi: 10.3934/math.2024203

    Related Papers:

  • In this article, we study a class of fractional Kirchhoff with a superlinear nonlinearity:

    $ \begin{equation} \begin{cases} M(\int_{\mathbb{R}^{N}}|(-\triangle)^{\frac{\alpha}{2}}u|^{2}dx)(-\triangle)^{\alpha}u+\lambda V(x)u = f(x, u)\; \; \mbox{in}\; \; \mathbb{R}^{N}, \\ u\in H^{\alpha}(\mathbb{R}^{N}), \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; N\geq1, \; \; \; \; \; \; \; \; (1.1)\notag \end{cases} \end{equation} $

    where $ \lambda > 0 $ is a parameter, $ a $ and $ b $ are positive numbers satisfying $ M(t) = am(t)+b $, $ m:\mathbb{R}^{+}\rightarrow \mathbb{R}^{+} $ is continuous. $ V: \mathbb{R}^{N}\times\mathbb{R}\rightarrow \mathbb{R} $ is continuous. $ f $ satisfies $ \lim\limits_{|t|\rightarrow \infty}f(x, t)/|t|^{k-1} = Q(x) $ uniformly in $ x\in\mathbb{R}^{N} $ for each $ 2 < k < 2_{\alpha}^{\ast}, (2_{\alpha}^{\ast} = \frac{2N}{N-2\alpha}) $. We investigated the effects of functions $ m $ and $ Q $ on the solution. By applying the variational method, we obtain the existence of multiple solutions. Furthermore, it is worth mentioning that the ground state solution has also been obtained.



