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1. Introduction

The famous Young’s inequality, as a classical result, state that: if a,b > 0 and ¢ € [0, 1], then
ab'"™ <ta+(1-0b (1.1)

with equality if and only if @ = b. Let p,q > 1 such that 1/p + 1/g = 1. The inequality (1.1) can be
written as —
ab<L + 2 (1.2)
P q
for any a,b > 0. In this form, the inequality (1.2) was used to prove the celebrated Holder inequality.

One of the most important inequalities of analysis is Holder’s inequality. It contributes wide area of
pure and applied mathematics and plays a key role in resolving many problems in social science and
cultural science as well as in natural science.

Theorem 1 (Holder inequality for integrals [11]). Let p > 1 and 1/ p +1/q = 1. If f and g are real
functions defined on [a, b] and if |f|’ ,|g|? are integrable functions on [a, b] then

1/p
f If(x)g(x)ldx<( f If(x)l”dx) ( f Ig(x)l”’dx) , (1.3)
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with equality holding if and only if A|f(x)|" = Blg(x)|? almost everywhere, where A and B are
constants.

Theorem 2 (Holder inequality for sums [11]). Let a = (a4, ...,a,) and b = (by, ..., b,) be two positive
n-tuples and p,q > 1 such that 1/p + 1/q = 1. Then we have

n n 1/p n 1/q
Z aby < (Z ag) (Z b,‘g) . (1.4)
k=1 k=1 k=1
Equality hold in (1.4) if and only if a’ and b? are proportional.

In [10], Iscan gave new improvements for integral ans sum forms of the Holder inequality as follow:

Theorem 3. Let p > 1 and é + %1 = 1. If f and g are real functions defined on interval |a, b] and if | f|”,
|g|? are integrable functions on [a, b] then

b 1 b 5/ b
jﬁvumumu < b_akjﬁwxnﬂwvw)(flbmmquﬂ
b 3/ b ;
+(f<x—anﬂmwdﬁ (f(x—anﬂmwdﬂ (1.5)

Theorem 4. Let a = (ay,...,a,) and b = (by, ..., b,) be two positive n-tuples and p,q > 1 such that
1/p+1/q=1.Then

< 1=

1/ 1/p 1/q

n n p n q n n
D agby < % {[Z kaf] [Z ka] + (Z (n—k) af) (Z (n—k) bZ] } : (1.6)
1 k=1 k=1 k=1 k=1

k=

2. Holder’s inequality for positive functionals

Let E be a nonempty set and L be a linear class of real valued functions on E having the following
properties

L1:1If f,g € Lthen (af +Bg) € Lforall o, € R;

L2:1€lL,thatisif f(r)y =1,t€ E,then f € L;

We also consider positive isotonic linear functionals A : L — R is a functional satisfying the
following properties:

Al :A(af +Bg) =aA(f)+BA(g) for f,g € Land a,B € R;

A2:1f feL, f(rf) 20on E then A(f) > 0.

Isotonic, that is, order-preserving, linear functionals are natural objects in analysis which enjoy a
number of convenient properties. Functional versions of well-known inequalities and related results
could be found in [1-9, 11, 12].

Example 1. i.) IfE = [a,b] CR and L = L|a, b], then
b
a0 = [ s
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is an isotonic linear functional.
ii.) IfE = [a,b] X [c,d] CR? and L = L([a,b] X [c,d]), then

b
wn= [ [ reevasay
is an isotonic linear functional.

iii.) If (E,Z, u) is a measure space with u positive measure on E and L = L(u) then

ACF) = fE fd

is an isotonic linear functional.

iv.) If E is a subset of the natural numbers N with all p; > 0, then A(f) = Y ier Prfx IS an isotonic
linear functional. For example; If E = {1,2,..,n} and f : E — R, f(k) = a, then A(f) = X}_, ax
is an isotonic linear functional. If E = {1,2,...n} X {1,2,...m}and f : E — R, f(k,]) = ay, then
A(f) = Xpoi 2imy axy is an isotonic linear functional.

Theorem 5 (Holder’s inequality for isotonic functionals [13]). Let L satisfy conditions L1, L2, and
A satisfy conditions Al, A2 on a base set E. Let p > 1 and p™' +q' = 1. Ifw, f,g > 0 on E and
wfP, wgl, wfg € L then we have

A(wfg) < AP (wfP) AV (wg?). 2.1)
In the case 0 < p < 1 and A (wg?) > 0 (or p < 0and A(wfP) > 0), the inequality in (2.1) is reversed.

Remark 1. i.) If we choose E = [a,b] C R, L = L{a,b], w = 1 on E and A(f) = fab |f ()| dt in the
Theorem 5, then the inequality (2.1) reduce the inequality (1.3).

ii.) If we choose E = {1,2,...,n},w=10nE, f: E — [0,00), f(k) = ar, and A(f) = X2 ;_, ax in the
Theorem 5, then the inequality (2.1) reduce the inequality (1.4).

iii.) If we choose E = [a,b] X [c,d],L = L(E), w = 1 on E and A(f) = fab fcd |f(x, )| dxdy in the
Theorem 5, then the inequality (2.1) reduce the following inequality for double integrals:

b d b 1/p b d 1/q
f f G |g<x,y>|dxdys( f fd If(x,y)l”dX) ( f f |g<x,y)|‘1dx) |

The aim of this paper is to give a new general improvement of Holder inequality for isotonic linear
functional. As applications, this new inequality will be rewritten for several important particular cases
of isotonic linear functionals. Also, we give an application to show that improvement is hold for double
integrals.

3. Main results
Theorem 6. Let L satisfy conditions L1, L2, and A satisfy conditions Al, A2 on a base set E. Let
p>landp +q ' =1.Ifa,B,w,f,g > 00n E, awfg,Bwfg, awf?,awg!, Bwf?,Bwg, wfg € L and

a+ B =1onE, then we have
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i)
A(wfg) < AP (awf?) AV (awg?) + AP (Bw 1) AV (Bwg?) 3.1)
ii.)
AP (@wf?) AT (awg®) + VP (BwfT) AT (Bwg®) < AV (wf?) AT (wg) . (3.2)
Proof. 1.) By using of Holder inequality for isotonic functionals in (2.1) and linearity of A, it is easily
seen that

Awfg) Alawfg +pwfg) = Alawfg) + A(Bwfg)

Allp (awf")Al/q (awg?) + Allp (ﬁWfP)Al/q (Bwg?).

IA

ii.) Firstly, we assume that A'/? (wfP) A4 (wg?) # 0. then
AP (awfP) AV (awg?) + AP (BwfP) AV (Bwg?)
AP (wfr) Al4 (wg)
(A (awf"))”” (A (awg‘i))”q ; (A (ﬁWf”))”” (A (ﬁwg"))”q
A(wfr) A (wg9) A(wfr) A(wgn) |

By the inequality (1.1) and linearity of A, we have

AYP (aw Py AV (awg?) + AP (ﬁwfp)Al/q (Bwg?)
AVP (wifr) A4 (wg?)

1 [A (awf?)  ABw) 1 [A (awg”) A wwgq)]

pLAMWwSP)  AWwfr) | q| Alwg?) — A(wg?)

= 1.

Finally, suppose that AY? (wf?)AY4 (wg?) = 0. Then AY? (wfP) = 0 or AY4(wg?) = 0, ie.
A(wfP)=0or A (wg?) = 0. We assume that A (wf?) = 0. Then by using linearity of A we have,

0=AWfP)=A(awf? +BwfP) =Alawf?)+ A(BwfP).
Since A (awf),A(Bwf) >0, we get A (awf?) = 0 and A (Bwf*) = 0. From here, it follows that
AP (awP) AY (awg?) + AP (BwfP) AV (Bwg?) =0 <0 = AP (wfP) AV (wg?) .
In case of A (wg?) = 0, the proof is done similarly. This completes the proof. O

Remark 2. The inequality (3.2) shows that the inequality (3.1) is better than the inequality (2.1).

If we take w = 1 on E in the Theorem 6, then we can give the following corollary:

Corollary 1. Let L satisfy conditions L1, L2, and A satisfy conditions Al, A2 on a base set E. Let

p>1 andp‘1 + q‘1 =1.Ilfa,pB,f,g>00nE, afg,Bfg af’,ag?,Bf’,Bgl, fge Landa+ =1 on
E, then we have

i)
A(fg) < AP (af?) AV (ag?) + AVP (Bf7) A9 (Bg?) (3.3)
ii.)
Al (af”)Al/q (agq) + AlP (ﬁf”)Al/q (’ng) < Allp (fp)Al/q (gq) )
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Remark 3. i.) If we choose E = [a,b] C R, L = Lla,b], a(t) = %,,B(t) = 2:—[; on E and A(f) =
fab |f(t)|dt in the Corollary 1, then the inequality (3.3) reduce the inequality (1.5).

ii.) If we choose E = {1,2,...,n}, a(k) = 5,,8(1() = ”n;k onE, f: E — [0,0),f(k) = a;, and
A(f) = Xi_; ax in the Theoreml, then the inequality (3.3) reduce the inequality (1.6).

