In this brief, we propose a class of generalized memristor-based neural networks with nonlinear coupling. Based on the set-valued mapping theory, novel Lyapunov indefinite derivative and Memristor theory, the coupled memristor-based neural networks (CMNNs) can achieve fixed-time stabilization (FTS) by designing a proper pinning controller, which randomly controls a small number of neuron nodes. Different from the traditional Lyapunov method, this paper uses the implementation method of indefinite derivative to deal with the non-autonomous neural network system with nonlinear coupling topology between different neurons. The system can obtain stabilization in a fixed time and requires fewer conditions. Moreover, the fixed stable setting time estimation of the system is given through a few conditions, which can eliminate the dependence on the initial value. Finally, we give two numerical examples to verify the correctness of our results.
Citation: Chao Yang, Juntao Wu, Zhengyang Qiao. An improved fixed-time stabilization problem of delayed coupled memristor-based neural networks with pinning control and indefinite derivative approach[J]. Electronic Research Archive, 2023, 31(5): 2428-2446. doi: 10.3934/era.2023123
In this brief, we propose a class of generalized memristor-based neural networks with nonlinear coupling. Based on the set-valued mapping theory, novel Lyapunov indefinite derivative and Memristor theory, the coupled memristor-based neural networks (CMNNs) can achieve fixed-time stabilization (FTS) by designing a proper pinning controller, which randomly controls a small number of neuron nodes. Different from the traditional Lyapunov method, this paper uses the implementation method of indefinite derivative to deal with the non-autonomous neural network system with nonlinear coupling topology between different neurons. The system can obtain stabilization in a fixed time and requires fewer conditions. Moreover, the fixed stable setting time estimation of the system is given through a few conditions, which can eliminate the dependence on the initial value. Finally, we give two numerical examples to verify the correctness of our results.
[1] | D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, The missing memristor found, Nature, 453 (2008), 80–83. https://doi.org/10.1038/nature06932 doi: 10.1038/nature06932 |
[2] | J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. U.S.A., 79 (1982), 2554–2558. https://doi.org/10.1073/pnas.79.8.2554 doi: 10.1073/pnas.79.8.2554 |
[3] | J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Natl. Acad. Sci. U.S.A., 81 (1984), 3088–3092. https://doi.org/10.1073/pnas.81.10.3088 doi: 10.1073/pnas.81.10.3088 |
[4] | Z. Guo, J. Wang, Z. Yan, Passivity and passification of memristor-based recurrent neural networks with time-varying delays, IEEE Trans. Neural Networks Learn. Syst., 25 (2014), 2099–2109. https://doi.org/10.1109/TNNLS.2014.2305440 doi: 10.1109/TNNLS.2014.2305440 |
[5] | J. Xu, C. Li, X. He, T. Huang, Recurrent neural network for solving model predictive control problem in application of four-tank benchmark, Neurocomputing, 190 (2016), 172–178. https://doi.org/10.1016/j.neucom.2016.01.020 doi: 10.1016/j.neucom.2016.01.020 |
[6] | W. Mulder, S. Bethard, M. Moens, A survey on the application of recurrent neural networks to statistical language modeling, Comput. Speech Lang., 30 (2015), 61–98. https://doi.org/10.1016/j.csl.2014.09.005 doi: 10.1016/j.csl.2014.09.005 |
