Citation: Kolade M. Owolabi, Kailash C. Patidar, Albert Shikongo. Numerical solution for a problem arising in angiogenic signalling[J]. AIMS Mathematics, 2019, 4(1): 43-63. doi: 10.3934/Math.2019.1.43
[1] | J. T. Betts, Practical method for optimal control using nonlinear programing, SIAM, Philadelphia, 2001. |
[2] | T. Boehm, J. Folkman, T. Browder, et al. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance, Nature, 390 (1997), 404-407. doi: 10.1038/37126 |
[3] | B. Bonnard and M. Chyba, Singular trajectories and their role in control theory, Springer Verlag, 2003. |
[4] | A. Bressan and B. Piccoli, Introduction to the mathematical theory of control, Vol. 2, American Institute of Mathematical Sciences, 2007. |
[5] | R. L. Burden and J. D. Faires, Numerical analysis, PWS-KENT Publishing Company, Boston, 2004. |
[6] | J. H. E. Cartwright and O. Piro, The Dynamics of Runge-Kutta Methods, Int. J. Bifurcat. Chaos, 2 (1192), 427-449. |
[7] | B. Czako, J. Sápi, L. Kovács, Model-based optimal control method for cancer treatment using model predictive control and robust fixed point method, 2017 IEEE 21st International Conference on Intelligent Engineering Systems (INES), (2017), 271-276. |
[8] | W. Cheney and D. Kincaid, Numerical mathematics and computing, Thomson, Belmont, California, 2004. |
[9] | S. Davis and G. D. Yancopoulos, The angiopoietins: Yin and Yang in angiogenesis, Curr. Top. Microbiol., 237 (1999), 173-185. |
[10] | A. L. Dontchev and W. W. Hager, The Euler approximation in state constrained optimal control, Math. Comput., 70 (2001), 173-203. |
[11] | A. Ergun, K. Camphausen and L. M. Wein, Optimal scheduling of radiotherapy and angiogenic inhibitors, B. Math. Biol., 65 (2003), 407-424. doi: 10.1016/S0092-8240(03)00006-5 |
[12] | J. Folkman, Endogenous angiogenesis inhibitors, APMIS, 112 (2004), 496-507. doi: 10.1111/j.1600-0463.2004.apm11207-0809.x |
[13] | J. Folkman, Antiangiogenesis: new concept for therapy of solid tumors, Ann. Surg., 175 (1972), 409-416. doi: 10.1097/00000658-197203000-00014 |
[14] | P. Hahnfeldt, D. Panigrahy, J. Folkman, et al. Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Res., 59 (1999), 4770-4775. |
[15] | R. K. Jain, Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy, Nat. Med., 7 (2001), 987-989. doi: 10.1038/nm0901-987 |
[16] | R. K. Jain and L. L. Munn, Vascular normalization as a rationale for combining chemotherapy with antiangiogenic agents, Principles of Practical Oncology, 21 (2007), 1-7. |
[17] | R. E. Kalman, Contribution to the theory of optimal control, Buletin Sociedad Matematica Mexicana, 5 (1960), 102-119. |
[18] | R. S. Kerbel, Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents, BioEssays 13 (1991), 31-36. |
[19] | H. Khan, A. Szeghegyi and J. K. Tar, Fixed point transformation-based adaptive optimal control using NLP. In: Proc. of the 2017 IEEE 30th Jubilee Neumann Colloquium, Budapest, Hungary, (2017), 35-40. |
[20] | M. Klagsburn and S. Soker, VEGF/VPF: the angiogenesis factor found?, Curr. Biol., 3 (1993), 699-702. doi: 10.1016/0960-9822(93)90073-W |
[21] | R. S. Kerbel, A cancer therapy resistant to resistance, Nature, 390 (1997), 335-336. doi: 10.1038/36978 |
[22] | U. Ledzewicz and H. Schättler, A synthesis of optimal controls for a model of tumor growth a under angiogenic inhibitors, Proc. 44th IEEE Conference on Decision and Control, (2005), 934-939. |
[23] | U. Ledzewicz and H. Schättler, Anti-angiogenic therapy in cancer treatment as an optimal control problem, Summer Research Fellowship, 2006. |
[24] | U. Ledzewicz and H. Schättler, Anti-angiogenic therapy in cancer treatment as an optimal a control problem, SIAM J. Control Optim., 46 (2007), 1052-1079. doi: 10.1137/060665294 |
[25] | U. Ledzewicz and H. Schättler, Analysis of a mathematical model for tumor anti-angiogenesis, Optimal Control Applications and Methods, 29 (2008), 41-57. doi: 10.1002/oca.814 |
[26] | U. Ledzewicz and H. Schättler, Optimal and suboptimal protocols for a class of mathematical a models of tumor anti-angiogenesis, J. Theor. Biol., 252 (2008), 295-312. doi: 10.1016/j.jtbi.2008.02.014 |
[27] | U. Ledzewicz, J. Munden and H. Schȧttler, BA and-bang Controls for anti-angiogenesis under logistics growth of the tumor, International Journal of Pure and Applied Mathematics, 9 (2008), 511-516. |
[28] | U. Ledzewicz, J. Munden, and H. Schättler, Scheduling of angiogenic inhibitors for Gomapertzian and logistic tumor growth models, Discrete Cont. Dyn-B, 12 (2009), 415-438. doi: 10.3934/dcdsb.2009.12.415 |
[29] | U. Ledzewicz, J. Marriott, H. Maurer, et al. Realizable protocols for optimal administration of drugs in mathematical models for anti-angiogenic treatment, Math. Med. Biol., 27 (2009), 157-179. |
[30] | U. Ledzewicz and B. Cardwell, Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis, Math. Biosci. Eng., 8 (2011), 355-369. doi: 10.3934/mbe.2011.8.355 |
[31] | U. Ledzewicz, H. Maurer and H. Schättler, Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy, Math. Biosci. Eng., 8 (2011), 307-323. doi: 10.3934/mbe.2011.8.307 |
[32] | S. Lenhart and J. T. Workman, Optimal control applied to biological models, Chapman Hall/CRC, 2007. |
[33] | E. Naevdal, Solving Continuous-Time Optimal-Control Problems with a Spreadsheet, Journal of Economic Education, 34 (2003), 99-122. doi: 10.1080/00220480309595206 |
[34] | L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, et al. The mathematical theory of optimal processes, MacMillan, New York, 1964. |
[35] | S. S. Samaee, O. Yazdanpanah and D. D. Ganji, New approaches to identification of the Lagrange multiplier in the variational iteration method, J. Braz. Soc. Mech. Sci., 37 (2015), 937-944. doi: 10.1007/s40430-014-0214-3 |
[36] | B. Sebastien, Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers, ESAIM, 46 (2011), 207-237. |
[37] | A. Swierniak, Comparison of six models of antiangiogenic therapy, Applicationes Mathematicae, 36 (2009), 333-348. doi: 10.4064/am36-3-6 |
[38] | A. Swierniak, Direct and indirect control of cancer populations, B. Pol. Acad. Sci-Tech, 56 (2008), 367-378. |