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Abstract: This paper deals with the stochastic analysis of wind speed based on relative humidity data. 
We propose a stochastic regression technique to estimate the time-varying parameters of wind speed 
in a semi-arid climate region. The modeling of stochastic parameters of atmospheric data with 
consistent properties facilitates prediction with higher precision. In order to compare the estimation, 
we used simulated atmospheric time series and observational time series. The atmospheric time series 
was generated by the Weather Research and Forecasting (WRF) model, whereas the observational time 
series was obtained from the surface weather stations. The time-varying parameters of the model used 
are estimated by Maximum Likelihood process. The results obtained suggest that relative humidity 
exhibits a stochastic effect to predict stationary wind speed data. This type of analysis helps to 
characterize some key meteorological variables, which would be useful in forecasting irregular wind 
speed. 
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1. Introduction  

Forecasting and analyzing of wind speed are always complicated and challenging to weather 
scientists and meteorologists. Weather based and time series based are the two methods to forecast 



157 

AIMS Environmental Science  Volume 7, Issue 2, 156–173. 

wind speed [1]. The former uses hydrodynamic atmospheric models which incorporate physical 
phenomena such as frictional, thermal, and convective effects. The latter uses only historical data 
recorded at the site to build statistical models from which forecasts are derived. In this paper, we apply 
a combination of both approaches to forecast the wind speed based on the relative humidity time series 
data. Forecasting of atmospheric time series with stochastic parameters is very imperative in the field 
of weather research, climate forecasting, and prediction analysis. Currently, NWP models are widely 
used to forecast the weather, as they can capture many statistical properties of data. However, those 
models have some limitations like complex topography, horizontal resolution, initial, and boundary 
condition problem [2,3]. In this study, atmospheric data shows dynamic behavior as they evolve. 
Therefore, stochastic technique is useful in predicting with higher accuracy for those data series [4]. 

The study area for this research, Paso del Norte (PdN) region, has semi-arid climate, which is the 
next driest climate after the desert climate. Also, the rainfall is slightly higher than the desert climate 
and receives precipitation of between 10 and 20 inches annually. It is often considered the intermediate 
state between the desert and humid climates. Semi-arid climates characterize the tropics and sub-
tropics located in the 20o and 30o latitudes. The countries with this type of climate conditions are mostly 
located in Africa, South Asia, some parts of Europe, particularly Spain, Mexico, Southwestern United 
States, and parts of South America [6]. 

PdN region is characterized by a unique geographical location. This region is comprised of three 
counties in southwestern Texas and southern New Mexico of the United States, and the municipality 
of Ciudad Juarez in the northern part of Mexico. The two largest cities, El Paso and Ciudad Juarez are 
separated by a river called the Rio Grande and connected by five land bridges. It is located at the virtual 
midpoint of the 1500-mile border shared by the United States and Mexico; 1700 miles southwest of 
Washington, DC and 970 miles northwest of Mexico City [9]. 

 

Figure 1. Geographical representation of PdN Region [10]. 

The meteorology and topographic factors of the Paso Del Norte region play a significant role on 
the climate. This region is intersected by the Franklin Mountains, containing versatile geographical 
components like The Chihuahuan desert, Rio Grande river, Kilbournes Maar and Franklin mountains 
Volcano peaks. The most well-known feature of the area is the Rio Grande river which passes around 
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the southern end of the Franklin mountains, West of Juarez and El Paso. This binational river, flows 
through three states of United State, which are Texas, New Mexico and Colorado. 

In this semi-arid region, the range of the temperature varies around 88–95 degrees Fahrenheit. 
Fahrenheit in the summer, while the relative humidity varies between 28–50 percent throughout that 
season [5]. We observed that relative humidity is more stochastic compared to temperature over time. 
Due to the dynamic behavior of relative humidity, a stochastic regression model has proposed to analyze 
the wind speed based on relative humidity. In this case we use the asymptotic and bootstrapping 
estimation of the model parameters to explain the dynamic behavior of atmospheric time series. 