[7] | P. Miao, Y. Shen, Y. Li, L. Bao, Finite-time recurrent neural networks for solving nonlinear optimization problems and their application, Neurocomputing, 177 (2016), 120–129. https://doi.org/10.1016/j.neucom.2015.11.014 doi: 10.1016/j.neucom.2015.11.014 |
[8] | Z. Cai, L. Huang, L. Zhang, New exponential synchronization criteria for time-varying delayed neural networks with discontinuous activations, Neural Networks, 65 (2015), 105–114. https://doi.org/10.1016/j.neunet.2015.02.001 doi: 10.1016/j.neunet.2015.02.001 |
[9] | L. Huang, J. Wang, X. Zhou, Existence and global asymptotic stability of periodic solutions for Hopfield neural networks with discontinuous activations, Nonlinear Anal. Real World Appl., 10 (2009), 1651–1661. https://doi.org/10.1016/j.nonrwa.2008.02.022 doi: 10.1016/j.nonrwa.2008.02.022 |
[10] | X. Li, J. Fang, H. Li, Exponential adaptive synchronization of stochastic memristive chaotic recurrent neural networks with time-varying delays, Neurocomputing, 267 (2017), 396–405. https://doi.org/10.1016/j.neucom.2017.06.049 doi: 10.1016/j.neucom.2017.06.049 |
[11] | C. Huang, J. Cao, Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system, Physica A, 473 (2017), 262–275. https://doi.org/10.1016/j.physa.2017.01.009 doi: 10.1016/j.physa.2017.01.009 |
[12] | S. Yang, Z. Guo, J. Wang, Robust synchronization of multiple memristive neural networks with uncertain parameters via nonlinear coupling, IEEE Trans. Syst. Man Cybern.: Syst., 45 (2015), 1077–1086. https://doi.org/10.1109/TSMC.2014.2388199 doi: 10.1109/TSMC.2014.2388199 |
[13] | Y. Hong, J. Huang, Y. Xu, On an output finite-time stabilization problem, IEEE Trans. Autom. Control, 2 (2001), 305–309. https://doi.org/10.1109/9.905699 doi: 10.1109/9.905699 |
[14] | F. Xiao, L. Wang, J. Chen, Y. Gao, Finite-time formation control for muti-agent systems, Automatica, 45 (2009), 2605–2611. https://doi.org/10.1016/j.automatica.2009.07.012 doi: 10.1016/j.automatica.2009.07.012 |
[15] | Z. Cai, L. Huang, Z. Wang, X. Pan, S. Liu, Periodicity and Multi-periodicity generated by impulses control in delayed Cohen-Grossberg-type neural networks with discontinuous activations, Neural Networks, 143 (2021), 230–245. https://doi.org/10.1016/j.neunet.2021.06.013 doi: 10.1016/j.neunet.2021.06.013 |
[16] | C. Aouiti, F. Miaadi, Finite-time stabilization of neutral hopfield neural networks with mixed delays, Neural Process. Lett., 48 (2018), 1645–1669. https://doi.org/10.1007/s11063-018-9791-y doi: 10.1007/s11063-018-9791-y |
[17] | J. Gao, P. Zhu, A. Alsaedi, F. E. Alsaadi, T. Hayat, A new switching control for finite-time synchronization of memristor-based recurrent neural networks, Neural Networks, 86 (2017), 1–9. https://doi.org/10.1016/j.neunet.2016.10.008 doi: 10.1016/j.neunet.2016.10.008 |
[18] | Y. Hong, Finite-time stabilization and stabilizability of a class of controllable systems, Syst. Control Lett., 46 (2002), 231–236. https://doi.org/10.1016/S0167-6911(02)00119-6 doi: 10.1016/S0167-6911(02)00119-6 |
[19] | L. Wang, Y. Shen, G. Zhang, Finite-time stabilization and adaptive control of memristor-based delayed neural networks, IEEE Trans. Neural Networks Learn. Syst., 28 (2017), 2648–2659. https://doi.org/10.1109/TNNLS.2016.2598598 doi: 10.1109/TNNLS.2016.2598598 |
