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1. Introduction

We investigate a new class of boundary value problems for generalized Caputo-type fractional
differential equations and inclusions supplemented with Katugampola type generalized fractional
integral boundary conditions. Precisely, we study the following problems:

ρ
c Dα

0+y(t) = f (t, y(t)), t ∈ J := [0,T ],

y(T ) =

m∑
i=1

σi
ρIβ0+y(ηi) + κ, δy(0) = 0, ηi ∈ (0,T ),

(1.1)

and
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
ρ
c Dα

0+y(t) ∈ F(t, y(t)), t ∈ J := [0,T ],

y(T ) =

m∑
i=1

σi
ρIβ0+y(ηi) + κ, δy(0) = 0, ηi ∈ (0,T ),

(1.2)

where ρ
c Dα

0+ denotes the generalized Caputo-type fractional derivative of order 1 < α ≤ 2, ρ > 0, ρIβ0+ is
the Katugampola type fractional integral of order β > 0, ρ > 0, f : J ×R→ R is a continuous function,
σi ∈ R, i = 1, 2, . . . ,m, κ ∈ R, δ = t1−ρ d

dt , and F : J × R → P(R) is a multivalued function (P(R) is the
family of all nonempty subjects of R).

Here we emphasize that the problem considered in the present paper is motivated by Laskin’s
work [1] on the generalization of the Feynman and Wiener path integrals in the context of fractional
quantum mechanics and fractional statistical mechanics. One can find more details in the
articles [2, 3]. It is expected that the results obtained in this paper will provide more leverage in
dealing with Feynman and Wiener path type integrals involving an index like ρ > 0 in (1.1), instead of
a fixed choice ρ = 1 (Caputo fractional derivative case). Moreover, chaos for a fractional order
differential equation involving two parameters (α and ρ > 0) becomes more complicated than the one
containing Caputo fractional derivative of order α (generalized Caputo-type fractional derivative with
ρ = 1); one can find more details in [4, 5]. It is worthwhile to notice that Katugampola fractional
integral unifies the Riemann-Liouville and Hadamard integrals into a single integral [6]. Thus, our
results are more general in the context of integral boundary conditions.

The topic of fractional-order differential equations and inclusions attracted significant attention in
recent years and several results on fractional differential equations involving Riemann-Liouville,
Caputo, Hadamard type derivatives, supplemented with a variety of boundary conditions, can be
found in the related literature [7–9]. The interest in the subject owes to its extensive applications in
various disciplines of science and engineering, for instance, see the papers [10–18], and the references
cited therein. In a recent paper [19], the authors studied fractional differential equations involving
Caputo-Katugampola derivative. In a more recent work [20], the authors studied a fractional order
boundary value problem involving Katugampola-type generalized fractional derivative and
generalized fractional integral.

We organize the rest of the paper as follows. Section 2 contains preliminary material related to our
work. The existence and uniqueness results for the problem (1.1), obtained with the aid of the standard
fixed point theorem, are presented in Section 3. The existence results for the inclusions problem (1.2)
are derived in Section 4. Examples are provided to demonstrate the application of the main theorems.

2. Preliminaries

For c ∈ R, 1 ≤ p ≤ ∞, let Xp
c (a, b) denote the space of all complex-valued Lebesgue measurable

functions φ on (a, b) endowed with the norm:

‖φ‖Xp
c

=
( ∫ b

a
|xcφ(x)|p

dx
x

)1/p
< ∞.

AIMS Mathematics Volume 4, Issue 1, 26–42.



28

We denote by L1(a, b) the space of all Lebesgue measurable functions ϕ on (a, b) equipped with the
norm:

‖ϕ‖L1 =

∫ b

a
|ϕ(x)|dx < ∞.

Let G = C(J,R) denote the Banach space of all continuous functions from [0,T ] to R endowed with
the norm defined by ‖y‖ = supt∈[0,T ] |y(t)|.
Recall that

ACn(J,R) = {h : J → R : h, h′, . . . , h(n−1) ∈ C(J,R) and h(n−1)is absolutely continuous}.

For 0 ≤ ε < 1, we define Cε,ρ(J,R) = { f : J → R : (tρ − aρ)ε f (t) ∈ C(J,R)} equipped with the
norm ‖ f ‖Cε,ρ

= ‖(tρ − aρ)ε f (t)‖C. Moreover, let us introduce ACn
δ(J), which consists of the functions f

that have absolutely continuous δn−1-derivative, where δ = t1−ρ d
dt . Thus we define spaces ACn

δ(J,R) ={
f : J → R : δn−1 f ∈ AC(J,R), δ = t1−ρ d

dt

}
, and Cn

δ,ε(J,R) =
{
f : J → R : δn−1 f ∈ C(J,R), δn f ∈

Cε,ρ(J,R), δ = t1−ρ d
dt

}
endowed with the norms ‖ f ‖Cn

δ
=

∑n−1
k=0 ‖δ

k f ‖C and ‖ f ‖Cn
δ,ε

=
∑n−1

k=0 ‖δ
k f ‖C+‖δn f ‖Cε,ρ

respectively. Here we use the convention Cn
δ,0 = Cn

δ .

