A nonlinear shallow water wave equation containing the famous Degasperis$ - $Procesi and Fornberg$ - $Whitham models is investigated. The novel derivation is that we establish the $ L^2 $ bounds of solutions from the equation if its initial value belongs to space $ L^2(\mathbb{R}) $. The $ L^{\infty} $ bound of the solution is derived. The techniques of doubling the space variable are employed to set up the $ L^1 $ local stability of short time solutions.
Citation: Jun Meng, Shaoyong Lai. $ L^1 $ local stability to a nonlinear shallow water wave model[J]. Electronic Research Archive, 2024, 32(9): 5409-5423. doi: 10.3934/era.2024251
A nonlinear shallow water wave equation containing the famous Degasperis$ - $Procesi and Fornberg$ - $Whitham models is investigated. The novel derivation is that we establish the $ L^2 $ bounds of solutions from the equation if its initial value belongs to space $ L^2(\mathbb{R}) $. The $ L^{\infty} $ bound of the solution is derived. The techniques of doubling the space variable are employed to set up the $ L^1 $ local stability of short time solutions.
[1] | A. Constantin, D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Rational Mech. Anal., 192 (2009), 165–186. http://doi.org/10.1007/s00205-008-0128-2 doi: 10.1007/s00205-008-0128-2 |
[2] | G. Fornberg, G. Whitham, A numberical and theoretical study of certain nonlinear ave phenomena, Philos. Trans. R. Soc. London, Ser. A, 289 (1978), 373–404. http://doi.org/10.1098/rsta.1978.0064 doi: 10.1098/rsta.1978.0064 |
[3] | G. Whitham, Variational methods and applications to water waves, Proc. R. Soc. A, 299 (1967), 6–25. http://doi.org/10.1098/rspa.1967.0119 doi: 10.1098/rspa.1967.0119 |
[4] | S. Haziot, Wave breaking for the Fornberg-Whitham equation, J. Differ. Equations, 263 (2017), 8178–8185. http://doi.org/10.1016/j.jde.2017.08.037 doi: 10.1016/j.jde.2017.08.037 |
[5] | G. H$\ddot{o}$rmann, Solution concepts, well-posedness, and wave breaking for the Fornberg-Whitham equation, Monatsh. Math., 195 (2021), 421–449. http://doi.org/10.1007/s00605-020-01504-6 doi: 10.1007/s00605-020-01504-6 |
[6] | G. H$\ddot{o}$rmann, Discontinuous traveling waves as weak solutions to the Fornberg-Whitham equation, J. Differ. Equations, 265 (2018), 2825–2841. http://doi.org/10.1016/j.jde.2018.04.056 doi: 10.1016/j.jde.2018.04.056 |
[7] | J. Holmes, R. Thompson, Well-posedness and continuity properties of the Fornberg-Whitham equation, J. Differ. Equations, 263 (2017), 4355–4381. http://doi.org/10.1016/j.jde.2017.05.019 doi: 10.1016/j.jde.2017.05.019 |
[8] | J. Holmes, Well-posedness of the Fornberg-Whitham equation on the circle, J. Differ. Equations, 260 (2016), 8530–8549. http://doi.org/10.1016/j.jde.2016.02.030 doi: 10.1016/j.jde.2016.02.030 |
[9] | F. Ma, L. Yue, C. Qu, Wave-breaking phenomena for the nonlocal Whitham-type equations, J. Differ. Equations, 261 (2016), 6029–6054. http://doi.org/10.1016/j.jde.2016.08.027 doi: 10.1016/j.jde.2016.08.027 |
[10] | X. L. Wu, Z. Zhang, On the blow-up of solutions for the Fornberg-Whitham equation, Nonlinear Anal. Real World Appl., 44 (2018), 573–588. http://doi.org/10.1016/j.nonrwa.2018.06.004 doi: 10.1016/j.nonrwa.2018.06.004 |
[11] | L. Wei, New wave-breaking criteria for the Fornberg-Whitham equation, J. Differ. Equations, 280 (2021), 571–589. http://doi.org/10.1016/j.jde.2021.01.041 doi: 10.1016/j.jde.2021.01.041 |
[12] | A. Degasperis, M. Procesi, Asymptotic integrability, in Symmetry and Perturbation Theory, World Scientific, (1999), 23–37. |
[13] | A. Degasperis, D. Holm, A. Hone, A new integral equation with peakon solution, Theor. Math. Phys., 133 (2002), 1463–1474. http://doi.org/10.1023/a:1021186408422 doi: 10.1023/a:1021186408422 |
