In this article, we study a class of fractional Kirchhoff with a superlinear nonlinearity:
$ \begin{equation} \begin{cases} M(\int_{\mathbb{R}^{N}}|(-\triangle)^{\frac{\alpha}{2}}u|^{2}dx)(-\triangle)^{\alpha}u+\lambda V(x)u = f(x, u)\; \; \mbox{in}\; \; \mathbb{R}^{N}, \\ u\in H^{\alpha}(\mathbb{R}^{N}), \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; N\geq1, \; \; \; \; \; \; \; \; (1.1)\notag \end{cases} \end{equation} $
where $ \lambda > 0 $ is a parameter, $ a $ and $ b $ are positive numbers satisfying $ M(t) = am(t)+b $, $ m:\mathbb{R}^{+}\rightarrow \mathbb{R}^{+} $ is continuous. $ V: \mathbb{R}^{N}\times\mathbb{R}\rightarrow \mathbb{R} $ is continuous. $ f $ satisfies $ \lim\limits_{|t|\rightarrow \infty}f(x, t)/|t|^{k-1} = Q(x) $ uniformly in $ x\in\mathbb{R}^{N} $ for each $ 2 < k < 2_{\alpha}^{\ast}, (2_{\alpha}^{\ast} = \frac{2N}{N-2\alpha}) $. We investigated the effects of functions $ m $ and $ Q $ on the solution. By applying the variational method, we obtain the existence of multiple solutions. Furthermore, it is worth mentioning that the ground state solution has also been obtained.
Citation: Liuyang Shao, Haibo Chen, Yicheng Pang, Yingmin Wang. Multiplicity of nontrivial solutions for a class of fractional Kirchhoff equations[J]. AIMS Mathematics, 2024, 9(2): 4135-4160. doi: 10.3934/math.2024203
In this article, we study a class of fractional Kirchhoff with a superlinear nonlinearity:
$ \begin{equation} \begin{cases} M(\int_{\mathbb{R}^{N}}|(-\triangle)^{\frac{\alpha}{2}}u|^{2}dx)(-\triangle)^{\alpha}u+\lambda V(x)u = f(x, u)\; \; \mbox{in}\; \; \mathbb{R}^{N}, \\ u\in H^{\alpha}(\mathbb{R}^{N}), \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; N\geq1, \; \; \; \; \; \; \; \; (1.1)\notag \end{cases} \end{equation} $
where $ \lambda > 0 $ is a parameter, $ a $ and $ b $ are positive numbers satisfying $ M(t) = am(t)+b $, $ m:\mathbb{R}^{+}\rightarrow \mathbb{R}^{+} $ is continuous. $ V: \mathbb{R}^{N}\times\mathbb{R}\rightarrow \mathbb{R} $ is continuous. $ f $ satisfies $ \lim\limits_{|t|\rightarrow \infty}f(x, t)/|t|^{k-1} = Q(x) $ uniformly in $ x\in\mathbb{R}^{N} $ for each $ 2 < k < 2_{\alpha}^{\ast}, (2_{\alpha}^{\ast} = \frac{2N}{N-2\alpha}) $. We investigated the effects of functions $ m $ and $ Q $ on the solution. By applying the variational method, we obtain the existence of multiple solutions. Furthermore, it is worth mentioning that the ground state solution has also been obtained.