Definition 2.1. [6] The generalized fractional integral of order α > 0 and ρ > 0 of f ∈ Xp
c (a, b) for

−∞ < a < t < b < ∞, is defined by

(ρIαa+ f )(t) =
ρ1−α

Γ(α)

∫ t

a

sρ−1

(tρ − sρ)1−α f (s)ds. (2.1)

Note that the integral in (2.1) is called the left-sided fractional integral. Similarly we can define
right-sided fractional integral ρIαb− f as

(ρIαb− f )(t) =
ρ1−α

Γ(α)

∫ b

t

sρ−1

(sρ − tρ)1−α f (s)ds. (2.2)

Definition 2.2. [21] The generalized fractional derivative, associated with the generalized fractional
integrals (2.1) and (2.2) for 0 ≤ a < t < b < ∞, are defined by

(ρDα
a+ f )(t) =

(
t1−ρ d

dt

)n
(ρIn−α

a+ f )(t)

=
ρα−n+1

Γ(n − α)

(
t1−ρ d

dt

)n
∫ t

a

sρ−1

(tρ − sρ)α−n+1 f (s)ds (2.3)

and

(ρDα
b− f )(t) =

(
− t1−ρ d

dt

)n
(ρIn−α

b− f )(t)

=
ρα−n+1

Γ(n − α)

(
− t1−ρ d

dt

)n
∫ b

t

sρ−1

(sρ − tρ)α−n+1 f (s)ds, (2.4)

if the integrals in (2.3) and (2.4) exist.
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Definition 2.3. [22] For α ≥ 0 and f ∈ ACn
δ[a, b], the generalized Caputo-type fractional derivatives

ρ
c Dα

a and ρ
c Dα

b are defined via the above generalized fractional derivatives as follows

ρ
c Dα

a+ f (x) = ρDα
a+

[
f (t) −

n−1∑
k=0

δk f (a)
k!

( tρ − aρ

ρ

)k
]
(x), δ = x1−ρ d

dx
, (2.5)

ρ
c Dα

b− f (x) = ρDα
b−

[
f (t) −

n−1∑
k=0

(−1)kδk f (b)
k!

(bρ − tρ

ρ

)k
]
(x), δ = x1−ρ d

dx
, (2.6)

where n = [α] + 1.

Lemma 2.1. [22] Let α ≥ 0, n = [α] + 1 and f ∈ ACn
δ[a, b], where 0 < a < b < ∞. Then,

(1) for α < N,
ρ
c Dα

a+ f (t) =
1

Γ(n − α)

∫ t

a

( tρ − sρ

ρ

)n−α−1 (δn f )(s)ds
s1−ρ = ρIn−α

a+ (δn f )(t), (2.7)

ρ
c Dα

b− f (t) =
1

Γ(n − α)

∫ b

t

( sρ − tρ

ρ

)n−α−1 (−1)n(δn f )(s)ds
s1−ρ = ρIn−α

b− (δn f )(t); (2.8)

(2) for α ∈ N,
ρ
c Dα

a+ f = δn f , ρ
c Dα

b− f = (−1)nδn f . (2.9)

Lemma 2.2. [22] Let f ∈ ACn
δ[a, b] or Cn

δ[a, b] and α ∈ R. Then

ρIαa+
ρ
c Dα

a+ f (x) = f (x) −
n−1∑
k=0

(δk f )(a)
k!

( xρ − aρ

ρ

)k
,

ρIαb−
ρ
c Dα

b− f (x) = f (x) −
n−1∑
k=0

(−1)k(δk f )(a)
k!

(bρ − xρ

ρ

)k
.

In particular, for 0 < α ≤ 1, we have

ρIαa+
ρ
c Dα

a+ f (x) = f (x) − f (a),

ρIαb−
ρ
c Dα

b− f (x) = f (x) − f (b).

Next we define a solution for the problem (1.1).

Definition 2.4. A function y ∈ AC2
δ([0,T ],R) is said to be a solution of (1.1) if y satisfies the equation

ρ
c Dαy(t) = f (t, y(t)) on [0,T ], and the conditions y(T ) =

∑m
i=1 σi

ρIβy(ηi) + κ, δy(0) = 0.

Relative to the problem (1.1), we consider the following lemma.

Lemma 2.3. Let h ∈ C(0,T ) ∩ L1(0,T ), y ∈ AC2
δ(J) and

Ω = 1 −
m∑

i=1

σi
η
ρβ
i

ρβΓ(β + 1)
, 0. (2.10)
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Then the integral solution of the linear boundary value problem (BVP):
ρ
c Dα

0+y(t) = h(t), t ∈ J := [0,T ],

y(T ) =

m∑
i=1

σi
ρIβ0+y(ηi) + κ, δy(0) = 0, ηi ∈ (0,T ),

(2.11)

is given by

y(t) = ρIα0+h(t) +
1
Ω

{
− ρIα0+h(T ) +

m∑
i=1

σi
ρIα+β

0+ h(ηi) + κ
}
. (2.12)

Proof. Applying ρIα0+ on both sides of the fractional differential equation in (2.11) and using Lemma
2.2, we get

y(t) = ρIα0+h(t) + c1 + c2
tρ

ρ
=
ρ1−α

Γ(α)

∫ t

0
sρ−1(tρ − sρ)α−1h(s)ds + c1 + c2

tρ

ρ
, (2.13)

for some c1, c2 ∈ R. Taking δ-derivative of (2.13), we get

δy(t) = ρIα−1
0+ h(t) + c2 =

ρ2−α

Γ(α − 1)

∫ t

0
sρ−1(tρ − sρ)α−2h(s)ds + c2. (2.14)

Using the boundary condition δy(0) = 0 in (2.14), we get c2 = 0. Applying the generalized integral ρIβ0+

to (2.13) after inserting the value of c2 in it, we get

ρIβ0+y(t) = ρIα+β
0+ h(t) + c1

tρβ

ρβΓ(β + 1)
. (2.15)

Making use of the first boundary condition y(T ) =
∑m

i=1 σi
ρIβy(ηi) + κ in (2.15), we get

ρIα0+h(T ) + c1 =

m∑
i=1

σi
ρIα+β

0+ h(ηi) +

m∑
i=1

σic1
η
ρβ
i

ρβΓ(β + 1)
+ κ,

which, on solving for c1 together with (2.10), yields

c1 =
1
Ω

{
− ρIα0+h(T ) +

m∑
i=1

σi
ρIα+β

0+ h(ηi) + κ
}
.

