Citation: Suhail Mahmud, Md Al Masum Bhuiyan, Nusrat Sarmin, Sanjida Elahee. Study of wind speed and relative humidity using stochastic technique in a semi-arid climate region[J]. AIMS Environmental Science, 2020, 7(2): 156-173. doi: 10.3934/environsci.2020010
[1] | Zhanwei Gou, Jincheng Shi . Blow-up phenomena and global existence for nonlinear parabolic problems under nonlinear boundary conditions. AIMS Mathematics, 2023, 8(5): 11822-11836. doi: 10.3934/math.2023598 |
[2] | Huafei Di, Yadong Shang . Blow-up phenomena for a class of metaparabolic equations with time dependent coeffcient. AIMS Mathematics, 2017, 2(4): 647-657. doi: 10.3934/Math.2017.4.647 |
[3] | Sen Ming, Xiaodong Wang, Xiongmei Fan, Xiao Wu . Blow-up of solutions for coupled wave equations with damping terms and derivative nonlinearities. AIMS Mathematics, 2024, 9(10): 26854-26876. doi: 10.3934/math.20241307 |
[4] | Mengyang Liang, Zhong Bo Fang, Su-Cheol Yi . Blow-up analysis for a reaction-diffusion equation with gradient absorption terms. AIMS Mathematics, 2021, 6(12): 13774-13796. doi: 10.3934/math.2021800 |
[5] | Ahmed Himadan . Well defined extinction time of solutions for a class of weak-viscoelastic parabolic equation with positive initial energy. AIMS Mathematics, 2021, 6(5): 4331-4344. doi: 10.3934/math.2021257 |
[6] | Hatice Taskesen . Qualitative results for a relativistic wave equation with multiplicative noise and damping terms. AIMS Mathematics, 2023, 8(7): 15232-15254. doi: 10.3934/math.2023778 |
[7] | Jincheng Shi, Jianye Xia, Wenjing Zhi . Blow-up of energy solutions for the semilinear generalized Tricomi equation with nonlinear memory term. AIMS Mathematics, 2021, 6(10): 10907-10919. doi: 10.3934/math.2021634 |
[8] | Zhiqiang Li . The finite time blow-up for Caputo-Hadamard fractional diffusion equation involving nonlinear memory. AIMS Mathematics, 2022, 7(7): 12913-12934. doi: 10.3934/math.2022715 |
[9] | Xiongmei Fan, Sen Ming, Wei Han, Zikun Liang . Lifespan estimate of solution to the semilinear wave equation with damping term and mass term. AIMS Mathematics, 2023, 8(8): 17860-17889. doi: 10.3934/math.2023910 |
[10] | Jiaqing Hu, Xian Xu, Qiangqiang Yang . Bifurcation results of positive solutions for an elliptic equation with nonlocal terms. AIMS Mathematics, 2021, 6(9): 9547-9567. doi: 10.3934/math.2021555 |
In this paper, we are concerned with the existence and multiplicity of weak solutions for the damped-like fractional differential system
{−ddt(p(t)(12 0D−ξt(u′(t))+12 tD−ξT(u′(t))))+r(t)(12 0D−ξt(u′(t))+12 tD−ξT(u′(t)))+q(t)u(t)=λ∇F(t,u(t)), a.e. t∈[0,T],u(0)=u(T)=0, | (1.1) |
where 0D−ξt and tD−ξT are the left and right Riemann-Liouville fractional integrals of order 0≤ξ<1, respectively, p,r,q∈C([0,T],R), L(t):=∫t0(r(s)/p(s))ds, 0<m≤e−L(t)p(t)≤M and q(t)−p(t)≥0 for a.e. t∈[0,T], u(t)=(u1(t),u2(t)⋯,un(t))T, (⋅)T denotes the transpose of a vector, n≥1 is a given positive integer, λ>0 is a parameter, ∇F(t,x) is the gradient of F with respect to x=(x1,⋯,xn)∈Rn, that is, ∇F(t,x)=(∂F∂x1,⋯,∂F∂xn)T, and there exists a constant δ∈(0,1) such that F:[0,T]ׯBδ0→R (where ¯Bδ0 is a closed ball in RN with center at 0 and radius δ) satisfies the following condition
(F0) F(t,x) is continuously differentiable in ¯Bδ0 for a.e. t∈[0,T], measurable in t for every x∈¯Bδ0, and there are a∈C(¯Bδ0,R+) and b∈L1([0,T];R+) such that
|F(t,x)|≤a(|x|)b(t) |
and
|∇F(t,x)|≤a(|x|)b(t) |
for all x∈¯Bδ0 and a.e. t∈[0,T].
In recent years, critical point theory has been extensively applied to investigate the existence and multiplicity of fractional differential equations. An successful application to ordinary fractional differential equations with Riemann-Liouville fractional integrals was first given by [1], in which they considered the system
{−ddt((12 0D−ξt(u′(t))+12 tD−ξT(u′(t))))=∇F(t,u(t)), a.e. t∈[0,T],u(0)=u(T)=0. | (1.2) |
They established the variational structure and then obtained some existence results for system (1.2). Subsequently, this topic attracted lots of attention and a series of existence and multiplicity results are established (for example, see [2,3,4,5,6,7,8,9,10,11,12] and reference therein). It is obvious that system (1.1) is more complicated than system (1.2) because of the appearance of damped-like term
r(t)(12 0D−ξt(u′(t))+12 tD−ξT(u′(t))). |
In [13], the variational functional for system (1.1) with λ=1 and N=1 has been established, and in [14], they investigated system (1.1) with λ=1, N=1 and an additional perturbation term. By mountain pass theorem and symmetric mountain pass theorem in [15] and a local minimum theorem in [16], they obtained some existence and multiplicity results when F satisfies superquadratic growth at infinity and some other reasonable conditions at origin.
In this paper, motivated by the idea in [17,18], being different from those in [13,14], we consider the case that F has subquadratic growth only near the origin and no any growth condition at infinity. Our main tools are Ekeland's variational principle in [19], a variant of Clark's theorem in [17] and a cut-off technique in [18]. We obtain that system (1.1) has a ground state weak solution uλ if λ is in some given interval and then some estimates of uλ are given, and when F(t,x) is also even about x near the origin for a.e. t∈[0,T], for each given λ>0, system (1.1) has infinitely many weak solutions {uλn} with ‖uλn‖→0 as n→∞. Next, we make some assumptions and state our main results.
(f0) There exist constants M1>0 and 0<p1<2 such that
F(t,x)≥M1|x|p1 | (1.3) |
for all x∈¯Bδ0 and a.e. t∈[0,T].
(f1) There exist constants M2>0 and 0<p2<p1<2 such that
F(t,x)≤M2|x|p2 | (1.4) |
for all x∈¯Bδ0 and a.e. t∈[0,T].
(f0)′ There exist constants M1>0 and 0<p1<1 such that (1.3) holds.
(f1)′ There exist constants M2>0 and 0<p2<p1<1 such that (1.4) holds.
(f2) There exists a constant η∈(0,2) such that
(∇F(t,x),x)≤ηF(t,x) |
for all x∈¯Bδ0 and a.e. t∈[0,T].
(f3) F(t,x)=F(t,−x) for all x∈¯Bδ0 and a.e. t∈[0,T].
Theorem 1.1. Suppose that (F0), (f0), (f1) and (f2) hold. If
0<λ≤min{|cos(πα)|2C,(1B)2−p2(δ2)2−p2|cos(πα)|2C}, |
then system (1.1) has a ground state weak solution uλ satisfying
‖uλ‖2−p2≤min{1,(1B)2−p2(δ2)2−p2},‖uλ‖2−p2∞≤{B2−p2,(δ2)2−p2}. |
where
B=T2α−12√mΓ(α)(2α−1)12,C=max{p,η}max{M1,M2}Tmaxt∈[0,T]e−L(t)max{Bp1,Bp2}. |
If (f0) and (f1) are replaced by the stronger conditions (f0)′ and (f1)′, then (f2) is not necessary in Theorem 1.1. So we have the following result.
Theorem 1.2. Suppose that (F0), (f0)′ and (f1)′ hold. If
0<λ≤min{|cos(πα)|3C∗,(1B)2−p1(δ2)2−p1|cos(πα)|3C∗}, |
then system (1.1) has a ground state weak solution uλ satisfying
‖uλ‖2−p1≤min{1,(1B)2−p1(δ2)2−p1},‖uλ‖2−p1∞≤{B2−p1,(δ2)2−p1}, |
where C∗=maxt∈[0,T]e−L(t)max{(1+ρ0)a0B∫T0b(t)dt,M1p1TBp1,ρ0M1TBp1+1}, a0=maxs∈[0,δ]a(s) and ρ0=maxs∈[δ2,δ]|ρ′(s)| and ρ(s)∈C1(R,[0,1]) is any given even cut-off function satisfying
ρ(s)={1,if |s|≤δ/2,0,if |s|>δ. | (1.5) |
Theorem 1.3. Suppose that (F0), (f0), (f1) and (f3) hold. Then for each λ>0, system (1.1) has a sequence of weak solutions {uλn} satisfying {uλn}→0, as n→∞.
Remark 1.1. Theorem 1.1-Theorem 1.3 still hold even if r(t)≡0 for all t∈[0,T], that is, the damped-like term disappears, which are different from those in [2,3,4,5,6,7,8,9,10,11,12] because all those assumptions with respect to x in our theorems are made only near origin without any assumption near infinity.
The paper is organized as follows. In section 2, we give some preliminary facts. In section 3, we prove Theorem 1.1–Theorem 1.3.
In this section, we introduce some definitions and lemmas in fractional calculus theory. We refer the readers to [1,9,20,21,22]. We also recall Ekeland's variational principle in [19] and the variant of Clark's theorem in [17].
Definition 2.1. (Left and Right Riemann-Liouville Fractional Integrals [22]) Let f be a function defined on [a,b]. The left and right Riemann-Liouville fractional integrals of order γ for function f denoted by aD−γtf(t) and tD−γbf(t), respectively, are defined by
aD−γtf(t)=1Γ(γ)∫ta(t−s)γ−1f(s)ds,t∈[a,b],γ>0,tD−γbf(t)=1Γ(γ)∫bt(s−t)γ−1f(s)ds,t∈[a,b],γ>0. |
provided the right-hand sides are pointwise defined on [a,b], where Γ>0 is the Gamma function.
Definition 2.2. ([22]) For n∈N, if γ=n, Definition 2.1 coincides with nth integrals of the form
aD−ntf(t)=1(n−1)!∫ta(t−s)n−1f(s)ds,t∈[a,b],n∈N,tD−nbf(t)=1(n−1)!∫bt(t−s)n−1f(s)ds,t∈[a,b],n∈N. |
Definition 2.3. (Left and Right Riemann-Liouville Fractional Derivatives [22]) Let f be a function defined on [a,b]. The left and right Riemann-Liouville fractional derivatives of order γ for function f denoted by aDγtf(t) and tDγbf(t), respectively, are defined by
aDγtf(t)=dndtnaDγ−ntf(t)=1Γ(n−γ)dndtn(∫ta(t−s)n−γ−1f(s)ds),tDγbf(t)=(−1)ndndtntDγ−nbf(t)=(−1)nΓ(n−γ)dndtn(∫bt(s−t)n−γ−1f(s)ds). |
where t∈[a,b],n−1≤γ<n and n∈N. In particular, if 0≤γ<1, then
aDγtf(t)=ddtaDγ−1tf(t)=1Γ(1−γ)ddt(∫ta(t−s)−γf(s)ds),t∈[a,b],tDγbf(t)=−ddttDγ−1bf(t)=−1Γ(1−γ)ddt(∫bt(s−t)−γf(s)ds),t∈[a,b]. |
Remark 2.1. ([9,13]) The left and right Caputo fractional derivatives are defined by the above-mentioned Riemann-Liuville fractional derivative. In particular, they are defined for function belonging to the space of absolutely continuous functions, which we denote by AC([a,b],RN). ACk([a,b],RN)(k=0,1,...) are the space of the function f such that f∈Ck([a,b],RN). In particular, AC([a,b],RN)=AC1([a,b],RN).
Definition 2.4. (Left and Right Caputo Fractional Derivatives [22]) Let γ≥0 and n∈N.
(ⅰ) If γ∈(n−1,n) and f∈ACn([a,b],RN), then the left and right Caputo fractional derivatives of order γ for function f denoted by caDγtf(t) and ctDγbf(t), respectively, exist almost everywhere on [a,b]. caDγtf(t) and ctDγbf(t) are represented by
caDγtf(t)=aDγ−ntfn(t)=1Γ(n−γ)(∫ta(t−s)n−γ−1f(n)(s)ds),ctDγbf(t)=(−1)n tDγ−nbfn(t)=(−1)nΓ(n−γ)(∫bt(s−t)n−γ−1f(n)(s)ds), |
respectively, where t∈[a,b]. In particular, if 0<γ<1, then
caDγtf(t)=aDγ−1tf′(t)=1Γ(1−γ)(∫ta(t−s)−γf′(s)ds),t∈[a,b],ctDγbf(t)=−tDγ−1bf′(t)=−1Γ(1−γ)(∫bt(s−t)−γf′(s)ds),t∈[a,b]. |
(ⅱ) If γ=n−1 and f∈ACn([a,b],RN), then caDγtf(t) and ctDγbf(t) are represented by
caDn−1tf(t)=f(n−1)(t),t∈[a,b],ctDn−1bf(t)=(−1)n−1f(n−1)(t),t∈[a,b]. |
In particular, caD0tf(t)= ctD0bf(t)=f(t), t∈[a,b].
Lemma 2.1. ([22]) The left and right Riemann-Liouville fractional integral operators have the property of a semigroup, i.e.
aD−γ1t(aD−γ2tf(t))=aD−γ1−γ2tf(t),tD−γ1b(tD−γ2bf(t))=tD−γ1−γ2bf(t),∀γ1,γ2>0, |
in any point t∈[a,b] for continuous function f and for almost every point in [a,b] if the function f∈L1([a,b],RN).
For 1≤r<∞, define
‖u‖Lr=(∫T0|u(t)|rdt)1r | (2.1) |
and
‖u‖∞=maxt∈[0,T]|u(t)|. | (2.2) |
Definition 2.5. ([1]) Let 0<α≤1 and 1<p<∞. The fractional derivative space Eα,p0 is defined by closure of C∞0([0,T],RN) with respect to the norm
‖u‖α,p=(∫T0|u(t)|pdt+∫T0|c0Dαtu(t)|pdt)1p. | (2.3) |
Remark 2.2. ([9]) Eα,p0 is the space of functions u∈Lp([0,T],RN) having an α-order Caputo fractional derivative c0Dαtu(t)∈Lp([0,T],RN) and u(0)=u(T)=0.
Lemma 2.2. ([1]) Let 0<α≤1 and 1<p<∞. Eα,p0 is a reflexive and separable Banach space.
Lemma 2.3. ([1]) Assume that 1<p<∞ and α>1p. Then Eα,p0 compactly embedding in C([0,T],RN).
Lemma 2.4. ([1]) Let 0<α≤1 and 1<p<∞. For all u∈Eα,p0, we have
‖u‖Lp≤TαΓ(α+1)‖c0Dαtu‖Lp. | (2.4) |
Moreover, if α>1p and 1p+1q=1, then
‖u‖∞≤Tα−1pΓ(α)((α−1)q+1)1q‖c0Dαtu‖Lp. | (2.5) |
Definition 2.6. ([13]) Assume that X is a Banach space. An operator A:X→X∗ is of type (S)+ if, for any sequence {un} in X, un⇀u and lim supn→+∞⟨A(un),un−u⟩≤0 imply un→u.
Let φ:X→R. A sequence {un}⊂X is called (PS) sequence if the sequence {un} satisfies
φ(un) is bounded, φ′(un)→0. |
Furthermore, if every (PS) sequence {un} has a convergent subsequence in X, then one call that φ satisfies (PS) condition.
Lemma 2.5. ([19]) Assume that X is a Banach space and φ:X→R is Gˆateaux differentiable, lower semi-continuous and bounded from below. Then there exists a sequence {xn} such that
φ(xn)→infXφ,‖φ′(xn)‖∗→0. |
Lemma 2.6. ([17]) Let X be a Banach space, φ∈C1(X,R). Assume φ satisfies the (PS) condition, is even and bounded below, and φ(0)=0. If for any k∈N, there exist a k-dimensional subspace Xk of X and ρk>0 such that supXk∩Spkφ<0, where Sρ={u∈X|‖u‖=ρ}, then at least one of the following conclusions holds.
(ⅰ) There exist a sequence of critical points {uk} satisfying φ(uk)<0 for all k and ‖uk‖→0 as k→∞.
(ⅱ) There exists a constant r>0 such that for any 0<a<r there exists a critical point u such that ‖u‖=a and φ(u)=0.
Remark 2.3. ([17]) Lemma 2.6 implies that there exist a sequence of critical points uk≠0 such that φ(uk)≤0, φ(uk)→0 and ‖uk‖→0 as k→∞.
Now, we establish the variational functional defined on the space Eα,20 with 12<α≤1. We follow the same argument as in [13] where the one-dimensional case N=1 and λ=1 for system (1.1) was investigated. For reader's convenience, we also present the details here. Note that L(t):=∫t0(r(s)/p(s))ds,0<m≤e−L(t)p(t)≤M and q(t)−p(t)≥0 for a.e. t∈[0,T]. Then system (1.1) is equivalent to the system
{−ddt(e−L(t)p(t)(12 0D−ξt(u′(t))+12 tD−ξT(u′(t))))+e−L(t)q(t)u(t)=λe−L(t)∇F(t,u), a.e. t∈[0,T],u(0)=u(T)=0. | (2.6) |
By Lemma 2.1, for every u∈AC([0,T],RN), it is easy to see that system (2.6) is equivalent to the system
{−ddt[e−L(t)p(t)(12 0D−ξ2t(0D−ξ2tu′(t))+12 tD−ξ2T(tD−ξ2Tu′(t)))]+e−L(t)q(t)u(t)=λe−L(t)∇F(t,u), a.e. t∈[0,T],u(0)=u(T)=0, | (2.7) |
where ξ∈[0,1).
By Definition 2.4, we obtain that u∈AC([0,T],RN) is a solution of problem (2.7) if and only if u is a solution of the following system
{−ddt(e−L(t)p(t)(12 0Dα−1t(c0Dαtu(t))−12 tDα−1T(ctDαTu(t))))+e−L(t)q(t)u(t)=λe−L(t)∇F(t,u),u(0)=u(T)=0, | (2.8) |
for a.e. t∈[0,T], where α=1−ξ2∈(12,1]. Hence, the solutions of system (2.8) correspond to the solutions of system (1.1) if u∈AC([0,T],RN).
In this paper, we investigate system (2.8) in the Hilbert space Eα,20 with the corresponding norm
‖u‖=(∫T0e−L(t)p(t)(|c0Dαtu(t)|2+|u(t)|2)dt)12. |
It is easy to see that ‖u‖ is equivalent to ‖u‖α,2 and
m∫T0|c0Dαtu(t)|2dt≤∫T0e−L(t)p(t)|c0Dαtu(t)|2dt≤M∫T0|c0Dαtu(t)|2dt. |
So
‖u‖L2≤Tα√mΓ(α+1)(∫T0e−L(t)p(t)|c0Dαtu(t)|2dt)12, |
and
‖u‖∞≤B‖u‖, | (2.9) |
where
B=T2α−12√mΓ(α)(2α−1)12>0. |
(see [13]).
Lemma 2.7. ([13]) If 12<α≤1, then for every u∈Eα,20, we have
|cos(πα)|‖u‖2≤−∫T0e−L(t)p(t)(c0Dαtu(t),ctDαTu(t))dt+∫T0e−L(t)p(t)|u(t)|2dt≤max{Mm|cos(πα)|,1}‖u‖2. | (2.10) |
We follow the idea in [17] and [18]. We first modify and extend F to an appropriate ˜F defined by
˜F(t,x)=ρ(|x|)F(t,x)+(1−ρ(|x|))M1|x|p1, for all x∈RN, |
where ρ is defined by (1.5).
Lemma 3.1. Let (F0), (f0), (f1) (or (f0)′, (f1)′), (f2) and (f3) be satisfied. Then
(˜F0) ˜F(t,x) is continuously differentiable in x∈RN for a.e. t∈[0,T], measurable in t for every x∈RN, and there exists b∈L1([0,T];R+) such that
|˜F(t,x)|≤a0b(t)+M1|x|p1,|∇˜F(t,x)|≤(1+ρ0)a0b(t)+M1p1|x|p1−1+ρ0M1|x|p1 |
for all x∈RN and a.e. t∈[0,T];
(˜f0) ˜F(t,x)≥M1|x|p1 for all x∈RN and a.e. t∈[0,T];
(˜f1) ˜F(t,x)≤max{M1,M2}(|x|p1+|x|p2) for all x∈RN and a.e. t∈[0,T];
(˜f2) (∇˜F(t,x),x)≤θ˜F(t,x) for all x∈RN and a.e. t∈[0,T], where θ=max{p1,η};
(˜f3) ˜F(t,x)=˜F(t,−x) for all x∈RN and a.e. t∈[0,T].
Proof. We only prove (˜f0), (˜f1) and (˜f2). (˜F0) can be proved by a similar argument by (F0). By the definition of ˜F(t,x), (f0) and (f1) (or (f0)′ and (f1)′), we have
M1|x|p1≤˜F(t,x)=F(t,x)≤M2|x|p2, if |x|≤δ/2, |
˜F(t,x)=M1|x|p1, if |x|>δ, |
˜F(t,x)≤F(t,x)+M1|x|p1≤M1|x|p1+M2|x|p2, if δ/2<|x|≤δ |
and
˜F(t,x)≥ρ(|x|)M1|x|p1+(1−ρ(|x|))M1|x|p1=M1|x|p1, if δ/2<|x|≤δ. |
Hence, (˜f1) holds. Note that
θ˜F(t,x)−(∇˜F(t,x),x)=ρ(|x|)(θF(t,x)−(∇F(t,x),x))+(θ−p1)(1−ρ(|x|))M1|x|p1−|x|ρ′(|x|)(F(t,x)−M1|x|p1). |
It is obvious that the conclusion holds for 0≤|x|≤δ/2 and |x|>δ. If δ/2<|x|≤δ, by using θ≥p1, (f2), (˜f1) and the fact sρ′(s)≤0 for all s∈R, we can get the conclusion (˜f2). Finally, since ρ(|x|) is even for all x∈RN, by (f3) and the definition of ˜F(t,x), it is easy to get (˜f3).
Remark 3.1. From the proof of Lemma 3.1, it is easy to see that (F0), (f0) (or (f0)′) and (f1) (or (f1)′) independently imply (˜F0), (˜f0) and (˜f1), respectively.
Consider the modified system
{−ddt(e−L(t)p(t)(12 0Dα−1t(c0Dαtu(t))−12 tDα−1T(ctDαTu(t))))+e−L(t)q(t)u(t)=λe−L(t)∇˜F(t,u),u(0)=u(T)=0, | (3.1) |
for a.e. t∈[0,T], where α=1−ξ2∈(12,1].
If the equality
∫T0e−L(t)[−12p(t)((c0Dαtu(t),ctDαTv(t))+(ctDαTu(t),c0Dαtv(t)))+p(t)(u(t),v(t))+(q(t)−p(t))(u(t),v(t))−λ(∇˜F(t,u(t)),v(t))]dt=0 |
holds for every v∈Eα,20, then we call u∈Eα,20 is a weak solution of system (3.1).
Define the functional ˜J:Eα,20→R by
˜J(u)=∫T0e−L(t)[12p(t)(−(c0Dαtu(t),ctDαTu(t))+|u(t)|2)+12(q(t)−p(t))|u(t)|2−λ˜F(t,u(t))]dt, for all u∈Eα,20. |
Then (˜F0) and Theorem 6.1 in [9] imply that ˜J∈C1(Eα,20,R), and for every u,v∈Eα,20, we have
⟨˜J′(u),v⟩=∫T0e−L(t)[−12p(t)((c0Dαtu(t),ctDαTv(t))+(ctDαTu(t),c0Dαtv(t)))+p(t)(u(t),v(t))+(q(t)−p(t))(u(t),v(t))−λ(∇˜F(t,u(t)),v(t))]dt. |
Hence, a critical point of ˜J(u) corresponds to a weak solution of problem (3.1).
Let
⟨Au,v⟩:=∫T0e−L(t)[−12p(t)((c0Dαtu(t),ctDαTv(t))+(ctDαTu(t),c0Dαtv(t)))+p(t)(u(t),v(t))+(q(t)−p(t))(u(t),v(t))]dt. |
Lemma 3.2. ([13])
γ1‖u‖2≤⟨Au,u⟩≤γ2‖u‖2,for all u∈Eα,20, | (3.2) |
where γ1=|cos(πα)| and γ2=(max{Mm|cosπα|,1}+maxt∈[0,T](q(t)−p(t))).
Lemma 3.3. Assume that (F0), (f0) and (f1) (or (f0)′ and (f1)′) hold. Then for each λ>0, ˜J is bounded from below on Eα,20 and satisfies (PS) condition.
Proof. By (˜f1), (2.9) and (3.2), we have
˜J(u)=12⟨Au,u⟩−λ∫T0e−L(t)˜F(t,u(t))dt≥γ12‖u‖2−λmax{M1,M2}∫T0e−L(t)(|u(t)|p1+|u(t)|p2)dt≥γ12‖u‖2−λmax{M1,M2}Tmaxt∈[0,T]e−L(t)(‖u‖p1∞+‖u‖p2∞)≥γ12‖u‖2−λmax{M1,M2}Tmaxt∈[0,T]e−L(t)[Bp1‖u‖p1+Bp2‖u‖p2]. |
It follows from 0<p2<p1<2 that
˜J(u)→+∞, as ‖u‖→∞. |
Hence, ˜J is coercive and then is bounded from below. Now we prove that ˜J satisfies the (PS) condition. Assume that {un} is a (PS) sequence of ˜J, that is,
˜J(un) is bounded, ˜J′(un)→0. | (3.3) |
Then by the coercivity of ˜J and (3.3), there exists C0>0 such that ‖un‖≤C0 and then by Lemma 2.3, there exists a subsequence (denoted again by {un}) such that
un⇀u, weakly in Eα,20, | (3.4) |
un→u, a.e. in C([0,T],R). | (3.5) |
Therefore, the boundness of {un} and (3.3) imply that
|⟨˜J′(un),un−u⟩|≤‖˜J′(un)‖(Eα,20)∗‖un−u‖,≤‖˜J′(un)‖(Eα,20)∗(‖un‖+‖u‖)→0, | (3.6) |
where (Eα,20)∗ is the dual space of Eα,20, and (˜F0), (2.9) together with (3.5) imply that
|λ∫T0(∇˜F(t,un(t)),un(t)−u(t))dt|≤λ∫T0|∇˜F(t,un(t))||(un(t)−u(t))|dt≤λ‖un−u‖∞∫T0[(1+ρ0)a0b(t)+M1p1|un(t)|p1−1+ρ0M1|un(t)|p1]dt≤λ‖un−u‖∞[(1+ρ0)a0∫T0b(t)dt+M1p1TBp1−1Cp1−10+M1Tρ0Bp1Cp10]→0. | (3.7) |
Note that
\begin{eqnarray*} \label{eq3.18} \left\langle \widetilde{J}'\left(u_{n}\right), u_{n}-u\right\rangle = \left\langle A u_{n}, u_{n}-u\right\rangle-\lambda \int_{0}^{T} (\nabla\widetilde{F}\left(t, u_{n}(t)\right), u_{n}(t)-u(t))dt. \end{eqnarray*} |
Then (3.6) and (3.7) imply that \lim_{n \rightarrow \infty}\left\langle A u_{n}, u_{n}-u\right\rangle = 0 . Moreover, by (3.4), we have
\lim _{n \rightarrow \infty}\left\langle A u, u_{n}-u\right\rangle = 0. |
Therefore
\lim\limits_{n \rightarrow \infty}\left\langle A u_{n}-A u, u_{n}-u\right\rangle = 0. |
Since A is of type (S)_{+} (see [13]), by Definition 2.6, we obtain u_{n}\rightarrow u in E^{\alpha, 2}_{0} .
Define a Nehari manifold by
\mathcal{N}_\lambda = \{u\in E_0^{\alpha, 2}/\{0\}|\langle\widetilde{J}_\lambda'(u), u\rangle = 0\}. |
Lemma 3.4. Assume that (F_{0}) and (f_{0}) (or (f_{0})' ) hold. For each \lambda > 0 , \widetilde{J}_\lambda has a nontrivial least energy (ground state) weak solution u_\lambda , that is, u_\lambda\in \mathcal{N}_\lambda and \widetilde{J}_\lambda(u_\lambda) = \inf\limits_{\mathcal{N}_\lambda}\widetilde{J}_\lambda . Moreover, the least energy can be estimated as follows
\widetilde{J}_\lambda(u_\lambda)\le G_\lambda: = \frac{{(p_{1}/\gamma_{2})}^{\frac{p_1}{2-p_1}}[\lambda M_1\min\limits_{t\in [0, T]}e^{-L(t)}\int_{0}^{T}|w_0(t)|^{p_1}dt]^{\frac{2}{2-p_1}}(p_1-2)}{2}. |
where w_0 = \frac{w}{\|w\|} , and w = \left(\frac{T}{\pi}\sin\frac{\pi t}{T}, 0, \cdots, 0\right)\in E_0^{\alpha, 2}.
Proof. By Lemma 3.3 and \widetilde{J}\in C^1(E^{\alpha, 2}_{0}, \mathbb{R}) , for each \lambda > 0, Lemma 2.5 implies that there exists some u_{\lambda}\in E^{\alpha, 2}_{0} such that
\begin{eqnarray} \widetilde{J}\left(u_{\lambda}\right) = \inf _{v \in E^{\alpha, 2}_{0}} \widetilde{J}(v)\quad \mbox{and } \tilde{J}'\left(u_{\lambda}\right) = 0. \end{eqnarray} | (3.8) |
By (3.2) and (\widetilde{f}_{0}) , we have
\begin{eqnarray} \widetilde{J}_\lambda(sw_0) & = & \frac{1}{2}\langle A(sw_0), sw_0\rangle-\lambda\int_{0}^{T}e^{-L(t)}\widetilde{F}(t, sw_0(t))dt\\ &\le & \frac{\gamma_2}{2}s^2\|w_0\|^2-\lambda\int_{0}^{T}e^{-L(t)}M_1|sw_0(t)|^{p_1}dt\\ &\le & \frac{\gamma_2}{2}s^2-\lambda M_1\min\limits_{t\in [0, T]}e^{-L(t)}s^{p_1}\int_{0}^{T}|w_0(t)|^{p_1}dt. \end{eqnarray} | (3.9) |
for all s\in [0, \infty) . Define g:[0, +\infty)\to \mathbb{R} by
g(s) = \frac{\gamma_2}{2}s^2-\lambda M_1\min\limits_{t\in [0, T]}e^{-L(t)}s^{p_1}\int_{0}^{T}|w_0(t)|^{p_1}dt. |
Then g(s) achieves its minimum at
s_{0, \lambda} = \left(\frac{p_1\lambda M_1\min\limits_{t\in [0, T]}e^{-L(t)}\int_{0}^{T}|w_0(t)|^{p_1}dt}{\gamma_2}\right)^{\frac{1}{2-p_1}} |
and
g(s_{0, \lambda}) = \frac{{(p_{1}/\gamma_{2})}^{\frac{p_1}{2-p_1}}[\lambda M_1\min\limits_{t\in [0, T]}e^{-L(t)}\int_{0}^{T}|w_0(t)|^{p_1}dt]^{\frac{2}{2-p_1}}(p_1-2)}{2}. |
Note that p_1 < 2 . So g(s_{0, \lambda}) < 0 . Hence, (3.9) implies that
\begin{eqnarray*} \label{eq3.19} \widetilde{J}_\lambda\left(u_{\lambda}\right) = \inf _{v \in E^{\alpha, 2}_{0}} \widetilde{J}_\lambda(v)\le \widetilde{J}_\lambda(s_{0, \lambda}w_0)\le g(s_{0, \lambda}) \lt 0 = \widetilde{J}_\lambda(0) \end{eqnarray*} |
and then u_{\lambda}\not = 0 which together with (3.8) implies that u_\lambda\in \mathcal{N}_\lambda and \widetilde{J}_\lambda(u_\lambda) = \inf\limits_{\mathcal{N}_\lambda}\widetilde{J}_\lambda .
Lemma 3.5. Assume that ({F}_{0}) , ({f}_{1}) and ({f}_{2}) hold. If 0 < \lambda\le\frac{|\cos(\pi\alpha)|}{2 C} , then the following estimates hold
\begin{eqnarray*} \label{eq3.26} \|u_{\lambda}\|^{2-p_{2}}\leq\frac{2\lambda C }{|\cos(\pi\alpha)|}, \quad \|u_{\lambda}\|_{\infty}^{2-p_{2}}\le \frac{2\lambda C B^{2-p_{2}} }{|\cos(\pi\alpha)|}. \end{eqnarray*} |
Proof. It follows from Lemma 3.1, (2.9) and \langle\widetilde{J}'(u_{\lambda}), u_{\lambda}\rangle = 0 that
\begin{eqnarray} &&\int_{0}^{T} e^{-L(t)}\bigg[-p(t)(_{0}^{c} D_{t}^{\alpha} u_{\lambda}(t), \;_{t}^{c} D_{T}^{\alpha} u_{\lambda}(t)) +p(t)(u_{\lambda}(t), u_{\lambda}(t))+(q(t)-p(t))(u_{\lambda}(t), u_{\lambda}(t))\bigg]dt\\ & = & \lambda\int_{0}^{T}e^{-L(t)} (\nabla \widetilde{F}(t, u_{\lambda}(t)), u_{\lambda}(t))dt\\ & \le & \lambda\theta\int_{0}^{T} e^{-L(t)} \widetilde{F}(t, u_{\lambda}(t))dt\\ & \leq & \lambda\theta \max\{M_1, M_2\}\max\limits_{t\in [0, T]}e^{-L(t)}\int_{0}^{T} (|u_{\lambda}(t)|^{p_{1}}+|u_{\lambda}(t)|^{p_{2}})dt\\ & \leq & \lambda \theta\max\{M_1, M_2\}T\max\limits_{t\in [0, T]}e^{-L(t)} (\|u_{\lambda}\|^{p_{1}}_{\infty}+\|u_{\lambda}\|^{p_{2}}_{\infty})\\ & \leq & \lambda \theta \max\{M_1, M_2\}T\max\limits_{t\in [0, T]}e^{-L(t)} \left[B^{p_{1}}\|u_{\lambda}\|^{p_{1}}+B^{p_{2}}\|u_{\lambda}\|^{p_{2}}\right]\\ & \leq & \lambda C (\|u_{\lambda}\|^{p_{1}}+\|u_{\lambda}\|^{p_{2}}). \end{eqnarray} | (3.10) |
We claim that \|u_{\lambda}\|\leq 1 uniformly for all 0 < \lambda\le\frac{|\cos(\pi\alpha)|}{2 C} . Otherwise, we have a sequence of \{\lambda_{n}\le \frac{|\cos(\pi\alpha)|}{2 C}\} such that \|u_{\lambda_{n}}\| > 1 . Thus \|u_{\lambda_{n}}\|^{p_{2}} < \|u_{\lambda_{n}}\|^{p_{1}} since p_{2} < p_{1} < 2. By (2.10) and (3.10), we obtain
\begin{eqnarray} &&\int_{0}^{T} e^{-L(t)}\bigg[-p(t)(_{0}^{c} D_{t}^{\alpha} u_{\lambda_n}(t), \; _{t}^{c} D_{T}^{\alpha} u_{\lambda_n}(t)) +p(t)(u_{\lambda_n}(t), u_{\lambda_n}(t))+(q(t)-p(t))(u_{\lambda_n}(t), u_{\lambda_n}(t))\bigg]dt\\ &&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\geq |\cos(\pi\alpha)|\|u_{\lambda_n}\|^{2}+\int_{0}^{T} e^{-L(t)}(q(t)-p(t))|u_{\lambda_n}(t)|^{2}dt. \end{eqnarray} | (3.11) |
By (3.10) and (3.11), we obtain
\begin{eqnarray*} \label{eq3.22} |\cos(\pi\alpha)|\|u_{\lambda_{n}}\|^{2}+\int_{0}^{T} e^{-L(t)}(q(t)-p(t))|u_{\lambda_{n}}(t)|^{2}dt\leq\lambda_n C (\|u_{\lambda_{n}}\|^{p_{1}}+\|u_{\lambda_{n}}\|^{p_{2}}). \end{eqnarray*} |
Since q(t)-p(t) > 0,
\begin{eqnarray*} \label{eq3.23} |\cos(\pi\alpha)|\|u_{\lambda_{n}}\|^{2}\leq\lambda_n C (\|u_{\lambda_{n}}\|^{p_{1}}+\|u_{\lambda_{n}}\|^{p_{2}}) \leq 2\lambda_n C \|u_{\lambda_{n}}\|^{p_{1}}. \end{eqnarray*} |
Then
\begin{eqnarray*} \label{eq3.24} &&\|u_{\lambda_{n}}\|^{2-p_{1}}\leq\frac{2\lambda_n C}{|\cos(\pi\alpha)|}\le 1, \end{eqnarray*} |
which contradicts with the assumption \|u_{\lambda_{n}}\| > 1. Now, from (3.10) we can get
\begin{eqnarray*} \label{eq3.25} |\cos(\pi\alpha)|\|u_{\lambda}\|^{2}&\leq&\lambda C (\|u_{\lambda}\|^{p_{1}}+\|u_{\lambda}\|^{p_{2}})\nonumber\\ &\leq& 2\lambda C \|u_{\lambda}\|^{p_{2}}. \end{eqnarray*} |
So
\|u_{\lambda}\|^{2-p_{2}}\leq\frac{2\lambda C }{|\cos(\pi\alpha)|}. |
By (2.9), we can obtain
\|u_{\lambda}\|_{\infty}\leq B\|u_{\lambda}\|\le B\left(\frac{2\lambda C }{|\cos(\pi\alpha)|}\right)^{\frac{1}{2-p_{2}}}. |
Observe that, in the proof of Lemma 3.5, (\widetilde{f}_2) is used only in (3.10). If we directly use (\widetilde{F}_0) to rescale (\nabla \widetilde{F}(t, u_{\lambda}(t)), u_{\lambda}(t)) in (3.10). Then the assumption ({f}_2) is not necessary but we have to pay the price that p\in (0, 1) . To be precise, we have the following lemma.
Lemma 3.6. Assume that ({F}_{0}) and (f_{0})' hold. If 0 < \lambda\le\frac{|\cos(\pi\alpha)|}{3C^*} , then the following estimates hold
\|u_{\lambda}\|^{2-p_{1}}\leq\frac{3\lambda C^* }{|\cos(\pi\alpha)|}, \quad \|u_{\lambda}\|_{\infty}^{2-p_{1}}\le \frac{3\lambda C^* B^{2-p_{1}} }{|\cos(\pi\alpha)|}. |
Proof. It follows from ({F}_{0}) , Lemma 3.1, Remark 3.1, (2.9) and \langle\widetilde{J}'(u_{\lambda}), u_{\lambda}\rangle = 0 that
\begin{eqnarray} &&\int_{0}^{T} e^{-L(t)}\bigg[-p(t)(_{0}^{c} D_{t}^{\alpha} u_{\lambda}(t), \;_{t}^{c} D_{T}^{\alpha} u_{\lambda}(t)) +p(t)(u_{\lambda}(t), u_{\lambda}(t))+(q(t)-p(t))(u_{\lambda}(t), u_{\lambda}(t))\bigg]dt\\ & = &\lambda\int_{0}^{T} e^{-L(t)} (\nabla \widetilde{F}(t, u_{\lambda}(t)), u_{\lambda}(t))dt\\ & \le &\lambda\max\limits_{t\in [0, T]}e^{-L(t)}\int_{0}^{T}|\nabla \widetilde{F}(t, u_{\lambda}(t))||u_{\lambda}(t)|dt\\ & \le &\lambda\max\limits_{t\in [0, T]}e^{-L(t)}\int_{0}^{T}\left[(1+\rho_0)a_0b(t)|u_{\lambda}(t)|+M_1p_1|u_{\lambda}(t)|^{p_1}+\rho_0M_1|u_{\lambda}(t)|^{p_1+1}\right]dt\\ &\leq&\lambda \max\limits_{t\in [0, T]}e^{-L(t)} \left[(1+\rho_0)a_0\|u_{\lambda}\|_\infty \int_0^Tb(t)dt +M_1p_1\|u_{\lambda}\|_\infty^{p_1}+\rho_0M_1T\|u_{\lambda}\|_\infty^{p_1+1}\right]\\ &\leq&\lambda \max\limits_{t\in [0, T]}e^{-L(t)} \left[(1+\rho_0)a_0B\|u_{\lambda}\| \int_0^Tb(t)dt +M_1p_1TB^{p_1}\|u_{\lambda}\|^{p_1}+\rho_0M_1TB^{p_1+1}\|u_{\lambda}\|^{p_1+1}\right]\\ &\leq&\lambda C^* (\|u_{\lambda}\|+\|u_{\lambda}\|^{p_{1}}+\|u_{\lambda}\|^{p_{1}+1}). \end{eqnarray} | (3.12) |
We claim that \|u_{\lambda}\|\leq 1 uniformly for all 0 < \lambda\le\frac{|\cos(\pi\alpha)|}{3 C^*} . Otherwise, we have a sequence of \{\lambda_{n}\le \frac{|\cos(\pi\alpha)|}{3 C^*}\} such that \|u_{\lambda_{n}}\| > 1 . Thus \|u_{\lambda_{n}}\|^{p_{1}} < \|u_{\lambda_{n}}\| < \|u_{\lambda_{n}}\|^{p_{1}+1} since p_{1} < 1. By (2.10) and (3.12), we obtain
\begin{eqnarray} &&\int_{0}^{T} e^{-L(t)}\bigg[-p(t)(_{0}^{c} D_{t}^{\alpha} u_{\lambda_n}(t), \; _{t}^{c} D_{T}^{\alpha} u_{\lambda_n}(t)) +p(t)(u_{\lambda_n}(t), u_{\lambda_n}(t))+(q(t)-p(t))(u_{\lambda_n}(t), u_{\lambda_n}(t))\bigg]dt\\ &&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\geq |\cos(\pi\alpha)|\|u_{\lambda_n}\|^{2}+\int_{0}^{T} e^{-L(t)}(q(t)-p(t))|u_{\lambda_n}(t)|^{2}dt. \end{eqnarray} | (3.13) |
By (3.12) and (3.13), we obtain
|\cos(\pi\alpha)|\|u_{\lambda_{n}}\|^{2}+\int_{0}^{T} e^{-L(t)}(q(t)-p(t))|u_{\lambda_{n}}|^{2}dt\leq\lambda_n C^* (\|u_{\lambda}\|+\|u_{\lambda}\|^{p_{1}}+\|u_{\lambda}\|^{p_{1}+1}). |
Since q(t)-p(t) > 0,
|\cos(\pi\alpha)|\|u_{\lambda_{n}}\|^{2}\leq\lambda_n C^* (\|u_{\lambda}\|+\|u_{\lambda}\|^{p_{1}}+\|u_{\lambda}\|^{p_{1}+1}) \leq 3\lambda_n C^* \|u_{\lambda_{n}}\|^{p_{1}+1}. |
Then
\|u_{\lambda_{n}}\|^{1-p_{1}}\leq\frac{3\lambda_n C^*}{|\cos(\pi\alpha)|}\le 1, |
which contradicts with the assumption \|u_{\lambda_{n}}\| > 1. Now, we can get from (3.12) that
|\cos(\pi\alpha)|\|u_{\lambda}\|^{2} \leq \lambda C^* (\|u_{\lambda}\|+\|u_{\lambda}\|^{p_{1}}+\|u_{\lambda}\|^{p_{1}+1})\nonumber\\ \leq 3\lambda C^* \|u_{\lambda}\|^{p_{1}}. |
So
\|u_{\lambda}\|^{2-p_{1}}\leq\frac{3\lambda C^* }{|\cos(\pi\alpha)|}. |
By (2.9), we can obtain
\|u_{\lambda}\|_{\infty}\leq B\|u_{\lambda}\|\le B\left(\frac{3\lambda C^* }{|\cos(\pi\alpha)|}\right)^{\frac{1}{2-p_{1}}}. |
Proof of Theorem 1.1. Since 0 < \lambda\le\min\left\{\frac{|\cos(\pi\alpha)|}{2 C}, \left(\frac{1}{B}\right)^{2-p_{2}}\left(\frac{\delta}{2}\right)^{2-p_2}\frac{|\cos(\pi\alpha)|}{2C}\right\} , Lemma 3.5 implies that
\begin{eqnarray*} \label{eq3.28} \|u_{\lambda}\|_{\infty}\le \frac{\delta}{2}. \end{eqnarray*} |
Therefore, for all 0 < \lambda\le\min\left\{\frac{|\cos(\pi\alpha)|}{2 C}, \left(\frac{1}{B}\right)^{2-p_{2}}\left(\frac{\delta}{2}\right)^{2-p_2}\frac{|\cos(\pi\alpha)|}{2C}\right\}, we have \widetilde{F}(t, u(t)) = F(t, u(t)) and then u_{\lambda} is a nontrivial weak solution of the original problem (1.1). Moreover, Lemma 3.5 implies that \lim_{\lambda\to 0}\|u_\lambda\| = 0 as \lambda\to 0 and
\begin{eqnarray*} \|u_{\lambda}\|^{2-p_{2}}\leq\min\left\{1, \left(\frac{1}{B}\right)^{2-p_{2}}\left(\frac{\delta}{2}\right)^{2-p_2}\right\}, \quad \|u_{\lambda}\|_{\infty}^{2-p_{2}}\le B^{2-p_{2}}\left\{1, \left(\frac{1}{B}\right)^{2-p_{2}}\left(\frac{\delta}{2}\right)^{2-p_2}\right\}. \end{eqnarray*} |
Proof of Theorem 1.2. Note that 0 < \lambda\le\min\left\{\frac{|\cos(\pi\alpha)|}{3 C^*}, \left(\frac{1}{B}\right)^{2-p_{1}}\left(\frac{\delta}{2}\right)^{2-p_1}\frac{|\cos(\pi\alpha)|}{3C^*}\right\} . Similar to the proof of Theorem 1.1, by Lemma 3.6, it is easy to complete the proof.
Proof of Theorem 1.3. By Lemma 3.1 and Lemma 3.3, we obtain that \widetilde{J} satisfies (PS) condition and is even and bounded from below, and \widetilde{J}(0) = 0. Next, we prove that for any k \in \mathbb {N}, there exists a subspace k -dimensional subspace X_{k}\subset E^{\alpha, 2}_{0} and \rho_{k} > 0 such that
\begin{eqnarray*} \label{eq3.29} \sup _{u \in X^{k} \cap S_{\rho_{k}}} \widetilde{J}_{\lambda}(u) \lt 0. \end{eqnarray*} |
In fact, for any k \in \mathbb {N}, assume that X^{k} is any subspace with dimension k in E^{\alpha, 2}_{0} . Then by (2.10) and Lemma 3.1, there exist constants C_1, C_2 > 0 such that
\begin{eqnarray*} \label{eq3.30} \widetilde{J}(u)&\leq&\max \left\{\frac{M}{m|\cos(\pi\alpha)|}, 1\right\}\|u\|^{2}+\frac{1}{2}\int_{0}^{T} e^{-L(t)}(q(t)-p(t))|u(t)|^{2}dt -\lambda\int_{0}^{T} e^{-L(t)}\widetilde{F}(t, u(t))dt\nonumber\\ &\le& \max \left\{\frac{M}{m|\cos(\pi\alpha)|}, 1\right\}\|u\|^{2}+\frac{C_1}{2}\|u\|^{2}_{\infty} -\lambda C_2\int_{0}^{T}\widetilde{F}(t, u(t))dt\nonumber\\ &\leq&\max \left\{\frac{M}{m|\cos(\pi\alpha)|}, 1\right\}\|u\|^{2}+\frac{C_1B^2}{2} \|u\|^{2}-\lambda C_2M_1\int_{0}^{T}|u(t)|^{p_{1}}dt\nonumber\\ &\leq&\left[\max\left\{\frac{M}{m|\cos(\pi\alpha)|}, 1\right\}+\frac{C_1B^2}{2} \right]\|u\|^{2}-\lambda C_2M_1\|u\|_{L^{p_1}}^{p_{1}}. \end{eqnarray*} |
Since all norms on X^{k} are equivalent and p_{1} < 2, for each fixed \lambda > 0 , we can choose \rho_{k} > 0 small enough such that
\begin{eqnarray*} \label{eq3.31} \sup _{u \in X^{k} \cap S_{\rho_{k}}} \widetilde{J}_{\lambda}(u) \lt 0. \end{eqnarray*} |
Thus, by Lemma 2.6 and Remark 2.3. \widetilde{J}_\lambda has a sequence of nonzero critical points \{u^{\lambda}_{n}\}\subset E^{\alpha, 2}_{0} converging to 0 and \widetilde{J}_\lambda(u^{\lambda}_{n})\le 0 . Hence, for each fixed \lambda > 0 , (3.1) has a sequence of weak solutions \{u^{\lambda}_{n}\}\subset E^{\alpha, 2}_{0} with \|u^{\lambda}_{n}\|\rightarrow0 , as n\to \infty . Furthermore, there exists n_0 large enough such that \|u^{\lambda}_{n}\|\le \frac{\delta}{2B} for all n\ge n_0 and then (2.9) implies that \|u^{\lambda}_{n}\|_\infty\le \frac{\delta}{2} for all n\ge n_0 . Thus, \widetilde{F}(t, u(t)) = F(t, u(t)) and then \{u_n^{\lambda}\}_{n_0}^\infty is a sequence of weak solutions of the original problem (1.1) for each fixed \lambda > 0 .
When the nonlinear term F(t, x) is local subquadratic only near the origin with respect to x , system (1.1) with \lambda in some given interval has a ground state weak solution u_\lambda . If the nonlinear term F(t, x) is also locally even near the origin with respect to x , system (1.1) with \lambda > 0 has infinitely many weak solutions \{u_n^\lambda\} .
This project is supported by Yunnan Ten Thousand Talents Plan Young & Elite Talents Project and Candidate Talents Training Fund of Yunnan Province (No: 2017HB016).
The authors declare that they have no conflicts of interest.
[1] |
Kavasseri RG, Seetharaman K (2009) Day-ahead wind speed forecasting using f-ARIMA models. Renew Energ 34: 1388-1393. doi: 10.1016/j.renene.2008.09.006
![]() |
[2] |
Cassola F, Burlando M (2012) Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output. Appl Energ 99: 154-166. doi: 10.1016/j.apenergy.2012.03.054
![]() |
[3] |
Warner TT, Peterson RA, Treadon RE (1997) A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. B Am Meteorol Soc 78: 2599-2618. doi: 10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2
![]() |
[4] |
Franzke CL, O'Kane TJ, Berner J, et al. (2015) Stochastic climate theory and modeling. Wiley Interdis Rev: Climate Change 6: 63-78. doi: 10.1002/wcc.318
![]() |
[5] | Yu Media Group. El Paso, TX. Detailed climate information and monthly weather forecast. Available from https://www.weather-us.com/en/texas-usa/el-paso-climate. |
[6] | Misachi J (2017) What Are The Characteristics Of A Semi-arid Climate Pattern. Available from: https://www.worldatlas.com/articles/what-are-the-characteristics-of-a-semi-arid-climate pattern.html |
[7] | Novlan DJ, Hardiman M, Gill TE (2007) A synoptic climatology of blowing dust events in El Paso, Texas from 1932-2005. In Preprints, 16th Conference on Applied Climatology, American Meteorological Society J |
[8] |
Breshears DD, Kirchner TB, Whicker JJ, et al. (2012) Modeling aeolian transport in response to succession, disturbance and future climate: Dynamic long-term risk assessment for contaminant redistribution. Aeolian Res 3: 445-457. doi: 10.1016/j.aeolia.2011.03.012
![]() |
[9] | Regional Stakeholders Committee (2009) The Paso Del Norte Region, US-Mexico: Self-Evaluation Report, OECD Reviews of Higher Education in Regional and City Development, IMHE. Available from: https://www.oecd.org/unitedstates/44210876.pdf |
[10] |
Baumbach JP, Foster LN, Mueller M, et al. (2008) Seroprevalence of select blood borne pathogens and associated risk behaviors among injection drug users in the Paso del Norte region of the United States-Mexico border. Harm Reduct J 5: 33. doi: 10.1186/1477-7517-5-33
![]() |
[11] |
Lu D, Reddy R, Fitzgerald R, et al. (2008) Sensitivity modeling study for an ozone occurrence during the 1996 Paso del Norte ozone campaign. Int J Environ Res Pub He 5: 181-203. doi: 10.3390/ijerph5040181
![]() |
[12] | Pearson R, Fitzgerald R (2005) Application of a wind model for the El Paso-Juarez airshed. J Air Waste Manage Assoc 51: 669-680. |
[13] | Cai C, Kelly JT, Avise Stockwell WR, et al. (2001) Photochemical modeling in California with two chemical mechanisms: model intercomparison and response to emission reductions. J Air Waste Manage Assoc 61: 559-572. |
[14] | Mahmud S, Wangchuk P, Fitzgerald R, et al. (2016) Study of Photolysis Rate Coefficients to Improve Air Quality Models. B Am Phy Soc 61. |
[15] | Mahmud S (2016) The use of remote sensing technologies and models to study pollutants in the Paso del Norte region. The University of Texas at El Paso. Available from: https://scholarworks.utep.edu/open_etd/685/ |
[16] | Ullwer C, Sprung D, Sucher E, et al. (2019) Global simulations of Cn2 using the Weather Research and Forecast Model WRF and comparison to experimental results. In Laser communication and Propagation through the Atmosphere and Oceans VIII: 111330I |
[17] | Brown MJ, Muller C, Wang W (2001) Costigan, K. Meteorological simulations of boundary layer structure during the 1996 Paso del Norte Ozone Study. Sci Total Environ. 276: 111-133. |
[18] | Michalakes J, Dudhia J, Gill D, et al. (2005) The weather research and forecast model: software architecture and performance. Use High Perform Comput Meteorol 2005: 156-168. |
[19] | Michalakes J, Chen S, Dudhia J, et al. (2001) Development of a next-generation regional weather research and forecast model. Dev Teracomput 2001: 269-276. |
[20] | Skamarock WC, Klemp J B, Dudhia J, et al. (2005) A description of the advanced research WRF version 2 (No. NCAR/TN-468+ STR). National Center for Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div. |
[21] |
Islam MR, Peace A, Medina D, Oraby T (2020) Integer versus Fractional Order SEIR Deterministic and Stochastic Models of Measles. Int J Env Res Pub He 17: 2014. doi: 10.3390/ijerph17062014
![]() |
[22] | Allen DT, Torres VM (2010) TCEQ Flare Study Project, Final Report. The University of Texas at Austin The Center for Energy and Environmental Resources. |
[23] | Wilby RL, Charles SP, Zorita E, et al. (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods. Supporting material of the Intergovernmental Panel on Climate Change, available from the DDC of IPCC TGCIA 27. |
[24] |
Raysoni AU, Sarnat JA, Sarnat SE, et al. (2011) Binational school-based monitoring of traffic-related air pollutants in El Paso, Texas (USA) and Ciudad Jurez, Chihuahua (Mxico). Env Pol 159: 2476-2486. doi: 10.1016/j.envpol.2011.06.024
![]() |
[25] |
Said SE, Dickey D (1984) Testing for Unit Roots in Autoregressive Moving-Average Models with Unknown Order. Biometrika 71: 599-607. doi: 10.1093/biomet/71.3.599
![]() |
[26] |
Phillips PCB, Perron Pierre (1988) Testing for a Unit Root in Time Series Regression. Biometrika 75: 335-346. doi: 10.1093/biomet/75.2.335
![]() |
[27] | Wellner Jon A (2003) Gaussian White Noise Models: Some Results for Monotone Functions. Lecture Notes-Monograph Series 2003: 87-104. |
[28] | Kitagawa G (1994) State Space Modeling of Time Series. The Institute of Statistical Mathematics 43-64. |
[29] |
Grineski SE, Collins TW, McDonald YJ, et al. (2015) Double exposure and the climate gap: changing demographics and extreme heat in Ciudad Jurez, Mexico. Local Env 20: 180-201. doi: 10.1080/13549839.2013.839644
![]() |
[30] | Wilder M, Garfin G, Ganster P, et al. (2013) Climate change and US-Mexico border communities. In Assessment of Climate Change in the Southwest United States, Island Press, Washington DC: 340-384. |
1. | Minggang Xia, Xingyong Zhang, Danyang Kang, Cuiling Liu, Existence and concentration of nontrivial solutions for an elastic beam equation with local nonlinearity, 2021, 7, 2473-6988, 579, 10.3934/math.2022037 |