Previous studies were conducted to determine air quality standard and meteorological parameters 
using various numerical weather prediction models and air quality models. Based on the 1996 ozone 
study campaign, several research papers were published [11,12]. Global and regional atmospheric 
chemistry models like Community Multistate Air Quality (CMAQ) or Comprehensive Air Quality 
Model Extensions (CAMx) were used with the combination of WRF to calculate the effects of emission 
on global oxidizing capacities and develop ozone reduction strategies [13,14]. The use of remote 
sensing technology and models [15–17] was also one of the methods that applied, but the accuracy and 
efficiency of these models forecast were less correlated with the observational data. However, in this 
study, a statistical approach like linear regression of wind speed was analyzed based on the stochastic 
effect of relative humidity data. A significant feature of stochastic regression is that the consequences 
of the ordinary least square estimator is unbiased and it is efficient to predict the target variable by 
allowing random variation in predictors. Moreover, the bootstrapping and the maximum likelihood 
method are followed to adequately estimate the parameters and to improve the accuracy. We determine 
the adequacy and stationarity of the data by computing the asymptotic error, bootstrapping error, and 
some robust tests, and these are discussed in the later section of this paper. 

This paper is organized as follows: Section 2 describes the weather research and forecast model 
and its required parameters. The techniques of stochastic regression and the estimation of its time- 
varying parameters are also discussed. Section 3 highlights the background of atmospheric data and 
their sources used in this study. Section 4 discusses the descriptive statistics and distribution of data that 
will be useful in estimating the model parameters. In section 5, we perform tests that analyze the 
stationary behavior of data. Section 6 provides the results of models when applied to the data sets. This 
section also includes the suitability of our model regarding the variation of parameters using asymptotic 
errors and bootstrapping errors. Finally, section 7 contains the conclusion and validity of our study. 

2. Methodology 

This section describes a numerical weather prediction model, WRF, and stochastic regression 
model applied to meteorological data sets. We will first discuss some techniques to understand the 
background of our methodology. Later we will study the models and estimation procedures to 
determine the stochastic effects and time-varying parameters of data. 

2.1. WRF model 

WRF or Weather Research Forecast, is a community numerical weather prediction model developed 
by a collaborative partnership of different scientific institutes like National Oceanic and Atmospheric 
Administration (NOAA), National Center for Atmospheric Research (NCAR), and National Center for 
Environmental Protection (NCEP), etc. This model is a next generation mesoscale NWP system which 
is designed for both atmospheric research and operational forecasting applications [18]. It contains two 
computational or dynamical cores known as Advanced Research WRF or ARW and Non-hydrostatic 



159 

AIMS Environmental Science  Volume 7, Issue 2, 156–173. 

Mesoscale Model or NMM. It also has a data assimilation system and a software architecture system, 
which allows users to run in a parallel computation system [19]. 

WRF allows users and researchers to create simulation reflections of either real data (observational, 
analysis) or idealized conditions. This model provides forecasting a strong and flexible platform while 
offering many developments in physics, numerical analysis, and data assimilation by the user and 
researcher from around the world [20]. Many organizations, including but not limited to the National 
Weather Service and The National Severe Storm Laboratory, use the WRF model to predict and 
forecast weather at different scales. Furthermore, this model has created a large worldwide community 
of users, which includes members from more than 150 countries and expanding. To analyze any 
atmospheric event, first, we need to choose the initial condition from any external meteorological data 
source. We have selected the analysis data of the Global Forecast System which, is a weather forecast 
model produced by the National Center for Environmental Prediction. The Grid/Scale resolution of the 
data sets is 0.5-degree domain. The details of the WRF simulation are given below in Table 1. 

Table 1. Description of the WRF model. 