Substituting the values of c1 and c2 in (2.13), we obtain the solution (2.12). The converse follows by
direct computation. The proof is completed. �

3. Main results for the problem (1.1)

Using Lemma 2.3, we define an operator N : G → G by

Ny(t) = ρIα0+ f (t, y(t)) +
1
Ω

{
− ρIα0+ f (T, y(T )) +

m∑
i=1

σi
ρIα+β

0+ f (ηi, y(ηi)) + κ
}
. (3.1)
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In the following, for brevity, we set the notation:

Λ =
T ρα

ραΓ(α + 1)
+

1
|Ω|

{ T ρα

ραΓ(α + 1)
+

m∑
i=1

|σi|
η
ρ(α+β)
i

ρα+βΓ(α + β + 1)

}
. (3.2)

Our first existence result for the problem (1.1) relies on Leray-Schauder nonlinear alternative [23].

Theorem 3.1. Assume that

(A1) | f (t, y)| ≤ p(t)ψ(‖y‖),∀(t, y) ∈ [0,T ] × R, where p ∈ L1([0,T ],R+) and ψ : R+ → R+ is a
nondecreasing function;

(A2) we can find a positive constant W satisfying the inequality:

W

ψ(W)
(
ρIα0+ p(T ) +

1
|Ω|

{
ρIα0+ p(T ) +

m∑
i=1

|σi|
ρIα+β

0+ p(ηi) + |κ|
}) > 1.

Then there exists at least one solution for the problem (1.1) on [0,T ].

Proof. Consider the operator N : G → G defined by (3.1) and show that it is continuous and
completely continuous. We establish in four steps.

(i) N is continuous. Let {yn} be a sequence such that yn → y in G. Then

|N(yn)(t) − N(y)(t)| ≤ ρIα0+ | f (t, yn(t)) − f (t, y(t))| +
1
Ω

{
ρIα0+ | f (T, yn(T )) − f (T, y(T ))|

+

m∑
i=1

|σi|
ρIα+β

0+ | f (ηi, yn(ηi)) − f (ηi, y(ηi))|
}
≤ Λ‖ f (·, yn) − f (·, y)‖.

Since f is a continuous function, therefore, we have

‖N(yn) − N(y)‖ ≤ Λ‖ f (·, yn) − f (·, y)‖ → 0, as n→ ∞.

(ii) The operator N maps bounded sets into bounded sets in G.

For any r̄ > 0, it is indeed enough to show that there exists a positive constant ` such that ‖N(y)‖ ≤ `
for y ∈ Br̄ = {y ∈ G : ‖y‖ ≤ r̄}. By the assumption (A1), for each t ∈ J, we have

|N(y)(t)| ≤ ρIα0+ | f (t, y(t))| +
1
|Ω|

{
ρIα0+ | f (T, y(T ))| +

m∑
i=1

|σi|
ρIα+β

0+ | f (ηi, y(ηi))| + |κ|
}

≤ ρIα0+ p(T )Ω(‖y‖) +
1
|Ω|

{
ρIα0+ p(T )ψ(‖y‖) +

m∑
i=1

|σi|
ρIα+β

0+ p(ηi)ψ(‖y‖) + |κ|
}

≤ ψ(‖y‖)
(
ρIα0+ p(T ) +

1
|Ω|

{
ρIα0+ p(T ) +

m∑
i=1

|σi|
ρIα+β

0+ p(ηi) + |κ|
})
.
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Thus

‖N(y)‖ ≤ ψ(r̄)
(
ρIα0+ p(T ) +

1
|Ω|

{
ρIα0+ p(T ) +

m∑
i=1

|σi|
ρIα+β

0+ p(ηi) + |κ|
})

:= `.

(iii) N maps bounded sets into equicontinuous sets of G.

Let t1, t2 ∈ (0,T ], t1 < t2, Br̄ be a bounded set of G as in (ii) and let y ∈ Br̄. Then

|N(y)(t2) − N(y)(t1)| ≤
∣∣∣∣ρIα0+ f (t2, y(t2)) − ρIα0+ f (t1, y(t1))

∣∣∣∣
≤

ρ1−αψ(r̄)
Γ(α)

∣∣∣∣ ∫ t1

0

[ sρ−1

(tρ2 − sρ)1−α
−

sρ−1

(tρ1 − sρ)1−α

]
p(s)ds +

∫ t2

t1

sρ−1

(tρ2 − sρ)1−α
p(s)ds

∣∣∣∣∣∣
→ 0 as t1 −→ t2, independent of y.

From the steps (i) − (iii), we deduce by the Arzelá-Ascoli theorem that N : G −→ G is completely
continuous.