    加载中


    [1] G. Kirchhoff, Mechanik, Teubener, Leipzig, 1983.
    [2] A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal.-Theor., 94 (2014), 156–170. https://doi.org/10.1016/j.na.2013.08.011 doi: 10.1016/j.na.2013.08.011
    [3] A. Alghamdi, S. Gala, M. Ragusa, Z. Zhang, A Regularity Criterion for the 3D Density-Dependent MHD Equations, B. Braz. Math. Soc., 52 (2021), 241–251. https://doi.org/10.1007/s00574-020-00199-5 doi: 10.1007/s00574-020-00199-5
    [4] F. Faraci, C. Farkas, On a critical Kirchhoff-type problem, Nonlinear Analysis, 192 (2020), 111679. https://doi.org/10.1016/j.na.2019.111679 doi: 10.1016/j.na.2019.111679
    [5] A. Fiscella, Infinitely many solutions for a critical Kirchhoff type problem involving a fractional operator, Differ. Int. Equ., 29 (2016), 513–530. https://doi.org/10.57262/die/1457536889 doi: 10.57262/die/1457536889
    [6] E. Nezza, G. Palatucci, E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
    [7] A. Cotsiolis, N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225–236. https://doi.org/10.1016/j.jmaa.2004.03.034 doi: 10.1016/j.jmaa.2004.03.034
    [8] P. Pucci, M. Xiang, B. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in $\mathbb{R}^{N}$, Calc. Var. Partial Differ. Equ., 54 (2015), 2785–2806. https://doi.org/10.1007/s00526-015-0883-5 doi: 10.1007/s00526-015-0883-5
    [9] R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 66–102. https://doi.org/10.1090/S0002-9947-2014-05884-4 doi: 10.1090/S0002-9947-2014-05884-4
    [10] H. Brezis, T. Kato, Remarks on the Schrödinger operator with singular complex potential, J. Math. Pures Appl., 58 (1979), 137–151.
    [11] G. Figueiredo, N. Ikoma, J. Santos Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearitie, Arch. Ration. Mech. Anal., 213 (2014), 931–979. https://doi.org/10.1007/s00205-014-0747-8 doi: 10.1007/s00205-014-0747-8
    [12] C. Alves, V. Ambrosio, T. Isernia, Existence, multiplicity and concentration for a class of fractional p-q Laplacian problems in $\mathbb{R}^{N}$, Comm. Pure. Appl. Anal., 184 (2019), 2009–2045.
    [13] D. Goel, K. Sreenadh, Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity, Nonlinear Analysis, 186 (2019), 172–186. https://doi.org/10.1016/j.na.2019.01.035 doi: 10.1016/j.na.2019.01.035
    [14] P. Lions, The concentration compactness principle in the calculus of variations: The locally compact case, part 2, Ann. Inst. H. Poincar. Anal. Non Linaire, 1 (1984), 223–283. https://doi.org/10.1016/s0294-1449(16)30422-x doi: 10.1016/s0294-1449(16)30422-x
    [15] P. Lions, The concentration compactness principle in the calculus of variations: the locally compact case, part 1, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1 (1984), 109–145. https://doi.org/10.1016/s0294-1449(16)30428-0 doi: 10.1016/s0294-1449(16)30428-0
    [16] G. Figueiredo, N. Ikoma, J. Santos Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Ration. Mech. Anal., 213 (2014), 931–979. https://doi.org/10.1007/s00205-014-0747-8 doi: 10.1007/s00205-014-0747-8
    [17] P. D'Ancona, S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247–262. https://doi.org/10.1007/BF02100605 doi: 10.1007/BF02100605
    [18] L. Zhang, X. Tang, S. Chen, Multiple solutions for fractional Kirchhoff equation with critical or supercritical nonlinearity, App, Math, Lett., 119 (2021), 107204. https://doi.org/10.1016/j.aml.2021.107204 doi: 10.1016/j.aml.2021.107204
    [19] M. Xiang, B. Zhang, D. Repovš, Existence and multiplicity of solutions for fractional Schrödinger-Kirchhoff equations with Trudinger-Moser nonlinearity, Nonlinear Analysis. 186 (2019), 74–98. https://doi.org/10.1016/j.na.2018.11.008
    [20] D. Yafaev, Multiple solutions for a class of fractional Schrödinger equations in $\mathbb{R}^{N}$, Nonlinear Anal.-Real, 21 (2014), 76–86. https://doi.org/10.1016/j.nonrwa.2014.06.008 doi: 10.1016/j.nonrwa.2014.06.008
    [21] M. Xiang, D. Hu, B. Zhang, Y. Wang, Multiplicity of solutions for variable-order fractional Kirchhoff equations with nonstandard growth, J. Math. Anal. Appl., 501 (2021), 124269. https://doi.org/10.1016/j.jmaa.2020.124269 doi: 10.1016/j.jmaa.2020.124269
    [22] V. Ambrosio, T. Lsernia, A multiplicity result for a fractional Kirchhoff equation in $\mathbb{R}^{N}$ with a general nonlinearity, Comm. Cont. Math., 20 (2018), 1750054. https://doi.org/10.1142/S0219199717500547 doi: 10.1142/S0219199717500547
    [23] W. Chen, Y. Gui, Multiple solutions for a fractional p-Kirchhoff problem with Hardy nonlinearity, Nonlinear Analysis, 188 (2019), 316–338. https://doi.org/10.1016/j.na.2019.06.009 doi: 10.1016/j.na.2019.06.009
    [24] S. Peng, A. Xia, Multiplicity and concentration of solutions for nonlinear fractional elliptic equations with steep potentia, Commun. Pur. Appl. Anal., 17 (2018), 1201–1207. https://doi.org/10.3934/cpaa.2018058 doi: 10.3934/cpaa.2018058
    [25] J. Zuo, D. Choudhuri, D. Repovš, Multiplicity and boundedness of solutions for critical variable-order Kirchhoff type problems involving variable singular exponent, J. Math. Anal. Appl., 514 (2022), 126264. https://doi.org/10.1016/j.jmaa.2022.126264 doi: 10.1016/j.jmaa.2022.126264
    [26] D. Choudhuri, Existence and Hölder regularity of infinitely many solutions to a p-Kirchhoff type problem involving a singular nonlinearity without the Ambrosetti-Rabinowitz (AR) condition, Zeitschrift für Angewandte Mathematik und Physik (Z.A.M.P.), 72 (2021), 36. https://doi.org/10.1097/01.BACK.0000753296.84688.86 doi: 10.1097/01.BACK.0000753296.84688.86
    [27] T. Bartsch, Z. Wang, Existence and multiplicity results for superlinear elliptic problems on $\mathbb{R}^{N}$, Comm. Part. Differ. Equ., 20 (1995), 1725–1741. https://doi.org/10.1080/03605309508821149 doi: 10.1080/03605309508821149
    [28] R. Servadei, E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887–898. https://doi.org/10.1016/j.jmaa.2011.12.032 doi: 10.1016/j.jmaa.2011.12.032
    [29] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 189 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
    [30] H. Hajaiej, X. Yu, Z. Zhai, Fractional Gagliardo–Nirenberg and Hardy inequalities under Lorentz norms, J. Math. Anal. Appl., 396 (2012), 569–577. https://doi.org/10.1016/j.jmaa.2012.06.054 doi: 10.1016/j.jmaa.2012.06.054
    [31] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm Pur. Appl. Math., 60 (2006), 67–112. https://doi.org/10.1002/cpa.20153 doi: 10.1002/cpa.20153
    [32] M. Millem, Minimax Theorems, Birkh$\ddot{a}$user, Berlin, 1996. https://doi.org/10.1007/978-1-4612-4146-1
    [33] J. Sun, T. Wu, On the nonlinear Schrödinger-Poisson system with sign-changing potential, Z. Angew. Math. Phys., 66 (2015), 1649–1669. https://doi.org/10.1007/s00033-015-0494-1 doi: 10.1007/s00033-015-0494-1
    [34] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, J. Differ. Equ., 60 (2006), 67–112. https://doi.org/10.1002/cpa.20153 doi: 10.1002/cpa.20153
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(832) PDF downloads(78) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog