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Abstract: In this brief, we propose a class of generalized memristor-based neural networks with
nonlinear coupling. Based on the set-valued mapping theory, novel Lyapunov indefinite derivative
and Memristor theory, the coupled memristor-based neural networks (CMNNs) can achieve fixed-time
stabilization (FTS) by designing a proper pinning controller, which randomly controls a small number
of neuron nodes. Different from the traditional Lyapunov method, this paper uses the implementation
method of indefinite derivative to deal with the non-autonomous neural network system with nonlinear
coupling topology between different neurons. The system can obtain stabilization in a fixed time and
requires fewer conditions. Moreover, the fixed stable setting time estimation of the system is given
through a few conditions, which can eliminate the dependence on the initial value. Finally, we give
two numerical examples to verify the correctness of our results.
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1. Introduction

With the emergence of large scientific devices in various scientific fields around the world, scien-
tific discovery has entered the era of big data. Scientific discovery cannot completely rely on expert
experience to find rare scientific events from massive data, and a large amount of historical data cannot
be used effectively. At the same time, it is becoming more and more prominent in real-time and high
precision. The mode of scientific events is rare, and the general algorithm is not suitable for the field of
science. Therefore, the problem of intelligent discovery of scientific data came into being. Scientific
data intelligent discovery aims to accelerate the discovery of scientific events by using data intelligent
method. However, intelligent discovery of scientific data lacks the overall framework design, which
is embodied in the lack of comprehensive analysis system of scientific data and efficient knowledge

http://http://www.aimspress.com/journal/era
http://dx.doi.org/10.3934/era.2023123


2429

fusion mechanism of heterogeneous scientific data. From the perspective of data management, the
long-term storage and mining of massive historical data is inefficient. This paper puts forward the
framework and related challenges of scientific data intelligent discovery and management, in order to
promote the progress of scientific discovery.

Another description form of neural network model is based on memristor. In 2008, the Hewlett-
Packard(HP) laboratory research group in the United States first confirmed the existence of memristor
in nanometre electronic components, and also described it in detail with mathematical and physical
models [1]. As a new type of nanometre circuit element, the memristor has many good characteristics,
such as low energy dissipation and powerful memory function. Memristor has attracted the attention
of scientific research institutions in different fields all over the world. Its strong learning ability can
consent memristor to replace the existing transistors in the future. If the resistance is used to replace
the self-feedback connection weight, the Hopfield neural network system will have a simple memory
storage function [2, 3]. Similarly, further, if the memristor is used to replace the traditional resis-
tor, a simple memristor model can be established. It also proves that memristor plays an important
role in circuit theory, especially in the field of modeling and non-traditional signal processing. The
connection weight is completely determined by the memristor in the artificial neural network. The
memristor model based on neural networks can be established by simulating the structure of human
brain which is very similar to the structure of neural networks (the structure diagram of four circuit
elements of memristor). At the same time, due to the extremely rich dynamic behavior in the neural
network system (especially the memristor system), the storage, reading and writing abilities of n-node
neural network system with memristor are dozens of times that of the neural network system without
memristor [4]. Compared with the traditional model, this kind of model has stronger computing power
and information storage capacity. Another neural network model, recurrent neural network, has also
received a lot of attention and has a wide range of applications, such as the four-tank benchmark prob-
lem, the nonlinear constrained optimization problem, the statistical model, the phase structure and the
pattern recognition [5–7]. Therefore, combined with memristor and recurrent neural network model,
considering its rich theoretical significance and practical achievements, many scholars are committed
to the synchronization of recurrent neural network model with memristor. From the perspective of
mathematical theory, this kind of new neural network model is a switched dynamic system model that
depends on the initial state. In essence, it can be described by the discontinuous functional differential
equation. Through the methods of set-valued analysis theory and functional differential equation, the
mathematical theory and neural network engineering model are effectively combined. As a powerful
analysis tool and an effective technical means, this paper makes a comprehensive discussion and dy-
namic analysis on the time-delay recurrent neural network model based on memristor, which not only
improves the system of discontinuous functional differential equations at the right end of mathemat-
ics at the theoretical level, but also provides a more practical idea for the neural network model in
engineering at the application level.

In order to better obtain the stability results on the neural network model, the way to realize stabiliza-
tion is also divided into different categories. Among them, the popular stabilization methods include
exponential stabilization [8], asymptotic stabilization [9], exponential adaptive stabilization [10], anti-
stabilization [11], robust stabilization [12], finite-time stabilization and fixed-time synchronization.
However, the previous results about asymptotic stabilization and exponential stabilization can be guar-
anteed only when the time is close to infinity. Since the service life of organisms and equipment is
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limited, the criteria of asymptotic stability and exponential stability are not applicable in practice. In
order to improve convergence and efficiency, another finite-time stabilization has been widely stud-
ied in recent years [13–20]. Finite-time stabilization means that stabilization can reach the so-called
stable time within the specified time. When the initial values are known, some effective controllers
with adjustable parameters can be designed, in which the parameters considered can be stabilized be-
fore a given fixed time. Obviously, the efficiency of engineering such as image processing and secure
communication will be greatly improved based on finite-time technology. Finite-time stabilization has
better robustness and anti-interference ability than asymptotic stabilization. On the other hand, the sta-
ble time of finite-time stabilization depends on the selection of initial values. The stabilization stable
settling time is not fixed for different initial values. In addition, considering the environmental con-
straints in practice and other factors, not all initial values are applicable in the system, so finite-time
stabilization also has some limitations. Therefore, in recent years, a more suitable stabilization method
for realizing finite-time stability, called fixed-time stabilization(FTS), was proposed by A. Polyakov
et al. in [21, 22]. Its advantage over finite-time stabilization method is that its stability time does not
depend on the selection of the initial value. Under the framework of fixed-time technology, many
scholars also made outstanding contributions to the finite-time stabilization problem. A unified con-
trol strategy is designed and it is revealed that a parameter value in the controller completely decides
the memristors-based neural networks are stabilized whether in finite time or in fixed time, which is
described in [23–28]. Meanwhile, the author designed a class of memristive neural networks with
time-varying delays and general activation functions. They investigate the exponential stabilization
problem of such systems in [29]. And Wen studied a new convolution algorithm: convolution kernel
first operated (CKFO), which can solve the problem that the actual calculation is not reduced after
pruning the weight of the convolution neural network [30].

However, in the intricate relationship within neurons, we must first consider the coupling network
and understand the interaction between different neurons. In [31, 32], the authors introduced an ordi-
nary differential equation model with neuron nodes with mutual coupling relationship, and the follow-
ing interesting dynamic behaviors will occur in the model: self-organization phenomenon, synchro-
nization behavior, traveling wave solution, spatiotemporal chaos and defect propagation. In [33], a
dynamic element was introduced as a neuron node. Considering the interaction and influence between
neurons, the existing neural network models are considered from the static and dynamic levels respec-
tively. At the same time, in practice, one can not control every neuron, so the introduction of a new
containment control theory is very necessary. For the problem of non-strongly connected networks or
undirected spanning trees, a lot of references have studied the stable traction control theory of complex
networks [34–39]. The theory can be used for network topological features, such as strongly connected
networks, undirected networks, scale-free networks and random networks, to realize global traction
stable control under the stability framework. In addition, this brief considers a single system. If two
drive response systems are considered, the finite-time stabilization problem can also be transformed
into a variety of synchronization problems. Synchronization means that the state variables of these two
systems are often consistent under control input. There have been many excellent works before, such
as quasi-uniform synchronization [40,41], global synchronization for BAM delayed reaction-diffusion
neural networks [42].

Based on the above statements, this brief presents a pinning control scheme for FTS of delayed
CMNNs with nonlinear coupling. The main contributions of this paper are summarized as follows:
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1) This paper comprehensively considers a class of complex systems with time-delayed and nonlin-
ear coupling. Considering the interaction of internal neurons, the coupling function of neuron nodes is
found through topological graph theory.

2) The Lyapunov method of the indefinite derivative is used in this paper. We consider the non-
autonomous system with variable coefficients which is state-dependent, the stability of the system is
better discussed according to the real-time state of neurons.

3) By designing a suitable pinning controller and considering the FTS problem of CMNNs. Com-
pared with the previous research results, this paper can ensure the stability faster and the settling time
shorter by controlling only a small number of neurons.

This brief mainly studies the fixed-time stabilization problem of CMNNs system based on the idea
of the indefinite derivative, through the design of an appropriate pinning controller to make the system
achieve finite-time stabilization as soon as possible. In the next section, we give the model description
and some preliminaries. In Section 3, it is our main part. The main challenge of this section is to use
the finite-time stability theory different from the traditional theory to stabilize the system as soon as
possible. In the last section, two numerical simulation examples are given.

2. Model description and preliminaries

This part gives some basic definitions, lemmas and assumptions, which can be obtained from some
basic references [43–49].

This section we introduce a mathematical model of MNNs as follows:

ż(t) = −Dz(t) + A(z(t)) f (z(t)) + B(z(t)) f (z(t − τ)), (2.1)

another expression of the above system (2.1) is:

dzi(t)
dt
= −dizi(t) +

n∑
j=1

ai j(z j(t)) f j(z j(t)) +
n∑

j=1

bi j(z j(t)) f j(z j(t − τ)), (2.2)

where z(t) = (z1(t), z2(t), . . . , zn(t))T denotes the potential of capacitor ci, di > 0 expresses the self-
inhibition of the ith neuron; f (z(t)) expresses the activation function with fi(0) = 0 for every i ∈ N;
ai j(·) and bi j(·) are two measurable functions representing the weight of memristor, which can be shown
as:

ai j =
W f

i j

Ci
× SGNi j, bi j =

W f
i j

Ci
× SGNi j,

where W f
i j indicate the memductances of memristors. M f

i j stands for the memristors between the activa-
tion function fi(zi(t)) and zi(t), and Ci is the invariant capacitor when the memductances of memristors
W f

i j and M f
i j respond to change in pinched hysteresis loops. Moreover,

SGNi j =

 1, if i , j,

−1, if i = .

According to the characteristics of memristor and the discussion in previous literature, we give the
mathematical expression of the connection functions of memristor as follows:
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co[ai j(z j(t))] =

 ǎi j, hi(z(t)) ≤ ri,

âi j, hi(z(t)) > ri,
co[bi j(z j(t))] =

 b̌i j, hi(z(t)) ≤ ri,

b̂i j, hi(z(t)) > ri,

where hi : R → R are threshold level functions, ri ∈ R are threshold level, and ǎi j, b̌i j, âi j, b̂i j are
constant numbers.

Through the idea of differential inclusion and Filippove theory, because ai j and bi j have discontinu-

ous characteristics, we can get that dzi(t)
dt ∈ −dizi(t)+

n∑
j=1

co[ai j(z j(t))] f j(z j(t))+
n∑

j=1
co[bi j(z j(t))] f j(z j(t−τ)),

where

ai j(zi(t)) =


ǎi j, hi(z(t)) < ri,

[ai j, ai j], |hi(z(t))| = ri,

âi j, hi(z(t)) > ri,

bi j(zi(t)) =


b̌i j, hi(z(t)) > ri,

[bi j, bi j], |hi(z(t))| = ri,

b̂i j, hi(z(t)) > ri,

with ai j = min{ǎi j, âi j}, ai j = max{ǎi j, âi j} and bi j = min{b̌i j, b̂i j}, bi j = max{b̌i j, b̂i j}.
Then for a.e. t ≥ 0 and i = 1, 2, . . . , n, there exist ãi j(t) ∈ co[ai j(zi)] and b̃i j(t) ∈ co[bi j(zi)] such that

dzi(t)
dt
= −dizi(t) +

n∑
j=1

ãi j(t) f j(z j(t)) +
n∑

j=1

b̃i j(t) f j(z j(t − τ)), (2.3)

and the initial value of the system is definition as ψ(s) = (ψ1(s), ψ2(s), . . . , ψn(s))T ∈ C[(−τ, 0),Rn].
Our goal is to gain the FTS issue of the above system. Before that, we need to make the basic

assumption of the activation function as follow:
(Hypothesis 1). For every j ∈ N, the neuron activation f j are bounded and satisfy that

h−j ≤
f j(x) − f j(y)

x − y
≤ h+j ,

where x , y and h−j , h
+
j are constants.

Definition 2.1 (see [8]). The solution of system (2.1) is said to gain stabilized in a finite time, if there
exists a settling time T ∗(z0, t0) such that

lim
t→T ∗
∥zi(t) − z j(t)∥ = 0 and ∥zi(t) − z j(t)∥ ≡ 0 for all t > T ∗ and i, j = 1, 2, . . . , n.

Moreover, if the settling time T ∗(z0, t0) is not depend on the initial values, the solution of system
(2.1) is said to be fixed-time stabilized.

Definition 2.2 (see [8]). For the function ψ : R+ → R+, if it is continuous and strictly increasing with
ψ(0) = 0, ψ is called a K-function and it can be expressed as ψ ∈ K . Moreover, if lims→+∞ ψ(s) = +∞
holds, the function ψ is called a K∞-function with ψ ∈ K∞.

Lemma 2.3 (C-Regular see [48]). The function V : Rn → Rn is C-Regular if and only if V(z) satisfies:
1) regularity in Rn;
2) V(z) > 0 for z , 0 and V(0) = 0;
3) V(z)→ +∞ as ∥z∥ → +∞.
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Lemma 2.4 (Chain Rule see [48]). V(z) is C-regular and for z(t) denotes absolute continuity function
in [t0,+∞) → Rn, then V(z(t)) is differentiable for a.e. t ≥ t0, and dV(z(t))

dt = ⟨L(t), dz(t)
dt ⟩, where L(t) ∈

∂V(z(t)).

Lemma 2.5 (See [24]). For an undirected graph G(A), and the corresponding adjacency matrix
and Laplace matrix are C = [ci j] and L respectively, the following formula holds for arbitrary
z = (z1, z2, . . . , zn) ∈ Rn:

zT Lz =
1
2

n∑
i, j=1

ci j(zi − z j)2.

Moreover, if there exists an undirected and connected nonnegative column vector w, L(A)+diag(w)
is positive definite.

Lemma 2.6 (Jesen inequality [49]). If a1, a2, . . . , an are positive numbers and 0 < r < p, then

( n∑
i=1

ap
i

)1/p
≤
( n∑

i=1

ar
i

)1/r
,

and (1
n

n∑
i=1

ap
i

)1/p
≥
(1
n

n∑
i=1

ar
i

)1/r
.

3. Main results

This section we introduce the FTS for N identical discontinuous MNNs (2.1), when consider the
internal relationship of neurons and adding the nonlinear coupling relationship to the system, one can
rewrite the system (2.3) as

dxi(t)
dt
= −dixi(t) + Ã(xi(t)) f (xi(t)) + B̃(xi(t)) f (xi(t − τ))

+

N∑
j=1

ci jϕα+1(x j(t) − xi(t)) +
N∑

j=1

ci jϕβ+1(x j(t) − xi(t)) + ui(t), (3.1)

where i = 1, 2, · · · ,N, and xi(t) = (xi1(t), xi2(t), · · · , xin(t))T ∈ Rn is the state vector representing the
state variables of node i at time t. f = f (xi(t)) : Rn → Rn is a vector-value function standing for the
activity of an individual subsystem. Ã and B̃ express [̃ai j] and [̃bi j], respectively. ϕ is the nonlinear
coupling function and ϕs+1(z) = |z|ssign(z). 0 < α < 1 and β > 1. Matrix C = [ci j] denotes the
adjacency matrix of subsystems, which corresponding Laplacian matrix is represented as L, and all of
them are applicable to undirected weighted networks. ui(t) is the controller.

In order to achieve the FTS and the convenience of engineering practice, it is generally impossible
to control every neuron. Then we introduce the method of pinning control. In this paper, a random
number δ( 1

N < δ < 1) is selected, and let l = [δN], that is, the control is applied to these l neurons.
Without losing generality, we can select the first l neurons (which are also regarded as a random choice)
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as the control objects. Then the controller ui(t) can be given as

ui(t) =


1
2

Q(t)SIGN(xi(t))|xi(t)| − pSIGN(xi(t))|xi(t)|α − qSIGN(xi(t))|xi(t)|β, i = 1, 2, . . . , l,

0, i = l + 1, . . . ,N.
(3.2)

where Q(t) is a K∞-function p, q are nonnegative coefficients.
For the sake of convenience, we denote dmin = min{di} and hmax = max{h−j , h

+
j } for every i, j ∈ N.

Then the main results in this paper are given by the following theorems.

Theorem 3.1. If the activation function f of the system is assumed as the above Hypothesis. The
coupled system (3.1) with novel controller (3.2) can be fixed-time stabilized if the following equal
holds for every i ∈ N and k, l = 1, 2, . . . , n:

(A) dmin > hmax ·max
k,l∈N
{ sup
t∈[t0,+∞)

|̃akl(t)|} + nhmax ·max
k,l∈N
{ sup
t∈[t0,+∞)

|̃bkl(t)|}.

Proof. Define the Lyapunov function V(t, x) as follows:

V(t, x) =
1
2

N∑
i=1

xT
i (t)xi(t) =

1
2

xT (t)x(t).

Differentiating the derivative of V(t, x) along the trajectories of (3.1)

V̇(t, x) =
N∑

i=1

xT
i (t)ẋi(t)

=

N∑
i=1

xT
i (t)
(
− dixi(t) +

n∑
j=1

ãi j(t) f (x j(t)) +
n∑

j=1

b̃i j(t) f (x j(t − τ))

+

N∑
j=1

ci jϕα+1(x j(t) − xi(t)) +
N∑

j=1

ci jϕβ+1(x j(t) − xi(t))
)
+

l∑
i=1

xT
i (t)ui(t)

= −

N∑
i=1

xT
i (t)dixi(t) +

N∑
i=1

xT
i (t)

n∑
j=1

ãi j(t) f (x j(t)) +
N∑

i=1

xT
i (t)

n∑
j=1

b̃i j(t) f (x j(t − τ))

+

N∑
i=1

xT
i (t)

N∑
j=1

ci jϕα+1(x j(t) − xi(t)) +
N∑

i=1

xT
i (t)

N∑
j=1

ci jϕβ+1(x j(t) − xi(t))

+
1
2

l∑
i=1

xT
i (t)Q(t)SIGN(xi(t))|xi(t)| −

l∑
i=1

xT
i (t)pSIGN(xi(t))|xi(t)|α −

l∑
i=1

xT
i (t)qSIGN(xi(t))|xi(t)|β.

(3.3)

From the above discussion of measurable functions ãi j(t), b̃i j(t) and the Hypothesis 1, one can obtain
that
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N∑
i=1

xT
i (t)

n∑
j=1

ãi j(t) f (x j(t)) =
N∑

i=1

n∑
l=1

n∑
k=1

xik(t)̃akl(t) f (xil(t)) ≤
N∑

i=1

n∑
l=1

n∑
k=1

|xik(t)||̃akl(t)|| f (xil(t))|

≤

N∑
i=1

n∑
l=1

n∑
k=1

|xik(t)||̃akl(t)|h+l · |xil(t)|

≤ hmax ·max
k,l∈N
{sup

t∈R
|̃akl(t)|}

N∑
i=1

n∑
l=1

n∑
k=1

|xik(t)||xil(t)| (3.4)

N∑
i=1

xT
i (t)

n∑
j=1

b̃i j(t) f (x j(t − τ)) =
N∑

i=1

n∑
l=1

n∑
k=1

xik(t)̃bkl(t) f (xil(t − τ)) ≤
N∑

i=1

n∑
l=1

n∑
k=1

|xik(t)||̃bkl(t)|| fl(xil(t − τ))|

≤

N∑
i=1

n∑
l=1

n∑
k=1

|xik(t)||̃bkl(t)|h+l · |xil(t − τ)|

≤ hmax ·max
k,l∈N
{sup

t∈R
|̃bkl(t)|}

N∑
i=1

n∑
l=1

n∑
k=1

|xik(t)||xil(t − τ)|

≤ hmax ·max
k,l∈N
{sup

t∈R
|̃bkl(t)|}

N∑
i=1

(n
2

n∑
k=1

x2
ik(t) +

n
2

n∑
l=1

x2
il(t − τ)

)
. (3.5)

According to the hypothesis (A) of this theorem and two inequalities (Eqs 3.4 and 3.5), we can
reduce the Eq (3.3) to

V̇(t, x) ≤
N∑

i=1

xT
i (t)

N∑
j=1

ci jϕα+1(x j(t) − xi(t)) +
N∑

i=1

xT
i (t)

N∑
j=1

ci jϕβ+1(x j(t) − xi(t))

+
1
2

Q(t)
N∑

i=1

xT
i (t)xi(t) −

l∑
i=1

p|xi(t)|1+α −
l∑

i=1

q|xi(t)|1+β. (3.6)

According the first Jesen inequality of Lemma 2.6, let pi = p when i = 1, . . . , l and pi = 0 when
i = l + 1, . . . ,N and qi = q when i = 1, . . . , l and qi = 0 when i = l + 1, . . . ,N, one can reduce

N∑
i=1

xT
i (t)

N∑
j=1

ci jϕα+1(x j(t) − xi(t)) −
l∑

i=1

p|xi(t)|1+α

= −
1
2

N∑
i, j=1

ci j(x j(t) − xi(t))ϕα+1(x j(t) − xi(t)) −
N∑

i=1

pi|xi(t)|1+α

= −
1
2

N∑
i, j=1

ci j|x j(t) − xi(t)|1+α −
N∑

i=1

pi|xi(t)|1+α

= −
1
2

N∑
i=1

[ N∑
j=1

ci j|x j(t) − xi(t)|1+α + 2pi|xi(t)|1+α
]
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≤ −
1
2

{ N∑
i=1

[ N∑
j=1

c
2
α+1
i j |x j(t) − xi(t)|2 + (2pi)

2
α+1 |xi(t)|2

} 1+α
2
. (3.7)

and by the second Jesen inequality of Lemma 2.6, similarly one can have

N∑
i=1

xT
i (t)

N∑
j=1

ci jϕβ+1(x j(t) − xi(t)) −
l∑

i=1

q|xi(t)|1+β

= −
N
2

N∑
i=1

[ N∑
j=1

1
N

ci j|x j(t) − xi(t)|1+β +
1
N

2qi|xi(t)|1+β
]

≤ −
1
2

N
1−β

2
( N∑

i, j=1

c
2
β+1

i j |x j(t) − xi(t)|2 +
N∑

i=1

(2qi)
2

1+β |xi(t)|2
) 1+β

2
. (3.8)

Given two new matrices as C1 = (c
2

1+α
i j ) and C2 = (c

2
1+β

i j ). LC1 and LC2 denote the Laplacian matrices

of the Graph G(C1) and G(C2), respectively. Let Dp = diag
(

(2p)
2

1+α , . . . , (2p)
2

1+α︸                   ︷︷                   ︸
l

, 0, . . . , 0︸  ︷︷  ︸
N−l

)
and Dq =

diag
(

(2q)
2

1+α , . . . , (2q)
2

1+β︸                  ︷︷                  ︸
l

, 0, . . . , 0︸  ︷︷  ︸
N−l

)
. Recalling the Lemma 2.5, (3.7) and (3.8), the Eq (3.6) can be

rewritten as

V̇(t, x) ≤
1
2

Q(t)
N∑

i=1

xT
i (t)xi(t) −

1
2

[xT (2LC1 + Dp)x]
1+α

2 −
1
2

N
1−β

2 [xT (2LC2 + Dq)x]
1+β

2

≤ Q(t)V(t, x) −
1
2

(λ1xT x)
1+α

2 −
1
2

N
1−β

2 (λ2xT x)
1+β

2

≤ Q(t)V(t, x) − 2
α−1

2 λ
1+α

2
1 V

1+α
2 (t, x) − 2

β−1
2 N

1−β
2 λ

1+β
2

2 V
1+β

2 (t, x), (3.9)

where λ1 = λmin(2LC1 + Dp) and λ2 = λmin(2LC2 + Dq).

Let p̆ = 2
α−1

2 λ
1+α

2
1 and q̆ = 2

β−1
2 N

1−β
2 λ

1+β
2

2 , because 0 < 1+α
2 < 1 and 1+β

2 > 1, multiplying both sides of
(3.9) by V−

1+α
2 (t, x), one can have

2
1 − α

dV
1−α

2 (t, x)
dt

= V−
1+α

2 (t, x)
dV(t, x)

dt
≤ Q(t)V

1−α
2 (t, x) − p̆ − q̆V

β−α
2 (t, x), (3.10)

let W(t, x) = V
1−α

2 (t, x), then we can expand the inequality (Eq 3.10) as

dW(t, x)
dt

≤
1 − α

2
Q(t)W(t, x) −

1 − α
2

p̆ ≤ Q(t)W(t, x) −
1 − α

2
p̆, (3.11)

multiplying both sides of (3.11) by e−
∫ t

t∗ Q(ς)dς, for a.e. t ≥ t∗ we get

d
[
W(t, x)e−

∫ t
t∗ Q(ς)dς]

dt
≤ −

1 − α
2

p̆ · e−
∫ t

t∗ Q(ς)dς. (3.12)
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Integrate both sides of (3.14) from t∗ to t and according to the definition of K∞-function, which
implies

∫ t

t0
Q(s)ds ≤ −λ(t − t0) + M, then one can get

W(t, x(t))e−
∫ t

t∗ Q(ς)dς ≤ W(t∗, x(t∗)) −
1 − α

2
p̆
∫ t

t∗
e−
∫ ς

t∗ Q(s)dsdς

≤ W(t∗, x(t∗)) −
1 − α

2
p̆
∫ t

t∗
eλ(ς−t∗)−Mdς

= W(t∗, x(t∗)) −
(1 − α)p̆

2λeM eλ(ς−t∗)
∣∣∣∣t
t∗

= W(t∗, x(t∗)) −
(1 − α)p̆

2λeM

(
eλ(t−t∗) − 1

)
= W(t∗, x(t∗)) +

(1 − α)p̆
2λeM −

(1 − α)p̆
2λeM eλ(t−t∗), (3.13)

which implies

V
1−α

2 (t, x) ≤ e
∫ t

t∗ Q(ς)dς
[
V

1−α
2 (t∗, x(t∗)) +

(1 − α) p̆
2λeM −

(1 − α)p̆
2λeM eλ(t−t∗)

]
. (3.14)

Moreover, from (3.9) it’s easily to see that dV(t,x)
dt ≤ Q(t)V(t, x), which yields for t∗ > t0

V
1−α

2 (t∗, x(t∗)) ≤ V
1−α

2 (t0, x0)e
(1−α)M

2 ≜ Υ. (3.15)

Combined with (3.14) and (3.15), it is easy to see V(t, x(t)) ≡ 0 if the following inequality holds:

Υ +
(1 − α) p̆

2λeM −
(1 − α) p̆

2λeM eλ(t−t∗) ≤ 0, (3.16)

which yield

t ≥ t∗ +
1
λ

ln
(
1 +

2λeMΥ

(1 − α)p̆

)
, (3.17)

where t∗ is a priori condition to make inequality (Eq 3.15) true, it is not difficult to find that when t0

and x0 are determined, one can find the corresponding t∗, then according to (3.14)–(3.17) and the fact
e
∫ t

t∗ Q(ς)dς > 0, when t ≥ T ∗(t0, x0) = t∗ + 1
λ

ln
(
1 + 2λeMΥ

(1−α) p̆

)
, one can obtain V(t, x(t)) ≡ 0. Then the FTS

can be finally realized and the settling time can be estimated by T ∗(t0, x0).

Remark 3.2. Many previous literatures [21–24] have used Polyakov’s classical finite/fixed-time theo-
rem. In this paper, a term Q(t) is added to the controller ui, and the method of indefinite V-function
derivative is used to further popularize Polyakov’s finite/fixed-time theorem. We can see that fewer
conditions are required in our model and the stable settling time is faster. Our results generalize the
previous conclusion.

The corresponding adaptive controller of (3.2)can be designed as

ui(t) =

 Q(t)SIGN(xi(t))|xi(t)| − ∆iSIGN(xi(t))|xi(t)|α − ΠiSIGN(xi(t))|xi(t)|β, i = 1, 2, . . . , l,
0, i = l + 1, . . . ,N.

(3.18)
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where ∆i = diag(ζi1, ζi2, . . . , ζin), Πi = diag(πi1, πi2, . . . , πin), and for k = 1, 2, . . . , n the controller rules
of ζik, πik satisfy:

ζ̇ik = pik|xik(t)|1+α and π̇ik = qik|xik(t)|1+β,

where pik, qik are adaptive coefficients need to be determined.