(iv) There exists an open set V ⊆ G with y , νN(y) for ν ∈ (0, 1) and y ∈ ∂V.
Let y ∈ G be a solution of y − νNy = 0 for ν ∈ [0, 1]. Then, for t ∈ [0,T ], we obtain

|y(t)| = |ν(Ny)(t)|

≤ ρIα0+ | f (t, y(t))| +
1
|Ω|

{
ρIα0+ | f (T, y(T ))| +

m∑
i=1

|σi|
ρIα+β

0+ | f (ηi, y(ηi))| + |κ|
}

≤ ρIα0+ p(T )ψ(‖y‖) +
1
|Ω|

{
ρIα0+ p(T )ψ(‖y‖) +

m∑
i=1

|σi|
ρIα+β

0+ p(ηi)ψ(‖y‖) + |κ|
}

≤ ψ(‖y‖)
(
ρIα0+ p(T ) +

1
|Ω|

{
ρIα0+ p(T ) +

m∑
i=1

|σi|
ρIα+β

0+ p(ηi) + |κ|
})
,

which, on taking the norm for t ∈ [0,T ], implies that

‖y‖

ψ(‖y‖)
(
ρIα0+ p(T ) +

1
|Ω|

{
ρIα0+ p(T ) +

m∑
i=1

|σi|
ρIα+β

0+ p(ηi) + |κ|
}) ≤ 1.

By the assumption (A2), there exists a positive constant W such that ‖y‖ , W. Next we define V =

{y ∈ G : ‖y‖ < W} and note that the operator N : V → G is continuous and completely continuous.
By the choice of V , there does not exist any y ∈ ∂V satisfying y = νN(y) for some ν ∈ (0, 1). In
consequence, by the nonlinear alternative of Leray-Schauder type [23], we deduce that there exists a
fixed point y ∈ V for the operator N , which is a solution of the problem (1.1). �

In our next result, we make use of Banach contraction mapping principle to establish the uniqueness
of solutions for the problem (1.1).

Theorem 3.2. Suppose that

(A3) there exists a nonnegative constant L such that

| f (t, u) − f (t, v)| ≤ L‖u − v‖, for t ∈ [0,T ] and every u, v ∈ R.
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Then the problem (1.1) has a unique solution on [0,T ] if

LΛ < 1, (3.3)

where Λ is defined by (3.2).

Proof. Consider the operator N : G → G associated with the problem (1.1) defined by (3.1). With
Λ given by (3.2), we fix

r ≥
Λ f0 + |κ|/|Ω|

1 − LΛ
, f0 = sup

t∈[0,T ]
| f (t, 0)|,

and show that FBr ⊂ Br, where Br = {y ∈ G : ‖y‖ ≤ r}. For y ∈ Br, using (A3) , we get

|N(y)(t)| ≤ ρIα0+[| f (t, y(t)) − f (t, 0)| + | f (t, 0)|] +
1
|Ω|

{
ρIα0+[| f (T, y(T )) − f (T, 0)| + | f (T, 0)|]

+

m∑
i=1

|σi|
ρIα+β

0+ [| f (ηi, y(ηi)) − f (ηi, 0)| + | f (ηi, 0)|] + |κ|
}

≤ (L‖y‖ + f0)
[

T ρα

ραΓ(α + 1)
+

1
|Ω|

{
T ρα

ραΓ(α + 1)
+

m∑
i=1

|σi|
η
ρ(α+β)
i

ρα+βΓ(α + β + 1)

}]
+
|κ|

|Ω|

≤ (Lr + f0)Λ +
|κ|

|Ω|
≤ r,

which, on taking the norm for t ∈ [0,T ], yields ‖N(y)‖ ≤ r. This shows that N maps Br into itself.
Now we show that the operator N is a contraction. Let y, u ∈ G. Then we get

|N(y)(t) − N(u)(t)| ≤ ρIα0+ | f (t, y(t)) − f (t, u(t))| +
1
|Ω|

{
ρIα0+ | f (T, y(T )) − f (T, u(T ))|

+

m∑
i=1

|σi|
ρIα+β

0+ | f (ηi, y(ηi)) − f (ηi, u(ηi))|
}

≤ LΛ‖y − u‖.

Consequently we obtain ‖N(y) − N(u)‖ ≤ LΛ‖y − u‖, which shows that N is a contraction by means
of (3.3). Thus the contraction mapping principle applies and the operator N has a unique fixed point.
This shows that there exists a unique solution for the problem (1.1) on [0,T ]. �

Now we prove the uniqueness of solutions for the problem (1.1) by applying a fixed point theorem
for nonlinear contractions due to Boyd and Wong [24].

Definition 3.1. A mapping H : E → E is called a nonlinear contraction if we can find a continuous
nondecreasing function φ : R+ → R+ such that φ(0) = 0, φ(ξ) < ξ for all ξ > 0 and ‖Hy − Hu‖ ≤
φ(‖y − u‖),∀y, u ∈ E (E is a Banach space).

Lemma 3.1. (Boyd and Wong) [24] Let E be a Banach space and let N : E → E be a nonlinear
contraction. Then N has a unique fixed point in E.

Theorem 3.3. Assume that

(A4) | f (t, y) − f (t, u)| ≤ g(t)
|y − u|

G∗ + |y − u|
, t ∈ [0,T ], y, u ≥ 0, where g : [0,T ]→ R+ is continuous and
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G∗ = ρIα0+g(T ) +
1
|Ω|

{
ρIα0+g(T ) +

m∑
i=1

|σi|
ρIα+β

0+ g(ηi)
}
. (3.4)

Then the problem (1.1) has a unique solution on [0,T ].

Proof. Let Ψ : R+ → R+ be a continuous nondecreasing function such that Ψ(0) = 0 and Ψ(ξ) < ξ

for all ξ > 0, defined by

Ψ(ξ) =
G∗ξ

G∗ + ξ
, ∀ξ ≥ 0.