[20] | M. Tan, W. Tian, Finite-time stabilization and synchronization of complex dynamical networks with nonidentical nodes of different dimensions, Nonlinear Dyn., 79 (2015), 731–741. https://doi.org/10.1007/s11071-014-1699-0 doi: 10.1007/s11071-014-1699-0 |
[21] | A. Polyakov, D. Efimov, W. Perruquetti, Finite-time and fixed-time stabilization: Implicit Lyapunov function approach, Automatica, 51 (2015), 332–340. https://doi.org/10.1016/j.automatica.2014.10.082 doi: 10.1016/j.automatica.2014.10.082 |
[22] | A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Autom. Control, 57 (2012), 2106–2110. https://doi.org/10.1109/TAC.2011.2179869 doi: 10.1109/TAC.2011.2179869 |
[23] | Z. Cai, L. Huang, Z. Wang, Novel fixed-time stability criteria for discontinuous nonautonomous systems: Lyapunov method with indefinite derivative, IEEE Trans. Cybern., 52 (2020), 4286–4299. https://doi.org/10.1109/TCYB.2020.3025754 doi: 10.1109/TCYB.2020.3025754 |
[24] | C. Yang, L. Huang, Z. Cai, Fixed-time synchronization of coupled memristor-based neural networks with time-varying delays, Neural Networks, 116 (2019), 101–109. https://doi.org/10.1016/j.neunet.2019.04.008 doi: 10.1016/j.neunet.2019.04.008 |
[25] | J. Cao, R. Li, Fixed-time synchronization of delayed memristor-based recurrent neural networks, Sci. China Inf. Sci., 60 (2017), 108–122. |
[26] | C. Hu, J. Yu, Z. Chen, H. Jiang, T. Huang, Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks, Neural Networks, 89 (2017), 74–83. https://doi.org/10.1016/j.neunet.2017.02.001 doi: 10.1016/j.neunet.2017.02.001 |
[27] | X. Zhu, X. Yang, F. Alsaadi, T. Hayat, Fixed-time synchronization of coupled discontinuous neural networks with nonidentical perturbations, Neural Process. Lett., 48 (2018), 1161–1174. https://doi.org/10.1007/s11063-017-9770-8 doi: 10.1007/s11063-017-9770-8 |
[28] | S. Wen, T. Huang, Z. Zeng, Y. Chen, P. Li, Circuit design and exponential stabilization of memristive neural networks, Neural Networks, 63 (2015), 48–56. https://doi.org/10.1016/j.neunet.2014.10.011 doi: 10.1016/j.neunet.2014.10.011 |
[29] | J. Chen, Y. Wu, Y. Yang, S. Wen, K. Shi, A. Bermak, et al., An efficient Memristor-based circuit implementation of squeeze-and-excitation fully convolutional neural networks, IEEE Trans. Neural Networks Learn. Syst., 33 (2020), 1779–1790. https://doi.org/10.1109/TNNLS.2020.3044047 doi: 10.1109/TNNLS.2020.3044047 |
[30] | S. Wen, J. Chen, Y. Wu, Z. Yan, Y. Cao, Y. Yang, et al., CKFO: Convolution kernel first operated algorithm with applications in Memristor-based convolutional neural network, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 40 (2020), 1640–1647. https://doi.org/10.1109/TCAD.2020.3019993 doi: 10.1109/TCAD.2020.3019993 |
[31] | S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D. U. Hwang, Complex networks: structure and dynamics, Phys. Rep., 424 (2006), 175–308. https://doi.org/10.1016/j.physrep.2005.10.009 doi: 10.1016/j.physrep.2005.10.009 |
[32] | W. Lu, T. Chen, New approach to synchronization analysis of linearly coupled ordinary differential systems, Physica D, 213 (2006), 214–230. https://doi.org/10.1016/j.physd.2005.11.009 doi: 10.1016/j.physd.2005.11.009 |
[33] | J. Lv, X. Yu, G. Chen, Chaos synchronization of general complex dynamical networks, Physica A, 1334 (2004), 281–302. https://doi.org/10.1016/j.physa.2003.10.052 doi: 10.1016/j.physa.2003.10.052 |