Theorem 3.3. If the condition (A) of Theorem 3.1 holds and the activation function f of the system is
assumed as the above Hypothesis. The coupled system (3.1) can be fixed-time stabilized by adding the
adaptive controller (3.18) and choosing the suitable adaptive coefficients.

Proof. We construct the following Lyapunov function:

V(t, x(t)) =
1
2

N∑
i=1

xT
i (t)xi(t) +

l∑
i=1

n∑
k=1

1
2pik

(
ζik − pik

)2
+

l∑
i=1

n∑
k=1

1
2qik

(
πik − qik

)2
Taking the derivative of V(t, x) along the trajectories of (3.2)

V̇(t, x) =
N∑

i=1

xT
i (t)ẋi(t) +

l∑
i=1

n∑
k=1

(
ζik − pik

)
|xik(t)|1+α +

l∑
i=1

n∑
k=1

(
πik − qik

)
|xik(t)|1+β

=

N∑
i=1

xT
i (t)
(
− dixi(t) +

n∑
j=1

ãi j(t) f (x j(t)) +
n∑

j=1

b̃i j(t) f (x j(t − τ)) +
N∑

j=1

ci jϕα+1(x j(t) − xi(t))

+

N∑
j=1

ci jϕβ+1(x j(t) − xi(t))
)
+

N∑
i=1

xT
i (t)ui(t) +

l∑
i=1

n∑
k=1

(
ζik − pik

)
|xik(t)|1+α +

l∑
i=1

n∑
k=1

(
πik − qik

)
|xik(t)|1+β

(3.19)

Through the hypothesis (A) of Theorem 3.1 and recalling the previous discussion (3.4) and (3.5),
one can have

V̇(t, x) ≤
N∑

j=1

ci jϕα+1(x j(t) − xi(t)) +
N∑

j=1

ci jϕβ+1(x j(t) − xi(t)) −
l∑

i=1

n∑
k=1

pik|xik(t)|1+α −
l∑

i=1

n∑
k=1

qik|xik(t)|1+β

(3.20)

Then we return to the evolution in Eq (3.6) in Theorem 3.1, and we can see that the FTS of the
coupled system can be achieved by adding the pinning adaptive controller. Moreover, the settling time
T (x0, t0) can be estimated by (3.17), the corresponding parameters of (3.17) in this theorem can be
adjusted adaptively with the coefficients of the controller (3.18).

Remark 3.4. In fact, in this paper, it is a classical fixed stability problem when Q(t) is equal to 0.
This paper breaks the conventional restrictions and uses inequality skill to deduce derivative term of
indefinite function. Compared with the previous articles [26, 27], the FTS problem is obtained from
the two aspects of pinning state controller and pinning adaptive controller. In particular, the coefficient
of adaptive adjustment is added to make the parameters more flexible to adapt to the system.
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Remark 3.5. In this paper, a novel coupling parameter is introduced to study the fixed time problem,
which combines the parameters α, β in the controller. Based on Lemma 2.5, the FTS problem can be
simplified by converting fewer conditional requirements. In addition, if q̆ = 0 in (3.9), we can find
that it is the global asymptotic stability or finite-time criteria problem of complex network systems
in [9,10,18–20]. This method of the indefinite derivative is also applicable. This means that our results
can generalize the previous conclusion.

Remark 3.6. In this brief, the finite-time stabilization of the CDMMs is studied mainly by choosing the
suitable pinning controller. Compared with other methods, this brief has a wider scope of application
and more advantages: 1) The controller only randomly controls a part of nodes. 2) In the proof,
the derivative of V function is not necessarily strictly negative. It has an indefinite term, and the
calculation is more complex. Meanwhile, this article also has some shortcomings. If we want to
achieve finite/fixed-time stabilization, although the convergence speed is faster, it will consume more
components, that is, the cost will be higher. Moreover, compared with the traditional Polyakov finite-
time theorem [21] used by the V function, when the derivative of the V function has an indefinite term,
the calculation is more complex, and it is more difficult to achieve a fixed-time stabilization.

4. Examples and simulation experiment

In this section, we introduce two examples and simulations to prove our results’ effectiveness. The
dimension of the system (3.1) in the example is three-dimensional, and its model and parameters are
defined as follows:

dxi(t)
dt
= −dixi(t) +

n∑
j=1

ãi j(t) f (x j(t)) +
n∑

j=1

b̃i j(t) f (x j(t − τ))

+

N∑
j=1

ci jϕα+1(x j(t) − xi(t)) +
N∑

j=1

ci jϕβ+1(x j(t) − xi(t)) + ui(t), (4.1)

where d1 = d2 = d3 = 9; f (·) =


tanh(·)
tanh(·)
tanh(·)

. Moreover, A and B are expressed as follows:

A =


a11 0.3 0.5
0.2 a22 0.3
0.1 0.5 a33

; B =


b11 0.1 0.8
−0.1 b22 0.8
0.2 1 b33

;
where

a11(t) =


1.6256, h1(x(t)) < r1

[1.4325, 1.6256], |h1(x(t))| = r1

1.4325, h1(x(t)) > r1

b11(t) =


− 1.1236, h1(x(t)) < r1

[−1.1236, 1.8265], |h1(x(t))| = r1

1.8265, h1(x(t)) > r1

a22(t) =


2.1234, h2(x(t)) < r2

[1.2345, 2.1234], |h2(x(t))| = r2

1.2345, h2(x(t)) > r2

b22(t) =


− 1.2266, h2(x(t)) < r2

[−2.1245,−1.2266], |h2(x(t))| = r2

− 2.1245, h2(x(t)) > r2
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a33(t) =


0.1745, h3(x(t)) < r3

[0.1745, 0.8992], |h3(x(t))| = r3

0.8325, h3(x(t)) > r3

b33(t) =


− 1.2148, h3(x(t)) < r3

[−1.2148, 1.7462], |h3(x(t))| = r3

1.6999, h3(x(t)) > r3

Example 4.1. Consider the model (4.1) i.e., it is easy to check that the neuron function satisfies the
Hypothesis 1 with hmax = 1. Moreover, let N = 6, we randomly select a relationship between different
neurons of coupling network, and its topology rule and the corresponding adjacency matrix C can be
shown as follows:

1 2

3 4

56

C =



0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 1 0


;

and the corresponding Laplace is L, one can see that λmin(L) = 0. Then we choose the control rule by
ui(t) = Q(t)SIGN(xi(t))|xi(t)| − piSIGN(xi(t))|xi(t)|α − qiSIGN(xi(t))|xi(t)|β with Q(t) = 1

1+t2 , pi = qi = 1
for i = 1, 2, and α = 0.5, β = 2, one can check that:

dmin = 9 > 8.49 = hmax ·max
k,l∈N
{sup

t∈R
|̃akl(t)|} + nhmax ·max

k,l∈N
{sup

t∈R
|̃bkl(t)|},

then Hypothesis (A) holds. By using Theorem 3.1, the coupled system (4.1) can be fixed-time stabilized
by randomly choosing 3 groups of initial values 2.5, -0.5 and -3. The simulation results are described
by Figure 1(a). Moreover, the settling time can be estimated as T ∗(t0, x0) = 0.8.

Example 4.2. Recalling (4.1) again, let N = 4, and the topological connection of the coupling neurons
network and the corresponding configuration matrix are illustrated by the following structure:

1

2

3

4

C =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


which easily have λmin(L) = 0.

Then we choose the control rule ui(t) in (3.18) and only control the first three nodes. The same as
Example 4.1, we can see that the Hypothesis (A) is true. By using Theorem 3.3, the coupled system
(4.1) can be fixed-time stabilized by randomly choosing 3 groups of initial values 0.8, 6.2 and -8. The
simulation results are described by Figure 1(b), the settling time can be estimated as T ∗(t0, x0) = 0.9.
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(a) (b)

(c) (d)

Figure 1. (a) The CMNNs (4.1) can achieve fixed-time stability by controlling the first two
nodes i=1,2 and randomly selecting three initial values (2.5, -0.5 and -3); (b) The CMNNs
(4.1) can achieve fixed-time stability by controlling the first three nodes i=1,2,3 and randomly
selecting three initial values (0.8, 6.2 and -8); (c) The stability of the system (4.1) when no
controller is selected by randomly selecting three initial values (0.2, 2.2 and -1.8); (d) The
stability of the system (4.1) when no controller is selected by randomly selecting three initial
values (0.1, 1.2 and -2.5).

Remark 4.3. Through the above two examples, we can find that the number of control nodes in the
example is randomly selected, and the initial value is also arbitrary. According to the simulation
image, it can be seen that the stability of the system can be achieved quickly, and the stability of the
system has nothing to do with the selection of the initial value and the number of nodes. This fully
demonstrates the advanced nature and effectiveness of our results. We can see from Figure 1(c) and
Figure 1(d) that when the controller is cancelled, the system settling time T0 is obviously longer than
that with the controller.

5. Conclusions

This paper introduces the FTS problem of CMNNs system. The main method is to establish a novel
state-dependent pinning controller and the corresponding adaptive pinning controller in the form of
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vector based on Lyapunov functional and undirected topological graph theory. In addition, we use the
method of the indefinite derivative to solve the FTS issue of CMNNs with nonlinear coupling, which
is independent of the initial value. The limit that the conventional V-function must be negative definite
is broken. Finally, through experimental analysis and numerical simulation, it is verified that the
experimental and theoretical methods in this brief are effective. Moreover, the control method and the
calculation technology of the indefinite derivative established in this brief are relatively novel and can
be extended to many fields, such as recurrent neural networks [4, 5], statistical language modeling [6],
stochastic memristive chaotic systems [10, 35–37], muti-agent systems [14], fuzzy neural networks
[38], chaotic systems [39] and so on.
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