Let y, u ∈ G. Then

| f (s, y(s)) − f (s, u(s))| ≤
g(s)
G∗

Ψ(‖y − u‖),

so that

|N(y)(t) − N(u)(t)| ≤ ρIα0+

(
g(t)

|y(t) − u(t)|
G∗ + |y(t) − u(t)|

)
+

1
|Ω|

{
ρIα0+

(
g(T )

|y(T ) − u(T )|
G∗ + |y(T ) − u(T )|

)
+

m∑
i=1

|σi|
ρIα+β

0+

(
g(ηi)

|y(ηi) − u(ηi)|
G∗ + |y(ηi) − u(ηi)|

)}
≤

|y(t) − u(t)|
G∗ + |y(t) − u(t)|

{
ρIα0+g(T ) +

1
|Ω|

{
ρIα0+g(T ) +

m∑
i=1

|σi|
ρIα+β

0+ g(ηi)
}}
,

for t ∈ [0,T ]. By the condition (3.4), we deduce that ‖N(y) − N(u)‖ ≤ Ψ(‖y − u‖) and hence N is a
nonlinear contraction. Thus it follows from the fixed point theorem due to Boyd and Wong [24] that
the operator N has a unique fixed point in G, which is indeed a unique solution of problem (1.1). �

Example 3.1. Let us consider the following boundary value problem
1/3

c D5/4
0+ y = f (t, y), t ∈ [0, 2],

y(2) = 21/3I3/4y(1/2) + 1/2 1/3I3/4y(3/2) + 1/4, δy(0) = 0,
(3.5)

where ρ = 1/3, α = 5/4, σ1 = 2, σ2 = 1/2, β = 3/4, η1 = 1/2, η2 = 3/2, κ = 1/4, T = 2 and
f (t, y(t)) will be fixed later.

Using the given data, we find that |Ω| = 4.543695998 and Λ = 7.572001575, where Ω and Λ are
given by (2.10) and (3.2) respectively.

For illustrating Theorem 3.1, we take

f (t, y) =
(1 + t)

30

(
|y|
|y| + 1

+ y +
1
8

)
, (3.6)

and find that p(t) =
(1+t)

30 and ψ(‖y‖) = ||y|| + 9
8 . By condition (A2), we have W > 0.7066246467.

Thus, the hypothesis of Theorem 3.1 holds true, which implies that the problem (3.5) has at least one
solution.

Furthermore, for the uniqueness results, Theorem 3.2 can be illustrated by choosing

f (t, y) =
tan−1 y + e−t

2
√

81 + sin t
. (3.7)
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Clearly the condition (A3) is satisfied with L = 1/18. Also

LΛ ≈ 0.4206667542 < 1.

Obviously all the conditions of Theorem 3.2 hold and consequently the problem (3.5) with f (t, y) given
by (3.7) has a unique solution on [0, 2] by the conclusion of Theorem 3.2.

Finally, for illustrating Theorem 3.3, we take

f (t, y) = t
(
|y|

|y| + 11
+

1
8

)
. (3.8)

Here we choose g(t) = (1 + t) and find that

G∗ = ρIα0+g(T ) +
1
|Ω|

{
ρIα0+g(T ) +

m∑
i=1

|σi|
ρIα+β

0+ g(ηi)
}
≈ 9.923097014,

and

| f (t, y) − f (t, u)| = t
(

|y| − |u|

11 + |y| + |u| + |y||u|
11

)
≤

(1 + t)|y − u|
9.923097014 + |y − u|

.

So, the conclusion of Theorem 3.3 applies to the problem (3.5) with f (t, y) given by (3.8).

4. Existence results for the multivalued problem (1.2)

In this section, we present existence results for the problem (1.2).

Definition 4.1. A function y ∈ AC2
δ([0,T ],R) is called a solution of the problem (1.2) if

y(T ) =
∑m

i=1 σi
ρIβ0+y(ηi) + κ, δy(0) = 0 and there exists function v ∈ L1([0,T ],R) such that

v(t) ∈ F(t, y(t)) a.e. on [0,T ] and

y(t) = ρIα0+v(t) +
1
Ω

{
− ρIα0+v(T ) +

m∑
i=1

σi
ρIα+β

0+ v(ηi) + κ
}
.

4.1. The Carathéodory case

Here we prove an existence result for the problem (1.2) by applying nonlinear alternative for
Kakutani maps [23] when F has convex values and is of Carathéodory type.

Theorem 4.1. Assume that

(B1) F : [0,T ] × R → Pcp,c(R) is L1-Carathéodory, where Pcp,c(R) = {Y ∈ P(R) : Y
is compact and convex};

(B2) there exist a continuous nondecreasing function ϕ : [0,∞) → (0,∞) and a function
p ∈ L1([0,T ],R+) such that

‖F(t, y)‖P := sup{|x| : x ∈ F(t, y)} ≤ p(t)ϕ(‖y‖) for each (t, y) ∈ [0,T ] × R;
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(B3) there exists a constant Ŵ > 0 satisfying

Ŵ

ϕ(Ŵ)
(
ρIα0+ p(T ) +

1
Ω

(
ρIα0+ p(T ) +

m∑
i=1

|σi|
ρIα+β

0+ p(ηi) + κ
)) > 1.

Then there exists at least one solution for the problem (1.2) on [0,T ].