[14] | J. Escher, Y. Liu, Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal., 241 (2006), 457–485. http://doi.org/10.1016/j.jfa.2006.03.022 doi: 10.1016/j.jfa.2006.03.022 |
[15] | Y. Liu, Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation, Commun. Math. Phys., 267 (2006), 801–820. http://doi.org/10.1007/s00220-006-0082-5 doi: 10.1007/s00220-006-0082-5 |
[16] | Z. Yin, On the Cauchy problem for the periodic generalized Degasperis-Procesi equation, Illinois J. Math., 47 (2003), 649–666. http://doi.org/ 10.1215/ijm/1258138186 doi: 10.1215/ijm/1258138186 |
[17] | G. M. Coclite, K. H. Karlsen, Periodic solutions of the Degasperis-Procesi equation, J. Funct. Anal., 268 (2015), 1053–1077. http://doi.org/10.1016/j.jfa.2014.11.008 doi: 10.1016/j.jfa.2014.11.008 |
[18] | H. Lundmark, J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Probl., 19 (2003), 1241–1245. http://doi.org/10.1088/0266-5611/19/6/001 doi: 10.1088/0266-5611/19/6/001 |
[19] | J. Lenells, Traveling wave solutions of the Degasperis-Procesi equation, J. Math. Anal. Appl., 306 (2005), 72–82. http://doi.org/10.1016/j.jmaa.2004.11.038 doi: 10.1016/j.jmaa.2004.11.038 |
[20] | V. O. Vakhnenko, E. J. Parkes, Periodic and solitary-wave solutions of the Degasperis-Procesi equation, Chaos, Solitons Fractals, 20 (2004), 1059–1073. http://doi.org/10.1016/j.chaos.2003.09.043 doi: 10.1016/j.chaos.2003.09.043 |
[21] | S. Lai, Y. Wu, A model containing both the Camassa-Holm and Degasperis-Procesi equations, J. Math. Anal. Appl., 374 (2011), 458–469. http://doi.org/10.1016/j.jmaa.2010.09.012 doi: 10.1016/j.jmaa.2010.09.012 |
[22] | D. Henry, Infinite propagation speed for the Degasperis-Procesi equation, J. Math. Anal. Appl., 311 (2005), 755–759. http://doi.org/10.1016/j.jmaa.2005.03.001 doi: 10.1016/j.jmaa.2005.03.001 |
[23] | A. Constantin, R. Ivanov, Dressing method for the Degasperis-Procesi equation, Stud. Appl. Math., 138 (2017), 205–226. http://doi.org/10.1111/sapm.12149 doi: 10.1111/sapm.12149 |
[24] | A. Constantin, J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229–243. http://doi.org/10.1007/bf02392586 doi: 10.1007/bf02392586 |
[25] | I. Freire, Global conservative solutions of the Camassa-Holm equation, Commun. Math., 29 (2021), 115–130. http://doi.org/10.2478/cm-2021-0006 doi: 10.2478/cm-2021-0006 |
[26] | I. L. Freire, Conserved quantities, continuation and compactly supported solutions of some shallow water models, J. Phys. A: Math. Theor., 54 (2021), 015207. http://doi.org/10.1088/1751-8121/abc9a2 doi: 10.1088/1751-8121/abc9a2 |
[27] | Z. Guo, X. Li, C. Yu, Some properties of solutions to the Camassa-Holm type equation with higher order nonlinearities, J. Nonlinear Sci., 28 (2018), 1901–1914. http://doi.org/10.1007/s00332-018-9469-7 doi: 10.1007/s00332-018-9469-7 |
[28] | Y. Zhou, Blow-up of solutions to the DGH equations, J. Funct. Anal., 250 (2007), 227–248. http://doi.org/10.1016/j.jfa.2007.04.019 doi: 10.1016/j.jfa.2007.04.019 |
[29] | J. Li, Y. L. Cheng, Barycentric rational interpolation method for solving KPP equation, Electron. Res. Arch., 31 (2023), 3014–3029. http://doi.org/10.3934/era.2023152 doi: 10.3934/era.2023152 |
[30] | M. Z. Wei, Existence of traveling waves in a delayed convecting shallow water fluid model, Electron. Res. Arch., 31 (2023), 6803–6819. http://doi.org/10.3934/era.2023343 doi: 10.3934/era.2023343 |
[31] | S. N. Kru$\check{z}$kov, First order quasi-linear equations in several independent variables, Math. USSR-Sb., 10 (1970), 217–243. http://doi.org/10.1070/sm1970v010n02abeh002156 doi: 10.1070/sm1970v010n02abeh002156 |