Parameter Description 
Period May–July 2017 
Initial Condition Meteorology GFS-ANL 0.5 degree 
 Vertical levels/Eta Levels 34 
Horizontal Grids 172 x 172 
Grid resolution 10, 3, 1 
Time Steps 180s, 180s, 180s  
Microphysics WSM or WRF single moment 
Planetary Boundary layer YSU (Yonsei University)  
Cumulus Parametrization Kain-Fritsch scheme  
Shortwave and Longwave RRTM Longwave Scheme 
Land Surface Noah Land surface Scheme 
Surface Layer Option Monin Obukhov Similarity Scheme 
Projection Lambert 
Boundary Conditions Meteorology GFS-ANL 0.5 degree 

We used three model domains with two-way nesting condition (Figure 1). The outermost domain, 
D01, covers the southwestern part of the United States and Mexico, while intermediate domain, D02, 
is focused on the southwestern part of Texas, Northern part of Mexico and some lower part of New 
Mexico state. The smallest domain, which is denoted by D03, is focused on our research area of interest 
which is The Paso Del Norte region, comprised of El Paso city, some of the counties from New Mexico 
State and Juarez city in Mexico. We executed the simulations for the 36-hour interval run, where first 
12 hours were the spin-up or warm-up run, and the next 24 hours were our simulation day. 

WRF version 3.9.1 was used for the simulation with ARW (Advance Research Wrf) core. Grid 
nudging was switched on for every domain and the simulation was restarted every 1440 minutes, which 
is 24 hours. 
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Figure 2. Three model domain with the grid spacing of 10 km, 3 km and 1 km respectively 

2.2. Stochastic regression (SR) 

Stochastic regression is a technique for estimating the probability distribution of potential outcomes 
by allowing for random variation in input variables [21]. In this study, we use SR model to forecast the 
wind speed (yt) of atmosphere based on the relative humidity (zt) data. So the relative humidity is 
considered as a stochastic regressor in this model. An advantage of stochastic regressor is that the 
consequences of ordinary least square estimator is unbiased and it is efficient to predict the target 
variable. We now define the SR model as follows:  

tttt vzy ++= βα  (1) 

where α is a fixed constant, βt is a stochastic regression coefficient, and vt is a white noise with variance 
σ2 [28]. The distribution of estimators β̂t depends on the distribution of vt and zt. To estimate the 
stochastic regression term βt, we use a first order autoregression as follows: 

 (2) 

where b is a constant, and ωt is a white noise with variance 𝜎𝜎2. The both noise terms, vt and ωt in the 
SR model are considered as uncorrelated. Our approach is to estimate the likelihood of parameters φ, 
α, b, 𝜎𝜎𝑤𝑤, 𝜎𝜎𝑣𝑣 and to compare the estimated asymptotic standard errors and bootstrapping errors of each 
estimation. 

In order to estimate the time-varying parameters in the SR model, we define Eq 1and Eq 2 as a 
state space model [29]. At this point, Eq 1 is considered as an observation equation and Eq 2 is 
considered as a state equation, where  

(𝛽𝛽𝑣𝑣 − 𝑏𝑏) = 𝜙𝜙(𝛽𝛽𝑡𝑡−1) + 𝜔𝜔𝑡𝑡        𝛽𝛽0~𝑁𝑁𝑝𝑝(𝜇𝜇𝑜𝑜, 0)   (3) 

Since the observations contain noises and the systems are continuously changing, we use the 
filtering technique to estimate the unknown variables by following three steps: forecasting, updating, 



161 

AIMS Environmental Science  Volume 7, Issue 2, 156–173. 

and parameter estimation. At the first step, we forecast the unobserved state vector βt using the state 
Eq 2, where the predicted state estimators𝛽𝛽𝑡𝑡−1 = 𝐸𝐸(𝛽𝛽𝑡𝑡|𝑦𝑦1, … . . 𝑦𝑦𝑡𝑡−1). We update the results while we 
have a new observation of yt at time t. The prediction errors zt of the likelihood function are computed 
as follows: 

𝑧𝑧𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝐸𝐸(𝑦𝑦𝑡𝑡|𝑦𝑦1, … . ,𝑦𝑦𝑡𝑡−1) = 𝑦𝑦𝑡𝑡 − 𝑧𝑧𝑡𝑡𝛽𝛽𝑡𝑡𝑡𝑡−1 − 1                  (4) 

Now we consider the corresponding error covariance matrix of prediction errors (innovation covari- 
ances) ∑ = 𝑧𝑧𝑡𝑡𝑀𝑀𝑡𝑡