We can give more general form of the Theorem 6 as follows:

Theorem 7. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p > 1
and p ' +q ' = L. Ifaj,w, f,g =2 0on E, aywfg, awfP,awgl,wfg € Li=1,2,...m,and Y7 a; = 1
on E, then we have

i)
A(wfg) < AP (@uwf?) AV (awg?)
i=1
ii.)
DA (@w ) AV (@iwg?) < AVP (wf?) AV (wgf).
i=1
Proof. The proof can be easily done similarly to the proof of Theorem 6. O

If we take w = 1 on E in the Theorem 6, then we can give the following corollary:

Corollary 2. Let L satisfy conditions L1, L2, and A satisfy conditions Al, A2 on a base set E. Let
P> 1 andp_l + q_l = L I.fai’fag 2 0 on E’ a’[fg,a’[fp,a’qu,fg € Lal = 1,2,...,m, and Zﬁl a; = 1
on E, then we have
i)
A(fg) < Y AP (aif) A (aig") (34)

i=1

DA (@if") A (aigh) < AP (f1) AT (g7).

i=1
Corollary 3 (Improvement of Holder inequality for double integrals). Let p,g > 1 and 1/p+1/q = 1.
If f and g are real functions defined on E = [a,b] X [c,d] and if |fI? , |g|? € L(E) then

b ~d 4 b 1/p b 1/q
[ [ e |g<x,y>|dxdys2( | f ai(x,) If(x,y)l”dx) ( | fd i(x,3) |g<x,y)|de) ,
a Jc -1 a Jc a Jc

(3.5
where a1(x,) = G55, @2(0,Y) = (i G06)) = Gratras @) = gy on E
Proof. Ift we choose E = [a,b] X [c,d] C R?, L = L(E),
a(xy) = Garg @) = Fare o)) = guarg.eny) = e on E and
A(f) = fa b fc ¢ | f(x,y)| dxdy in the Corollary 1, then we get the inequality (3.5). O
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Corollary 4. Let (ay;) and (by;) be two tuples of positive numbers and p,q > 1 such that 1/p+1/q = 1.
Then we have

nom 4 noom Up/rn m 1/q
D aub< )] [Z > aitk, l)aivl] [Z > aitk, l)bZ’l) : (3.6)

k=1 [=1 i=1 \k=1 I=1 k=1 I[=1

Lok, ) = "0 sk, 1) = 220D g (k, 1) = 2220 on E.

nm

where a(k,]) =

nm’

Proof. If we choose E = {1,2,...,n} X {1,2,...,m},
aie,l) = L ay(k, 1) = & sk, 1) = LD g (k =0 onE, f E o [0, 00), f(k, 1) = aps
and A(f) = Zk: | D Ak 1n the Theoreml, then we get the 1nequa11ty (3.6). O

4. An application for double integrals

In [14], Sarikaya et al. gave the following lemma for obtain main results.

Lemma 1. Let f : A C R? — R be a partial differentiable mapping on A = [a,b] X [c,d] in R*with
a<bandc<d. If a5 € L(D), then the following equality holds:

f(a,c) + fa,d) + f(b,c) + f(b,d) X ”fd
4 (b-a)d-o) fa ) f(x,y)dxdy

o1 e
-E[Ej—vf[fu¢o+fuJde+———1£ UWJO+f®Jﬂ¢4

- (b - a)(d—C)f f(1—2t)(1—2s)—f(ta+(1—t)b sc + (1 = s)d) dtds.

By using this equality and Holder integral inequality for double integrals, Sarikaya et al. obtained
the following inequality:

Theorem 8. Let f : A C R> — R be a partial differentiable mapping on A = [a,b] X [c,d] in R*>with

a<bandc < d If g:—(,j; ! ,q > 1, is convex function on the co-ordinates on A, then one has the
inequalities:
fla,0) + fla,d) + f(b,c) + f(b,d) 1 "
7] - b-ad—0 S, y)dxdy — A 4.1
(b —a)(d = o) [Ifula, O + fula, DI + | fulb, )l + | fub, D) ]
4(p + 1)2/p 4 ’
where

1 1 b 1
AZE[EL [f(X,C)+f(x,d)]dx+Ef[f(a,y)+f(b,)’)]d)’]’

1/p+1/g=1and f; = %

If Theorem 8 are resulted again by using the inequality (3.5), then we get the following result:
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Theorem 9. Let f : A C R?> — R be a partial differentiable mapping on A = [a, b] X [c,d] in R*with

a<bandc<d.lf‘62fq

o5l 4 > 1, is convex function on the co-ordinates on A, then one has the

inequalities:

, d b, b.d 1 b d
fla,c) + f(a )Zf( )+ f( )_(b_a)(d_c)fff(x,y)dxdy—Al (4.2)

