Citation: Bashir Ahmad, Madeaha Alghanmi, Sotiris K. Ntouyas, Ahmed Alsaedi. A study of fractional differential equations and inclusions involving generalized Caputo-type derivative equipped with generalized fractional integral boundary conditions[J]. AIMS Mathematics, 2019, 4(1): 26-42. doi: 10.3934/Math.2019.1.26
[1] | N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A, 268 (2000), 298-305. |
[2] | N. Laskin, Fractals and quantum mechanics, Chaos, 10 (2000), 780-790. |
[3] | B. N. N. Achar, B. T. Yale, J. W. Hanneken, Time fractional Schr\"odinger equation revisited, Adv. Math. Phys., 2018 (2013), 1-11. |
[4] | D. Baleanu, G. C. Wu, S. D. Zeng, Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations, Chaos Soliton. Fract., 102 (2017), 99-105. doi: 10.1016/j.chaos.2017.02.007 |
[5] | G. C. Wu, D. Baleanu, Z. G. Deng, et al. Lattice fractional diffusion equation in terms of a Riesz-Caputo difference, Physica A-statistical Mechanics and Its Applications, 438 (2015), 335-339. doi: 10.1016/j.physa.2015.06.024 |
[6] | U. N. Katugampola, New Approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865. |
[7] | I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999. |
[8] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Vol. 204, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006. |
[9] | B. Ahmad, A. Alsaedi, S. K. Ntouyas, et al. Hadamard-type fractional differential equations, inclusions and inequalities, Springer, Cham, 2017. |
[10] | M. Benchohra, J. Henderson, S. K. Ntouyas, et al. Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., 338 (2008), 1340-1350. doi: 10.1016/j.jmaa.2007.06.021 |
[11] | J. R. Wang, Y. Zhang, Analysis of fractional order differential coupled systems, Math. Methods Appl. Sci., 38 (2015), 3322-3338. doi: 10.1002/mma.3298 |
[12] | B. Ahmad, S. K. Ntouyas, J. Tariboon, A study of mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions via endpoint theory, Appl. Math. Lett., 52 (2016), 9-14. doi: 10.1016/j.aml.2015.08.002 |
[13] | B. Ahmad, R. Luca, Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions, Chaos Soliton. Fract., 104 (2017), 378-388. doi: 10.1016/j.chaos.2017.08.035 |
[14] | Z. Y. Gao, J. R. Wang, Y. Zhou, Analysis of a class of fractional nonlinear multidelay differential systems, Discrete Dyn. Nat. Soc., 2017 (2017), 1-15. |
[15] | B. Ahmad, S. K. Ntouyas, Existence results for fractional differential inclusions with Erdelyi-Kober fractional integral conditions, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat., 25 (2017), 5-24. |
[16] | M. Shabibi, Sh. Rezapour, S. M. Vaezpour, A singular fractional integro-differential equation, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 79 (2017), 109-118. |
[17] | M. Xu, Z. Han, Positive solutions for integral boundary value problem of two-term fractional differential equations, Bound. Value Probl., 2018 (2018), 100. |
[18] | J. Henderson, R. Luca, Positive solutions for a system of coupled fractional boundary value problems, Lith. Math. J., 58 (2018), 15-32. doi: 10.1007/s10986-018-9385-4 |
[19] | R. Almeida, A. B. Malinowska, T. Odzijewicz, Fractional differential equations with dependence on the Caputo-Katugampola derivative, J. Comput. Nonlinear Dynam., 11 (2016), 61017. |
[20] | B. Ahmad, M. Alghanmi, S. K. Ntouyas, et al. Fractional differential equations involving generalized derivative with Stieltjes and fractional integral boundary conditions, Appl. Math. Lett., 84 (2018), 111-117. doi: 10.1016/j.aml.2018.04.024 |
[21] | U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1-15. |
[22] | F. Jarad, T. Abdeljawad, D. Baleanu, On the generalized fractional derivatives and their caputo modification, J. Nonlinear Sci. Appl., 10 (2017), 2607-2619. doi: 10.22436/jnsa.010.05.27 |
[23] | A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003. |
[24] | D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Am. Math. Soc., 20 (1969), 485-464. |
[25] | K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992. |
[26] | A. Lasota, Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 13 (1965), 781-786. |
[27] | M. Kisielewicz, Stochastic Differential Inclusions and Applications. Springer Optimization and Its Applications, Vol. 80, Springer, New York, 2013. |
[28] | H. Covitz and S. B. Nadler Jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5-11. doi: 10.1007/BF02771543 |
[29] | C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Vol. 580, Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 1977. |