𝑡𝑡−1 𝑍𝑍𝑡𝑡 + 𝜎𝜎𝑣𝑣2𝑡𝑡 , where 𝑀𝑀𝑡𝑡
𝑡𝑡−1is the variance-covariance matrix of state estimators. The  

form of Kalman filter is used in this process as follows: 

𝐾𝐾𝑡𝑡 = [𝜙𝜙𝑀𝑀𝑡𝑡
𝑡𝑡−1𝑧𝑧𝑡𝑡′]�

−1

𝑡𝑡
 (5) 

The Kalman filter is an efficient recursive filter that estimates the internal state of a linear dynamic 
system from a series of noisy measurements. The advantage of Kalman filter is that it specifies how to 
update the filter from 𝛽𝛽𝑡𝑡−1 to 𝛽𝛽𝑡𝑡, once a new observation 𝑦𝑦𝑡𝑡is obtained, without reprocessing the 
entire dataset 𝑦𝑦1, 𝑦𝑦2, … ,𝑦𝑦𝑡𝑡  For a detail of Kalman filtering, the reader is referred to the reference 
in [21]. We then update the stochastic regression effect using the Kalman filter as follows 

𝛽𝛽𝑡𝑡+1𝑡𝑡 = 𝜎𝜎𝛽𝛽𝑡𝑡𝑡𝑡−1 + (1 − 𝜙𝜙)𝛽𝛽 + 𝐾𝐾𝑡𝑡𝜖𝜖𝑡𝑡 (6)  

We also use the Kalman filter to measure the estimates precision of filter error covariance matrix as: 

𝑀𝑀𝑡𝑡+1
𝑡𝑡 = 𝜙𝜙𝑀𝑀𝑡𝑡

𝑡𝑡−1𝜙𝜙′ + 𝛩𝛩𝜎𝜎𝜔𝜔2𝛩𝛩′ − 𝐾𝐾𝑡𝑡�𝐾𝐾𝑡𝑡′
𝑡𝑡

 (7) 

In this case, Θ is a coefficient matrix of 𝜎𝜎𝜔𝜔2 . In order to estimate the parameters, we initialize the 
procedure by selecting initial values for the model parameters as Θ0 = (𝜇𝜇0,∑ ,𝜙𝜙,𝜎𝜎𝑤𝑤 ,𝜎𝜎𝑣𝑣)0

𝑡𝑡 .So the 
model coefficients and the correlation structure of the model are uniquely parameterized as follows 
𝜙𝜙 = 𝜙𝜙(Θ0), (1 − 𝜙𝜙)𝑏𝑏(Θ0),𝜎𝜎𝜔𝜔2 =  𝜎𝜎𝜔𝜔2(Θ0),𝜎𝜎𝑣𝑣2 = 𝜎𝜎𝑣𝑣2( Θ0) .Then the parameters                  
 (Θ = (𝜙𝜙,𝛼𝛼, 𝑏𝑏,𝜎𝜎𝑤𝑤 ,𝜎𝜎𝑣𝑣)𝑡𝑡are estimated by maximizing the expected likelihood as follows: 

𝑙𝑙𝑙𝑙𝐿𝐿𝑦𝑦(𝛩𝛩) = −
1
2
∑[ln |∑(𝛩𝛩) | + 𝜖𝜖𝑡𝑡(𝛩𝛩)′∑(𝛩𝛩)−1𝜖𝜖𝑡𝑡(𝛩𝛩)] (8) 

Using the MLE, we estimate the model parameters with asymptotic standard errors. Since the datasets 
do not behave exactly as Gaussian distribution, we also use the bootstrapping technique by resampling 
the data to obtain better approximation. In this case, since the innovations 𝜖𝜖𝑡𝑡 are uncorrelated, and 

when we resample the data, the innovations are standardized as.𝑒𝑒𝑡𝑡= ∑ 𝜖𝜖𝑡𝑡
−12
𝑡𝑡 So we obtain the MLE from 

Eq 8 as follows: 