[1] | G. Kirchhoff, Mechanik, Teubener, Leipzig, 1983. |
[2] | A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal.-Theor., 94 (2014), 156–170. https://doi.org/10.1016/j.na.2013.08.011 doi: 10.1016/j.na.2013.08.011 |
[3] | A. Alghamdi, S. Gala, M. Ragusa, Z. Zhang, A Regularity Criterion for the 3D Density-Dependent MHD Equations, B. Braz. Math. Soc., 52 (2021), 241–251. https://doi.org/10.1007/s00574-020-00199-5 doi: 10.1007/s00574-020-00199-5 |
[4] | F. Faraci, C. Farkas, On a critical Kirchhoff-type problem, Nonlinear Analysis, 192 (2020), 111679. https://doi.org/10.1016/j.na.2019.111679 doi: 10.1016/j.na.2019.111679 |
[5] | A. Fiscella, Infinitely many solutions for a critical Kirchhoff type problem involving a fractional operator, Differ. Int. Equ., 29 (2016), 513–530. https://doi.org/10.57262/die/1457536889 doi: 10.57262/die/1457536889 |
[6] | E. Nezza, G. Palatucci, E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[7] | A. Cotsiolis, N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225–236. https://doi.org/10.1016/j.jmaa.2004.03.034 doi: 10.1016/j.jmaa.2004.03.034 |
[8] | P. Pucci, M. Xiang, B. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in $\mathbb{R}^{N}$, Calc. Var. Partial Differ. Equ., 54 (2015), 2785–2806. https://doi.org/10.1007/s00526-015-0883-5 doi: 10.1007/s00526-015-0883-5 |
[9] | R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 66–102. https://doi.org/10.1090/S0002-9947-2014-05884-4 doi: 10.1090/S0002-9947-2014-05884-4 |
[10] | H. Brezis, T. Kato, Remarks on the Schrödinger operator with singular complex potential, J. Math. Pures Appl., 58 (1979), 137–151. |
[11] | G. Figueiredo, N. Ikoma, J. Santos Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearitie, Arch. Ration. Mech. Anal., 213 (2014), 931–979. https://doi.org/10.1007/s00205-014-0747-8 doi: 10.1007/s00205-014-0747-8 |
[12] | C. Alves, V. Ambrosio, T. Isernia, Existence, multiplicity and concentration for a class of fractional p-q Laplacian problems in $\mathbb{R}^{N}$, Comm. Pure. Appl. Anal., 184 (2019), 2009–2045. |
[13] | D. Goel, K. Sreenadh, Kirchhoff equations with Hardy-Littlewood-Sobolev critical nonlinearity, Nonlinear Analysis, 186 (2019), 172–186. https://doi.org/10.1016/j.na.2019.01.035 doi: 10.1016/j.na.2019.01.035 |
[14] | P. Lions, The concentration compactness principle in the calculus of variations: The locally compact case, part 2, Ann. Inst. H. Poincar. Anal. Non Linaire, 1 (1984), 223–283. https://doi.org/10.1016/s0294-1449(16)30422-x doi: 10.1016/s0294-1449(16)30422-x |
[15] | P. Lions, The concentration compactness principle in the calculus of variations: the locally compact case, part 1, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1 (1984), 109–145. https://doi.org/10.1016/s0294-1449(16)30428-0 doi: 10.1016/s0294-1449(16)30428-0 |
[16] | G. Figueiredo, N. Ikoma, J. Santos Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities, Arch. Ration. Mech. Anal., 213 (2014), 931–979. https://doi.org/10.1007/s00205-014-0747-8 doi: 10.1007/s00205-014-0747-8 |
[17] | P. D'Ancona, S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108 (1992), 247–262. https://doi.org/10.1007/BF02100605 doi: 10.1007/BF02100605 |
[18] | L. Zhang, X. Tang, S. Chen, Multiple solutions for fractional Kirchhoff equation with critical or supercritical nonlinearity, App, Math, Lett., 119 (2021), 107204. https://doi.org/10.1016/j.aml.2021.107204 doi: 10.1016/j.aml.2021.107204 |