Proof. Define an operatorM : C([0,T ],R) −→ P(C([0,T ],R)) by

M(y) = {h ∈ C([0,T ],R) : h(t) = F (y)(t)}, (4.1)

where

F (y)(t) = ρIα0+v(t) +
1
Ω

{
− ρIα0+v(T ) +

m∑
i=1

σi
ρIα+β

0+ v(ηi) + κ
}
,

for v ∈ S F,y. Here S F,y denotes the set of selections of F and is defined by

S F,y := {v ∈ L1([0,T ],R) : v(t) ∈ F(t, y(t)) a.e. on [0,T ]},

for each y ∈ C([0,T ],R). Notice that the fixed points of the operatorM are solutions of the problem
(1.2).

To show thatM satisfies the assumptions of Leray-Schauder nonlinear alternative [23], we split the
proof in several steps.

Step 1. M(y) is convex for each y ∈ C([0,T ],R) as S F,y is convex (F has convex values).
Step 2. Let Br = {y ∈ C([0,T ],R) : ‖y‖ ≤ r} be a bounded ball in C([0,T ],R), where r is a positive

number. Then, for each h ∈ M(y), y ∈ Br, there exists v ∈ S F,y such that

h(t) = ρIα0+v(t) +
1
Ω

{
− ρIα0+v(T ) +

m∑
i=1

σi
ρIα+β

0+ v(ηi) + κ
}

with

‖h‖ ≤ ϕ(r)
(
ρIα0+ p(T ) +

1
|Ω|

{
ρIα0+ p(T ) +

m∑
i=1

|σi|
ρIα+β

0+ p(ηi) + |κ|
})

:= `1.

This shows thatM maps bounded sets (balls) into bounded sets in C([0,T ],R).
Step 3. In order to show thatMmaps bounded sets into equicontinuous sets of C([0,T ],R), we take

t1, t2 ∈ (0,T ], t1 < t2, and y ∈ Br. Then we find that

|h(t2) − h(t1)| ≤
ρ1−αϕ(r)

Γ(α)

∣∣∣∣ ∫ t1

0

[ sρ−1

(tρ2 − sρ)1−α
−

sρ−1

(tρ1 − sρ)1−α

]
p(s)ds +

∫ t2

t1

sρ−1

(tρ − sρ)1−α p(s)ds

∣∣∣∣∣∣,
which tends to zero independently of y ∈ Br as t2 − t1 → 0. In view of the foregoing steps, it follows
by the Arzelá-Ascoli theorem thatM : C([0,T ],R)→ P(C([0,T ],R)) is completely continuous.

Step 4. In our next step, we show thatM is upper semi-continuous (u.s.c.). SinceM is completely
continuous, it is enough to establish that it has a closed graph (see [25, Proposition 1.2]). For that, let
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yn → y∗, hn ∈ M(yn) and hn → h∗. Then we have to show that h∗ ∈ M(y∗). Associated with hn ∈ M(yn),
we can find vn ∈ S F,yn such that for each t ∈ [0,T ],

hn(t) = ρIα0+vn(t) +
1
Ω

{
− ρIα0+vn(s)vn(T ) +

m∑
i=1

σi
ρIα+β

0+ vn(ηi) + κ
}
.

Next, for each t ∈ [0,T ], we establish that there exists v∗ ∈ S F,y∗ satisfying

h∗(t) = ρIα0+v∗(t) +
1
Ω

{
− ρIα0+v∗(T ) +

m∑
i=1

σi
ρIα+β

0+ v∗(ηi) + κ
}
.

Consider the linear operator Θ : L1([0,T ],R)→ C([0,T ],R) given by

v 7→ Θv(t) = ρIα0+v(t) +
1
Ω

{
− ρIα0+v(T ) +

m∑
i=1

σi
ρIα+β

0+ v(ηi) + κ
}
.

Notice that ‖hn(t)−h∗(t)‖ → 0 as n→ ∞. Thus we deduce by the closed graph theorem [26] that Θ◦S F

is a closed graph operator. Furthermore, we have hn(t) ∈ Θ(S F,yn). As yn → y∗, we have

h∗(t) = ρIα0+v∗(t) +
1
Ω

{
− ρIα0+v∗(T ) +

m∑
i=1

σi
ρIα+β

0+ v∗(ξ) + κ
}
, for some v∗ ∈ S F,y∗ .

Step 5. Finally, we show the existence of an open set U ⊆ C([0,T ],R) such that y < λM(y) for any
λ ∈ (0, 1) and all y ∈ ∂U. For that we take λ ∈ (0, 1) and y ∈ λM(y). Then there exists v ∈ L1([0,T ],R)
with v ∈ S F,y such that, for t ∈ [0,T ], we have

y(t) = λρIα0+v(t) +
λ

Ω

{
− ρIα0+v(T ) +

m∑
i=1

σi
ρIα+β

0+ v(ηi) + κ
}
.

As in the second step, one can obtain

|y(t)| ≤ ρIα0+ |v(T )| +
1
|Ω|

{
ρIα0+ |v(T )| +

m∑
i=1

|σi|
ρIα+β

0+ |v(ηi)| + |κ|
}

≤ ϕ(‖y‖)
(
ρIα0+ p(T ) +

1
|Ω|

{
ρIα0+ p(T ) +

m∑
i=1

|σi|
ρIα+β

0+ p(ηi) + |κ|
})
,

which implies that

‖y‖

ϕ(‖y‖)
(
ρIα0+ p(T ) +

1
|Ω|

{
ρIα0+ p(T ) +

m∑
i=1

|σi|
ρIα+β

0+ p(ηi) + |κ|
}) ≤ 1.