𝑙𝑙𝑙𝑙𝐿𝐿𝑦𝑦(𝛩𝛩) = −
1
2
∑[ln |∑(𝛩𝛩) | + 𝑒𝑒𝑡𝑡(𝛩𝛩)′𝑒𝑒𝑡𝑡(𝛩𝛩)] (9) 
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3. Data Background 

Surface observational data is required to validate the WRF model. For this study, different surface 
stations operated by TCEQ have been used. TCEQ, with the help of the Environmental Protection 
Agency, set up a grid of observational data collection stations throughout the state of Texas (USA), 
these stations are known as Continuous Ambient Monitoring Station, or CAMS, are used for measuring 
both air and water pollutant across the state of Texas. In addition to measuring air pollutants, CAMS 
also contain instruments to measure local meteorological parameters like outdoor temperature, wind 
speed, wind direction, relative humidity, dew point temperature, solar radiation, precipitation, etc. [22]. 
CAMS contains equipment that measures ambient gaseous materials and particulate matter, ambient 
concentration of ozone, carbon monoxide and oxides of nitrogen. Particulate matter is measured in two 
classifications: PM10 (less than 10 microns in aerodynamic diameter) and PM2.5 (particles with an 
aerodynamic diameter of 2.5 microns or less). 

 

Figure 3. Location of the observation ground station. 

Table 2. Information about observational site. 

Site characteristics Description Description 
Site name UTEP Chamizal 
EPA site number 481410037 481310044 
Sites coordinates 31.7628 N, −106.501W 31.7656 N, −106.455 W 
Elevation 1158 m 1122.0 m 
CAMS 0012, 0125, 0151 0041, 0126, 3001 
Activation date January 01, 1981 April 01, 1988 
County El Paso El Paso 
City El Paso El Paso 
Zip 79902 79905 
Sampler type (Meteorological) Preci., RH, Temp, Wind Preci., RH, Temp, Wind 
Sampler type (Pollutant) O3, NOx, CO, PM2.5 O3, NOx, CO, PM2.5 

For downscaling the WRF simulation to compare with the observational data site, several methods 
have been taken. We used statistical downscaling, which uses observed relationships between variables 
at different spatial scales to predict regional-scale model fields from coarser data [23]. Another 
approach we applied to downscaling WRF specifically for this region is the high-resolution domain, 
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where the smaller domain consists of 1km resolution. Use of Ncar Command Language (NCL) to 
convert the nearest grid point to specific latitude and longitude also applied. 

We specifically choose two different locations around the Paso del Norte. These areas are 
geologically unalike, and contain divergent environmental significance. Relevant information is shown 
in Table 2 [24].  

4. Descriptive statistics of atmospheric data 

We analyzed the dynamic behavior of atmospheric data as they evolve over time. The analyses 
were performed by MATLAB and R programs. We used 432 data points on an hourly basis for each 
observational and simulated datasets used in this study. The descriptive statistics of the datasets are 
as follows. 

Table 3. Descriptive statistics of atmospheric data from UTEP source. 

Statistics WS (obs) WS (Sim) RH (obs) RH (Sim) 
Mean 7.3016 6.0754 18.8227 25.3035 
Std. dev 3.1895 3.1165 10.5697 12.8907 
Minimum 0.6000 0.3200 3.9000 6.3000 
Maximum 17.6000 16.69000 52.6000 68.2400 
Skewness 0.4756 0.7484 1.1478 0.9489 
Kurtosis 3.2673 3.3611 3.7166 3.1938 
Index of agreement 0.50 0.50 0.60 0.60 
Mean bias error −1.22 −1.22 6.46 6.46 

Table 4. Descriptive statistics of atmospheric data from Chamizal source. 