(b—a)(d—c) [[4|fula, Ol + 2| fula, DV + 2| fub, O + | fulb, )]
T 4AllUp(p 4 1)Yp 36

21 fu(a, O + | fu(a, I + 41, O + 21 fu(b, A |
36

21 fua, O + 41 fula, I + 1 fu(b, O + 21 fu(b, DI |
36

N i [fsi(a@, Ol + 2| fula, DI + 21 fu(b, Ol + 41 fu(b, )] /q}

—

/q

+

—

/q

—_

36

where

[ 1 b 1
A:E[b—f [f(x,c)+f(x,d)]dx+—fd[f(a,J’)Jff(b»)’)]dy]’
_a a d_c c

— _ &f
Il/p+1/q=1and f; = 5.
Proof. Using Lemma 1 and the inequality (3.5), we find

, d b b.d | b d
f(a,c)+ f(a )Zf( c) + f( )_(b_a)(d_c)fff(x,y)dxdy—A| (4.3)

1 1
“"“L&f f 1= 2111 = 25| |fyy (ta + (1 = )b, sc + (1 = s))| deds
0 0

_ _ 1l /p
W {(f f ts|1 = 267 |1 = 25 dtds)
0 0

1 1 1/q
X f f ts|fy (ta+ (1 = )b, sc + (1 = s))|* dtds)
0 Jo

1 1 1/p
+ f f t(1—=s)|1=2¢7 |1 = 2s)° dtds)
0 Jo

1 pl 1/q
X f f t(1 = 95)|fs (ta+ (1 —=0)b, sc+ (1 —s))? dtds)
0o Jo

1 1 1/p
+ f f(1 —ns|l =271 —2s|"dtds)
0 0

1 1 1/q
X (f f (1 =0s|fs(ta+ (1 —=0b, sc+ (1 —s)|? dtds)
0 Jo

1 1 1/p
+(f f(l—t)(l—s)|1—2t|p|1—2s|pdtds)
0o Jo
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1 pl l/q
x(f f 1= =9)|fu(ta+ (1 —-1)b,sc+ (1 —s))lthds) }
0o Jo

Since | f,,|? is convex function on the co-ordinates on A, we have for all ¢, s € [0, 1]

|fs (ta + (1 = )b, sc + (1 — s))|*

< tslfaa, ol +1(1 = 9) | fu (a, DI + (A = Ds|fs (@ ) + (1 =)A= 9)|fu(a, o)

1l
f f t(1=s)[1 =267 11 = 25| dtds
0o Jo

for all #, s € [0, 1] . Further since

ffts|1—2t|”|1—2s|pdtds

1 1
f f(1 — 0|1 =247 |1 = 2s” deds
0 0

4(p+ 17

a combination of (4.3) - (4.5) immediately gives the required inequality (4.2).

1 1
f f (1 -1 — s)|1 =247 |1 — 25" dtds
0 0
1

4.4)

4.5)

(4.6)

O

Remark 4. Since n: [0,00) — R, n(x) = x*,0 < s < 1, is a concave function, for all u,v > 0 we have

n(”;rv) - (”;V)“‘ S Tl(u);n(v) _ us;vs-

From here, we get

I = {[4 o, O + 2| fula, DI + 21 (b, 7 + |, d>|‘f]”q

36
, [21a O + fila, )+ 41fulb, O + 21filb, d>|q]”"
36
o [21ful@. ol + 41fula ) + | fulb. ) +21fulb, d>|q]”f’
36
[Vt O + 2@ DI + 21fub, O + 41, DI Ha
36
o o |[OMt@. Ol + 31fula, N + 61fulb, I + 31fulb. ) Ha
- 72
, [31ful@. Ol + 61fula ) +31fu(b Ol + 61 fulb. )’ Ha
72
1/q
<4

{[Ifsz(a, N + | fula, I’ +1fu(b, O + | (b, DI
16
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Thus we obtain
b-a)(d-rc)
455p(p + 1)2/r

b-a)(d-oc) 4 |farla, I + | fula, I + | fo(B, O + | b, )|
A+Up(p + 1)2/p 16

(b —a)(d = o) [[Iful@ Ol + |fula, DV + | fub, O + | fulb, D]
4(p + 1)2/p 4 '

This shows that the inequality (4.2) is better than the inequality (4.1).
5. Conclusions

The aim of this paper is to give a new general improvement of Holder inequality via isotonic linear
functional. An important feature of the new inequality obtained here is that many existing inequalities
related to the Holder inequality can be improved. As applications, this new inequality will be rewritten
for several important particular cases of isotonic linear functionals. Also, we give an application to
show that improvement is hold for double integrals. Similar method can be applied to the different
type of convex functions.
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