[19] | M. Xiang, B. Zhang, D. Repovš, Existence and multiplicity of solutions for fractional Schrödinger-Kirchhoff equations with Trudinger-Moser nonlinearity, Nonlinear Analysis. 186 (2019), 74–98. https://doi.org/10.1016/j.na.2018.11.008 |
[20] | D. Yafaev, Multiple solutions for a class of fractional Schrödinger equations in $\mathbb{R}^{N}$, Nonlinear Anal.-Real, 21 (2014), 76–86. https://doi.org/10.1016/j.nonrwa.2014.06.008 doi: 10.1016/j.nonrwa.2014.06.008 |
[21] | M. Xiang, D. Hu, B. Zhang, Y. Wang, Multiplicity of solutions for variable-order fractional Kirchhoff equations with nonstandard growth, J. Math. Anal. Appl., 501 (2021), 124269. https://doi.org/10.1016/j.jmaa.2020.124269 doi: 10.1016/j.jmaa.2020.124269 |
[22] | V. Ambrosio, T. Lsernia, A multiplicity result for a fractional Kirchhoff equation in $\mathbb{R}^{N}$ with a general nonlinearity, Comm. Cont. Math., 20 (2018), 1750054. https://doi.org/10.1142/S0219199717500547 doi: 10.1142/S0219199717500547 |
[23] | W. Chen, Y. Gui, Multiple solutions for a fractional p-Kirchhoff problem with Hardy nonlinearity, Nonlinear Analysis, 188 (2019), 316–338. https://doi.org/10.1016/j.na.2019.06.009 doi: 10.1016/j.na.2019.06.009 |
[24] | S. Peng, A. Xia, Multiplicity and concentration of solutions for nonlinear fractional elliptic equations with steep potentia, Commun. Pur. Appl. Anal., 17 (2018), 1201–1207. https://doi.org/10.3934/cpaa.2018058 doi: 10.3934/cpaa.2018058 |
[25] | J. Zuo, D. Choudhuri, D. Repovš, Multiplicity and boundedness of solutions for critical variable-order Kirchhoff type problems involving variable singular exponent, J. Math. Anal. Appl., 514 (2022), 126264. https://doi.org/10.1016/j.jmaa.2022.126264 doi: 10.1016/j.jmaa.2022.126264 |
[26] | D. Choudhuri, Existence and Hölder regularity of infinitely many solutions to a p-Kirchhoff type problem involving a singular nonlinearity without the Ambrosetti-Rabinowitz (AR) condition, Zeitschrift für Angewandte Mathematik und Physik (Z.A.M.P.), 72 (2021), 36. https://doi.org/10.1097/01.BACK.0000753296.84688.86 doi: 10.1097/01.BACK.0000753296.84688.86 |
[27] | T. Bartsch, Z. Wang, Existence and multiplicity results for superlinear elliptic problems on $\mathbb{R}^{N}$, Comm. Part. Differ. Equ., 20 (1995), 1725–1741. https://doi.org/10.1080/03605309508821149 doi: 10.1080/03605309508821149 |
[28] | R. Servadei, E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl., 389 (2012), 887–898. https://doi.org/10.1016/j.jmaa.2011.12.032 doi: 10.1016/j.jmaa.2011.12.032 |
[29] | E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 189 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[30] | H. Hajaiej, X. Yu, Z. Zhai, Fractional Gagliardo–Nirenberg and Hardy inequalities under Lorentz norms, J. Math. Anal. Appl., 396 (2012), 569–577. https://doi.org/10.1016/j.jmaa.2012.06.054 doi: 10.1016/j.jmaa.2012.06.054 |
[31] | L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm Pur. Appl. Math., 60 (2006), 67–112. https://doi.org/10.1002/cpa.20153 doi: 10.1002/cpa.20153 |
[32] | M. Millem, Minimax Theorems, Birkh$\ddot{a}$user, Berlin, 1996. https://doi.org/10.1007/978-1-4612-4146-1 |
[33] | J. Sun, T. Wu, On the nonlinear Schrödinger-Poisson system with sign-changing potential, Z. Angew. Math. Phys., 66 (2015), 1649–1669. https://doi.org/10.1007/s00033-015-0494-1 doi: 10.1007/s00033-015-0494-1 |
[34] | L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, J. Differ. Equ., 60 (2006), 67–112. https://doi.org/10.1002/cpa.20153 doi: 10.1002/cpa.20153 |