Statistics WS (obs) WS (Sim) RH (obs) RH (Sim) 
Mean 8.0276 7.9014 17.5429 25.6249 
Std. dev 4.8007 4.0854 8.8070 12.7455 
Minimum 0.4000 0.4200 4.2000 5.9800 
Maximum 28.0000 19.0100 46.000 66.3800 
Skewness 0.9080 0.4245 1.0368 0.9882 
Kurtosis 4.2161 2.2079 3.5049 3.6249 
Index of agreement 0.62 0.62 0.40 0.40 
Mean bias error −0.172 −0.172 8.06 8.06 

The mean, standard deviation, minimum, and maximum values of data sets are introduced as 
summary measures of the location and variability of data distribution (see Tables 3 and 4). The 
skewness and kurtosis give the summary information about the shape of a distribution. As we see that 
the skewnesses vary from 0.4 to 1.14, which supports the non-normality distribution of data. The 
kurtosis measures the attribute of tailedness of distribution. Tables 3 and 4 show that most of the 
kurtosis of datasets is greater than 3.0, meaning that they have leptokurtic distribution, i.e., more 
peaked than a normal distribution with longer tails. Furthermore, we compute the index of agreement 
and bias error to see how much those predictions and real values matched in between them. As we can 
see from those two tables, the index of agreement of Wind speed and Relative humidity varies between 
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0.4 and 0.6, which indicates better resemblance. Mean bias error for relative humidity is higher than 
wind speed in both locations. 

4.1. Stationarity 

To analyze the atmospheric data used in this paper, we test their stationary behavior by using unit 
root test. In a stationary time series, the second-order behavior of data, namely mean, variance, and 
covariance does not change with time. A unit root test tests whether an autoregressive process is a 
random walk as opposed to a stationary process. We computed the test statistics and corresponding p-
values of atmospheric data by using two powerful unit root tests, namely the Augmented Dickey Fuller 
(ADF) test and the Phillips-Perron (PP) test). 

4.1.1 ADF test 

To test the stationarity of data, we first use the ADF test. The test of Dickey Fuller (DF) checks 
the null hypothesis that a time series yt is a unit root against the alternative that it is stationary, assuming 
that the dynamics in the data have an Autoregressive Moving Average (ARMA) structure [25]. The 
ADF test is an augmented version of the DF test, where the t-statistic is a negative number. The more 
negative it is, the stronger the rejection of the hypothesis that there is a unit root at some significance 
level. The computed t-statistics and p-values of this test are given below: 

Assumption: Null hypothesis (H0): There is a unit root for the time series. Alternative hypothesis 
(Ha): There is no unit root for the time series, i.e., the series is stationary. 

Table 5. ADF t-statistics test. 

Variables UTEP source            Chamizal source 
 Test statistics p-value Test statistics p-value 
Wind speed (obs) −4.84 0.01 −4.25 0.01 
Wind speed (sim) −4.67 0.01 −4.41 0.01 
Rel. humidity (obs) −6.21 0.01 −5.89 0.01 
Rel. humidity (sim) −6.35 0.01 −5.26 0.01 

The p-values suggest that whether the null hypothesis is acceptable or not, based on the 
significance level. In Table 5, the computed p-value is lower than the significance level α = 0.05. We 
reject the null hypothesis H0 for all atmospheric time series used in this paper and accept the alternative 
hypothesis Ha. Thus the data under study are all stationary time series. 

4.1.2. PP test 

The PP test is an alternative method to correct the serial correlation in unit root testing. It basically 
uses the standard ADF test, but modifies the t-ratio so that the serial correlation does not affect the 
asymptotic distribution of the test statistic. In particular, where the ADF test uses a parametric auto-
regression to approximate the ARMA structure of the error in the test regression, the PP test ignores 
any serial correlation in the test regression. For a detail of PP test, the reader is referred to the reference 
in [26]. 
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Table 6. PP t-statistics test. 

Variables UTEP source  Chamizal source 
 Test statistics p-value Test statistics p-value 
Wind speed (obs) −68.74 0.01 −56.78 0.01 
Wind speed (sim) −60.21 0.01 −49.30 0.01 
Rel. humidity (obs) −43.63 0.01 −35.56 0.01 
Rel. humidity (sim) −47.57 0.01 −31.24 0.01 

Assumption: Null hypothesis (H0): There is a unit root for the time series. Alternative hypothesis 
(Ha): There is no unit root for the time series, i.e., the series is stationary. Since the computed p-values 
in Table 6 is lower than the significance level α = 0.05, we reject the null hypothesis H0 that has a unit 
root. We therefore accept the alternative hypothesis Ha that the data used in this work are all stationary 
time series. 