By the hypothesis (B3), we can find Ŵ such that ‖y‖ , Ŵ. Setting Y = {y ∈ C(J,R) : ‖y‖ < Ŵ},
we notice that the operatorM : Y → P(C(J,R)) is compact multi-valued, u.s.c. with convex closed
values. From the choice ofY, there does not exist any y ∈ ∂Y satisfying y ∈ λM(y) for some λ ∈ (0, 1).
In consequence, we deduce by the nonlinear alternative of Leray-Schauder type [23] thatM has a fixed
point y ∈ Y which is a solution of the problem (1.2). This completes the proof. �

AIMS Mathematics Volume 4, Issue 1, 26–42.



38

4.2. The Lipschitz case

Consider a mapping Hd : P(X) × P(X)→ R ∪ {∞} defined by

Hd(S ,V) = max{sup
s∈S

d(a,V), sup
v∈V

d(S , v)},

where d(S , v) = inf s∈S d(s; v), d(s,V) = infv∈V d(s; v) and (X, d) is a metric space induced from the
normed space (X; ‖ · ‖). Note that (Pcl,b(X),Hd) is a metric space (see [27]), where Pcl,b(X) = {Y ∈
P(X) : Y is closed and bounded}.

The following result, dealing with the existence of solutions for the problem (1.2) with nonconvex
valued right hand side of the inclusion, relies on Covitz and Nadler’s fixed point theorem for
multivalued maps [28].

Theorem 4.2. Assume that

(C1) F : [0,T ] × R → Pcp(R) is such that F(·, y) : [0,T ] → Pcp(R) is measurable for each y ∈ R,
where Pcp(R) = {Y ∈ P(R) : Y is compact};

(C2) Hd(F(t, y), F(t, ȳ)) ≤ µ(t)|y − ȳ| for almost all t ∈ [0,T ] and y, ȳ ∈ R with µ ∈ C([0,T ],R+) and
d(0, F(t, 0)) ≤ µ(t) for almost all t ∈ [0,T ].

Then the problem (1.2) has at least one solution on [0,T ] provided that

ϑ = ‖µ‖Λ < 1, (4.2)

where Λ is given by (3.2).

Proof. By the assumption (C1), the set S F,y is nonempty for each y ∈ C([0,T ],R) and F has a
measurable selection by Theorem III.6 in [29]. Now we proceed to show that the operator
M : (C[0,T ],R) → Pcl(C([0,T ],R)) (Pcl(C([0,T ],R)) = {Y ∈ P(C([0,T ],R)) : Y is closed}) is a
contraction so that Covitz and Nadler’s Theorem [28] is applicable.

In the first step, we show thatM(y) ∈ Pcl((C[0,T ],R)) for each y ∈ C([0,T ],R). Let {un}n≥0 ∈ M(y)
with un → u (n→ ∞) in C([0,T ],R). Then u ∈ C([0,T ],R) and there exists vn ∈ S F,yn satisfying

un(t) = ρIα0+vn(t) +
1
Ω

{
− ρIα0+vn(T ) +

m∑
i=1

σi
ρIα+β

0+ vn(ηi) + κ
}

for each t ∈ [0,T ].

In view of the compact values of F, we pass onto a subsequence (if necessary) to find that vn

converges to v in L1([0,T ],R). For v ∈ S F,y and for each t ∈ [0,T ], we have

un(t)→ u(t) = ρIα0+v(t) +
1
Ω

{
− ρIα0+v(T ) +

m∑
i=1

σi
ρIα+β

0+ v(ηi) + κ
}
.

Thus u ∈ M(y).
Now, for each y, ȳ ∈ C([0,T ],R), we establish that there exists ϑ < 1 (defined by (4.2)) satisfying

Hd(M(y),M(ȳ)) ≤ ϑ‖y − ȳ‖.
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Let y, ȳ ∈ C([0,T ],R) and h1 ∈ M(y). Then there exists v1(t) ∈ F(t, y(t)) satisfying

h1(t) = ρIα0+v1(t) +
1
Ω

{
− ρIα0+v1(T ) +

m∑
i=1

σi
ρIα+β

0+ v1(ηi) + κ
}
,

for each t ∈ [0,T ]. By (C2), we have

Hd(F(t, y), F(t, ȳ)) ≤ µ(t)|y(t) − ȳ(t)|.

Therefore, we can find w ∈ F(t, ȳ(t)) satisfying

|v1(t) − w| ≤ µ(t)|y(t) − ȳ(t)|, t ∈ [0,T ].

IntroduceU : [0,T ]→ P(R) by

U(t) = {w ∈ R : |v1(t) − w| ≤ µ(t)|y(t) − ȳ(t)|}.

AsU(t) ∩ F(t, ȳ(t)) is measurable (Proposition III.4 [29]), we can find a measurable selection v2(t) for
U such that v2(t) ∈ F(t, ȳ(t)) satisfying |v1(t) − v2(t)| ≤ µ(t)|y(t) − ȳ(t)| for each t ∈ [0,T ].

Define

h2(t) = ρIα0+v2(t) +
1
Ω

{
− ρIα0+v2(T ) +

m∑
i=1

σi
ρIα+β

0+ v2(ηi) + κ
}
,

for each t ∈ [0,T ]. Then

|h1(t) − h2(t)| ≤ ρIα0+ |v1(t) − v2(t)| +
1
|Ω|

{
ρIα0+ |v1(T ) − v2(T )| +

m∑
i=1

|σi|
ρIα+β

0+ |v1(ηi) − v2(ηi)|
}

≤ ‖µ‖

[
T ρα

ραΓ(α + 1)
+

1
|Ω|

{
T ρα

ραΓ(α + 1)
+

m∑
i=1

|σi|
η
ρ(α+β)
i

ρα+βΓ(α + β + 1)

}]
‖y − ȳ‖.