[34] | H. Liu, B. Wang, J. Lu, Z. Li, Node-set importance and optimization algorithm of nodes selection in complex networks based on pinning control, Acta Phys. Sin., 70 (2021), 056401. https://doi.org/10.7498/aps.70.20200872 doi: 10.7498/aps.70.20200872 |
[35] | R. Rakkiyappan, B. Kaviarasan, F. Rihan, S. Lakshmanan, Synchronization of singular Markovian jumping complex networks with additive time-varying delays via pinning control, J. Franklin Inst., 352 (2015), 3178–3195. https://doi.org/10.1016/j.jfranklin.2014.12.017 doi: 10.1016/j.jfranklin.2014.12.017 |
[36] | P. Lin, W. Zhou, J. Fang, D. Li, A novel active pinning control for synchronization andanti-synchronization of new uncertain unified chaoticsystems, Nonlinear Dyn., 62 (2010), 417–425. https://doi.org/10.1007/s11071-010-9728-0 doi: 10.1007/s11071-010-9728-0 |
[37] | R. Vadivel, P. Hammachukiattikul, Q. Zhu, N. Gunasekaran, Event-triggered synchronization for stochastic delayed neural networks: passivity and passification case, Asian J. Control, (2022), 1–18. https://doi.org/10.1002/asjc.2965 doi: 10.1002/asjc.2965 |
[38] | R. Vadivel, R. Suresh, P. Hammachukiattikul, B. Unyong, N. Gunasekaran, Event-triggered $L_{2}$–$L_{\infty}$ filtering for network-based neutral systems with time-varying delays via T-S fuzzy approach, IEEE Access, 9 (2021), 145133–145147. https://doi.org/10.1109/ACCESS.2021.3123058 doi: 10.1109/ACCESS.2021.3123058 |
[39] | R. Vadivel, S. Sabarathinam, Y. Wu, K. Chaisena, N. Gunasekaran, New results on T-S fuzzy sampled-data stabilization for switched chaotic systems with its applications, Chaos, Solitons Fractals, 164 (2022), 112741. https://doi.org/10.1016/j.chaos.2022.112741 doi: 10.1016/j.chaos.2022.112741 |
[40] | H. Zhang, J. Cheng, H. Zhang, W. Zhang, J. Cao, Quasi-uniform synchronization of Caputo type fractional neural networks with leakage and discrete delays, Chaos, Solitons Fractals, 152 (2021), 111432. https://doi.org/10.1016/j.chaos.2021.111432 doi: 10.1016/j.chaos.2021.111432 |
[41] | H. Zhang, Y. Cheng, H. Zhang, W. Zhang, J. Cao, Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects, Math. Comput. Simul., 197 (2022), 341–357. https://doi.org/10.1016/j.matcom.2022.02.022 doi: 10.1016/j.matcom.2022.02.022 |
[42] | C. Wang, H. Zhang, I. Stamova, J. Cao, Global synchronization for BAM delayed reaction-diffusion neural networks with fractional partial differential operator, J. Franklin Inst., 360 (2023), 635–656. https://doi.org/10.1016/j.jfranklin.2022.08.038 doi: 10.1016/j.jfranklin.2022.08.038 |
[43] | T. Andy, Memristor-based neural networks, J. Phys. D: Appl. Phys., 46 (2013), 093001. https://doi.org/10.1088/0022-3727/46/9/093001 doi: 10.1088/0022-3727/46/9/093001 |
[44] | S. H. Strogatz, I. Stewart, Coupled oscillators and biological synchronization, Sci. Am., 6 (1993), 102–109. https://doi.org/10.1038/scientificamerican1293-102 doi: 10.1038/scientificamerican1293-102 |
[45] | J. P. Aubin, A. Cellina, Differential Inclusions, (1984), 8–13. https://doi.org/10.1007/978-3-642-69512-4 |
[46] | J. LaSalle, The Stability of Dynamical Systems, SIAM, 1976. |
[47] | A. f. Filippov, Differential Equations with Discontinuous Righthand Sides: Control Systems, Springer Science & Business Media, 18 (2013). |
[48] | F. H. Clarke, Optimization and Nonsmooth Analysis, SIAM, 1990. https://doi.org/10.1137/1.9781611971309 |
[49] | G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge University Press, London, 1952. |