4.2. Autocorrelation of data 

In this subsection, we present the autocorrelation (ACF) of atmospheric data used in this paper. 
The autocorrelation function gives a complete characterization of a stationary time series. The shape 
of the ACF shows how the autocorrelations behave as the distance between observations increases. 
Figure 4, we see that the autocorrelations follow an oscillation with gradual damping, meaning that 
they oscillate in sign but decrease in magnitude. Eventually, the autocorrelations goes to zero, which 
confirms that the data are stationary at some specific lags. 

 
(a) Wind speed (UTEP).                  (b) Wind speed simulated (UTEP). 

 
(c) R.Humidity (UTEP).                 (d) R.Humidity Simulated (UTEP). 
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(e) Wind speed (Chamizal).          (f) Wind speed simulated (Chamizal). 

 
(g) R. Humidity (Chamizal).              (h) R. Humidity simulated (Chamizal). 

Figure 4. Autocorrelation of atmospheric data. 

4.3. Q-Q plot analysis 

We now present the Quantile-Quantile (Q-Q) plot of wind speed and relative humidity data. A Q-
Q plot is used to compare the shapes of data distributions, providing a graphical view of how properties 
such as location, scale, and skewness are similar or different with the normal distributions. In Figure 
5, we see that the data are not distributed as fully Normal, but slightly left or right skewed. 
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(a) Wind Speed (UTEP).             (b) Wind Speed simulated (UTEP). 

 
(c) R. Humidity (UTEP).           (d) R. Humidity simulated (UTEP). 

 
(e) Wind speed (Chamizal).          (f) Wind speed simulated (Chamizal). 
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(g) R. Humidity (Chamizal).               (h)R. Humidity simulated (Chamizal). 

Figure 5. Normal Q-Q plot of atmospheric data. 

5. Results and discussion 

This section presents the results and analyzes of parameter estimation for two meteorological 
components, namely wind speed and relative humidity. In order to estimate the time-varying 
parameters, we used maximum likelihood estimation in the stochastic regression model. We compared 
the noise terms in the model in two ways, i.e., asymptotic and bootstrapping approaches. The 
estimation procedure has been performed by R statistical program. 

We analyzed 432 data points for each dataset obtained from two sources, such as UTEP and 
Chamizal CAMS. Because the datasets were not large, we used the bootstrapping technique to estimate 
the errors of fitted model. An advantage of bootstrapping is that it does not require any distributional 
assumptions, such as normally distributed errors. The time-varying parameters in Eqs 1 and 2 were 
initialized in order to observe the stochastic regression effect during a set of wind speed for relative 
humidity in the atmosphere. We set the initial values as 𝜎𝜎0 = 0.02, 𝜙𝜙 = 0.80, 𝛼𝛼 = −0.065, b = 0.75, 
𝜎𝜎𝜔𝜔= 0.09, and 𝜎𝜎𝑦𝑦 = 1.50. The bootstrapping has been replicated 500 times with relative tolerance 
0.001 to obtain the convergence of numerical optimization. 

Table 7. Parameter estimation of Experimental Data from UTEP source. 

Parameter Estimate Asymptotic error Bootstrapping error 
φ 0.903 0.022 0.009 
α 6.993 0.517 0.961 
b −0.008 0.059 0.073 
σω 0.093 0.006 0.008 
σv 0.944 0.095 0.394 

Tables 7–10 summarize the estimation of parameters 𝜙𝜙, 𝛼𝛼 b, 𝜎𝜎𝜔𝜔, 𝜎𝜎𝑦𝑦, asymptotic standard errors, 
and bootstrapping standard errors for the data sets from UTEP and Chamizal CAMS sources. We see 
that the variations of time-varying parameters are very low, so the model has good predictive ability. 
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At this point, we can say that estimates are close to the true parameters. In these tables, the asymptotic 
standard errors are typically much smaller than the bootstrapping errors. For most of the cases, the 
bootstrapped standard errors are at least 40% larger than the corresponding asymptotic value, which 
shows our stochastic regression model fits well into the atmospheric data. 