Hence

‖h1 − h2‖ ≤ ‖µ‖

[
T ρα

ραΓ(α + 1)
+

1
|Ω|

{
T ρα

ραΓ(α + 1)
+

m∑
i=1

|σi|
η
ρ(α+β)
i

ρα+βΓ(α + β + 1)

}]
‖y − ȳ‖.

Analogously, switching the roles of y and y, we can obtain

Hd(M(y),M(ȳ)) ≤ ‖µ‖

[
T ρα

ραΓ(α + 1)
+

1
|Ω|

{
T ρα

ραΓ(α + 1)
+

m∑
i=1

|σi|
η
ρ(α+β)
i

ρα+βΓ(α + β + 1)

}]
‖y − ȳ‖.

SoM is a contraction. Thus, by Covitz and Nadler’s fixed point theorem [28], the operatorM has a
fixed point y, which corresponds to a solution of (1.2). �

Example 4.1. Consider the following boundary value problem
1/3

c D5/4
0+ y ∈ F(t, y), t ∈ [0, 2],

y(2) = 21/3I3/4y(1/2) + 1/2 1/3I3/4y(3/2) + 1/4, δy(0) = 0,
(4.3)

where F(t, y) will be fixed later.
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For illustrating Theorem 4.1, we take

F(t, y) =

[
e−t

√
900 + t

(
sin y +

1
2

)
,

(1 + t)
30

(
|y|
|y| + 1

+ y +
1
8

)]
. (4.4)

Using the given data, we find p(t) =
(1 + t)

30
, ϕ(‖y‖) = ||y|| +

9
8

, and by condition (B3), we have Ŵ >

0.7066246467. Thus all conditions of Theorem 4.1 are satisfied and consequently, there exists at least
one solution for the problem (4.3) with F(t, y) given by (4.4) on [0, 2].

In order to demonstrate the application of Theorem 4.2, let us choose

F(t, y) =

[
e−t

√
900 + t

(
tan−1 y +

1
2

)
,

(1 + t)
30

(
|y|
|y| + 1

+
1
8

)]
. (4.5)

Clearly

Hd(F(t, y), F(t, ȳ)) ≤
(t + 1)

30
‖y − ȳ‖.

Letting µ(t) =
(t + 1)

30
, it is easy to check that d(0, F(t, 0)) ≤ µ(t) holds for almost all t ∈ [0, 2] and

ϑ ≈ 0.7572001575 < 1 (ϑ is given by 4.2). As the hypotheses of Theorem 4.2 are satisfied, we
conclude that the problem (4.3) with F(t, y) given by (4.5) has at least one solution on [0, 2].

5. Conclusion

We have developed the existence theory for fractional differential equations and inclusions involving
Caputo-type generalized fractional derivative equipped with generalized fractional integral boundary
conditions (in the sense of Katugampola). Standard fixed point theorems for single-valued and multi-
valued maps are employed to obtain the desired results, which are well illustrated with the aid of
examples. Our results are new in the given configuration and contribute significantly to the existing
literature on the topic.

Acknowledgments

The authors gratefully acknowledge the referees for their useful comments on their paper.

Conflict of Interest

The authors declare that they have no conflict of interests.

References

1. N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A, 268 (2000),
298–305.

2. N. Laskin, Fractals and quantum mechanics, Chaos, 10 (2000), 780–790.

AIMS Mathematics Volume 4, Issue 1, 26–42.



41

3. B. N. N. Achar, B. T. Yale, J. W. Hanneken, Time fractional Schrödinger equation revisited, Adv.
Math. Phys., 2018 (2013), 1–11.

4. D. Baleanu, G. C. Wu, S. D. Zeng, Chaos analysis and asymptotic stability of generalized Caputo
fractional differential equations, Chaos Soliton. Fract., 102 (2017), 99–105.

5. G. C. Wu, D. Baleanu, Z. G. Deng, et al. Lattice fractional diffusion equation in terms of a Riesz-
Caputo difference, Physica A-statistical Mechanics and Its Applications, 438 (2015), 335–339.

6. U. N. Katugampola, New Approach to a generalized fractional integral, Appl. Math. Comput., 218
(2011), 860–865.

7. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

8. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential
Equations, Vol. 204, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam,
2006.

9. B. Ahmad, A. Alsaedi, S. K. Ntouyas, et al. Hadamard-type fractional differential equations,
inclusions and inequalities, Springer, Cham, 2017.

10. M. Benchohra, J. Henderson, S. K. Ntouyas, et al. Existence results for fractional order functional
differential equations with infinite delay, J. Math. Anal. Appl., 338 (2008), 1340–1350.

11. J. R. Wang, Y. Zhang, Analysis of fractional order differential coupled systems, Math. Methods
Appl. Sci., 38 (2015), 3322–3338.

12. B. Ahmad, S. K. Ntouyas, J. Tariboon, A study of mixed Hadamard and Riemann-Liouville
fractional integro-differential inclusions via endpoint theory, Appl. Math. Lett., 52 (2016), 9–14.

13. B. Ahmad, R. Luca, Existence of solutions for a sequential fractional integro-differential system
with coupled integral boundary conditions, Chaos Soliton. Fract., 104 (2017), 378–388.

14. Z. Y. Gao, J. R. Wang, Y. Zhou, Analysis of a class of fractional nonlinear multidelay differential
systems, Discrete Dyn. Nat. Soc., 2017 (2017), 1–15.

15. B. Ahmad, S. K. Ntouyas, Existence results for fractional differential inclusions with Erdelyi-Kober
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