Table 8. Parameter estimation of simulated data from UTEP source. 

Parameter Estimate Asymptotic error Bootstrapping error 
φ 0.912 0.021 0.007 
α 6.168 0.544 0.677 
b −0.009 0.046 0.037 
σω 0.067 0.004 0.006 
σv 0.712 0.086 0.341 

Table 9. Parameter estimation of experimental data from chamizal source 

Parameter Estimate Asymptotic error Bootstrapping error 
φ 0.905 0.024 0.019 
α 10.664 0.874 1.376 
b −0.194 0.106 0.352 
σω 0.147 0.009 0.007 
σv 1.196 0.136 0.513 

Table 10. Parameter estimation of simulated data from chamizal source 

Parameter Estimate Asymptotic error Bootstrapping error 
φ 0.933 0.021 0.018 
α 7.850 0.742 1.343 
b −0.019 0.072 0.302 
σω 0.076 0.005 0.007 
σv 0.628 0.114 0.528 

 

Figure 6. Joint and marginal bootstrap distributions for experimental data from UTEP source. 
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To explain the stochastic concepts of our model with data, we present the plot of joint bootstrap 
distribution of estimated parameters 𝜙𝜙 and 𝜎𝜎𝜔𝜔 (see Figures 6–9). We see that the parameter σˆw is 
clearly away from zero, which suggests that σˆw is a stochastic regression parameter. However, we 
notice that when σˆw increases, then ϕ reduces over the time. So the parameter σw is bigger than zero, 
corresponds to ϕˆ ≈ 0. At this point, the state dynamics of Eq 2 are followed as βt = b + ωt. In this case, 
when β b, the dynamics of the data have fixed regression effect. However, Tables 7–10 represent that 
σw is greater than b, which suggests that the system is stochastic. Thus we conclude that the dynamics 
of the atmospheric data evolve over the time and follow a stochastic regression effect of wind speed 
based on relative humidity. 

 

Figure 7. Joint and marginal bootstrap distributions for simulated data from UTEP source. 

 

Figure 8. Joint and marginal bootstrap distributions for experimental data from chamizal 
CAMs source. 
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Figure 9. Joint and marginal bootstrap distributions for simulated data from chamizal 
CAMs source. 

6. Conclusion 

In this study, we used the stochastic regression technique to analyze meteorological components 
like wind speed and relative humidity in the Paso del Norte region. This region is very crucial for the 
geographical location, as it is comprised of three counties in southwestern Texas and southern New 
Mexico of the United States, and the municipality of Ciudad Juarez in Mexico. Since the region is 
closer to the border between the United States and Mexico, its weather and climates are mostly 
influenced by the city of Juarez and other cities of Mexico [30,31]. We notice that relative humidity in 
this region varies a lot throughout the year among other meteorological components. For example, the 
range of the temperature is around 88–95 degrees Fahrenheit in the summer, while the relative humidity 
varies between 28–50 percent throughout that season. We used four data sets from two different 
locations, namely UTEP and Chamizal CAMS in the summer season. Observational time series data 
were collected from those surface stations, and simulated time series data were obtained using WRF 
model. 

We used some robust tests to analyze the stationary behavior of data (see section 4.1). Results of 
these tests suggest that the data is stationary, meaning that their second-order behavior-e.g., mean, 
variance, and covariance do not change with time. We also noticed that the sample atmospheric data is 
not distributed as Normal distribution (see section 4). So we applied both asymptotic and bootstrapping 
estimation of the model parameters since the bootstrapping provides better approximation accuracy 
than the asymptotic distribution. Our results show that the errors of estimated model parameters are 
very low; hence the estimates are close to the actual parameters. We test our claim that the system is 
stochastic (see subsection 4.1), and the maximum likelihood estimation converges well into the data 
sets studied here. We, therefore, conclude that the dynamics of the wind speed evolve over time with 
a stochastic regression effect of relative humidity in the region. 
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