
Citation: Xinqiang Ma, Muhammad Awais Umar, Saima Nazeer, Yu-Ming Chu, Youyuan Liu. Stacked book graphs are cycle-antimagic[J]. AIMS Mathematics, 2020, 5(6): 6043-6050. doi: 10.3934/math.2020387
[1] | Syafrizal Sy, Rinovia Simanjuntak, Tamaro Nadeak, Kiki Ariyanti Sugeng, Tulus Tulus . Distance antimagic labeling of circulant graphs. AIMS Mathematics, 2024, 9(8): 21177-21188. doi: 10.3934/math.20241028 |
[2] | Bilal A. Rather, M. Aijaz, Fawad Ali, Nabil Mlaiki, Asad Ullah . On distance signless Laplacian eigenvalues of zero divisor graph of commutative rings. AIMS Mathematics, 2022, 7(7): 12635-12649. doi: 10.3934/math.2022699 |
[3] | Robert Reynolds, Allan Stauffer . Definite integral of the logarithm hyperbolic secant function in terms of the Hurwitz zeta function. AIMS Mathematics, 2021, 6(2): 1324-1331. doi: 10.3934/math.2021082 |
[4] | Kotte Amaranadha Reddy, S Sharief Basha . New classes of reverse super edge magic graphs. AIMS Mathematics, 2022, 7(3): 3590-3602. doi: 10.3934/math.2022198 |
[5] | Naila Mehreen, Rashid Farooq, Shehnaz Akhter . On partition dimension of fullerene graphs. AIMS Mathematics, 2018, 3(3): 343-352. doi: 10.3934/Math.2018.3.343 |
[6] | Mohamed R. Zeen El Deen, Ghada Elmahdy . New classes of graphs with edge $ \; \delta- $ graceful labeling. AIMS Mathematics, 2022, 7(3): 3554-3589. doi: 10.3934/math.2022197 |
[7] | Yingying Xiao, Chuanxi Zhu, Li Xie . Existence of ground state solutions for the modified Chern-Simons-Schrödinger equations with general Choquard type nonlinearity. AIMS Mathematics, 2022, 7(4): 7166-7176. doi: 10.3934/math.2022399 |
[8] | Yunfeng Wei, Hongwei Yang, Hongwang Yu . On stable solutions of the weighted Lane-Emden equation involving Grushin operator. AIMS Mathematics, 2021, 6(3): 2623-2635. doi: 10.3934/math.2021159 |
[9] | Baskar Mari, Ravi Sankar Jeyaraj . Radio number of $ 2- $ super subdivision for path related graphs. AIMS Mathematics, 2024, 9(4): 8214-8229. doi: 10.3934/math.2024399 |
[10] | Wafaa Fakieh, Zakeiah Alkhamisi, Hanaa Alashwali . On the $ A_{\alpha^-} $-spectra of graphs and the relation between $ A_{\alpha} $- and $ A_{\alpha^-} $-spectra. AIMS Mathematics, 2024, 9(2): 4587-4603. doi: 10.3934/math.2024221 |
Let G be a finite, simple and connected graph. A family of subetaaphs H1,H2,…,Ht is called an edge-covering if every edge from E(G) belongs to at least one of the subetaaphs Hi, i=1,2,…,t. When Hi,i=1,2,…,t is isomorphic to a given graph H, then graph G admits an H-covering. G is called an (α,d)-H-antimagic if there exists a total labeling ϕ:V(G)∪E(G)→{1,2,…,v+e} with the H-weights,
wtϕ(H)=∑v∈V(H)ϕ(v)+∑e∈E(H)ϕ(e), |
forming an arithmetic progression α,α+d,α+2d,…,α+(t−1)d, where α>0 and d≥0 are two integers and t is the number of all subetaaphs of G isomorphic to H. Moreover, G is said to be super (α,d)-H-antimagic if ϕ(V(G))={1,2,3,…,|V(G)|}.
The H-supermagic graph was first introduced by Gutiérrez and Lladó in [3]. Some other results can be seen from [4,7,8,9,10,11]. An (a,d)-H-antimagic labeling was introduced by Inayah et al. [5]. The further results on antimagic labeling are discussed in [2,6,16]. In [12], authors discussed the supermagic and super (α,1)-C4-antimagic labeling of book graph and its disjoint union. The super (a,d)-C3-antimagicness of a corona graph for differences d∈{0,1,…,5} is discussed in [1]. M. A. Umar [14] study the existence of the super cycle-antimagic labeling of ladder graphs for differences d∈{0,1,…,15}. M.A.Umar et al. [13] gives the super (α,d)-C4-antimagic labeling of book graphs for differences d=1,2,…,13.
In this research manuscript, we investigated the existence of super (α,1)-C4-antimagic labeling of stacked book graphs SB(p,q) that can be thought of as generalization of a book graph and super (α,1)-C4(r+1)-antimagic labeling of its r subdivided graph SB(p,q)(r).
A Cartesian product of two graphs G1 and G2, denoted by G1◻G2, is the graph with vertex set V(G1)◻V(G2), where two vertices (u,u′) and (v,v′) are adjacent if and only if u=v and u′v′∈E(G2) or u′=v′ and uv∈E(G1).
A stacked book graph denoted by SB(p,q) is defined as the cartesian product of a star graph Sp on p+1 vertices with a path Pq on q vertices. i.e., SB(p,q)≅Sp+1◻Pq, where the symbol ◻ used to denote the cartesian product of two graphs. The stacked book graph SB(p,q) contains q(p+1) vertices and q(2p+1)−(p+1) edges.
The vertex set V(SB(p,q)) have the elements {c(j),x(j)i:1≤i≤p,1≤j≤q} and the edge set E(SB(p,q)) have the elements
∪qj=1(∪pi=1{c(j)x(j)i})∪(∪pi=1(∪q−1j=1{c(j)c(j+1),x(j)ix(j+1)i})) |
A typical picture of stacked book graph SB(p,q) is given in Figure 1:
Clearly stacked book graph SB(p,q) admits C4-covering. It will be worth noting for p=1, the stacked book graph SB(1,q) is a ladder graph P2◻Pq, for p=2, the stacked book graph SB(2,q) is a grid graph P2◻Pq and for q=2, the stacked book graph SB(p,2) is a book graph Pp◻P2. Ming-Ju Lee et al. describe the super (α,1)-cycle-antimagic labeling of grid graph Pp◻Pq in [15]. M. A. Umar et al. [12] give the supermagic and super (α,1)-C4-antimagic labeling of book graph and its disjoint union while [13] describes the super (α,d)-C4-antimagic labeling of book graphs for differences d=1,2,…,13. Therefore we consider p,q≥3 in this paper.
Let Ci,j4 be the (i,j)th cycle for 1≤i≤p,1≤j≤q−1 in SB(p,q). Each (i,j)th-cycle Ci,j4 in SB(p,q) has the vertex set {c(j),c(j+1),x(j)i,x(j+1)i} and the edge set {c(j)c(j+1),x(j)ix(j+1)i,c(j)x(j)i,c(j+1)x(j+1)i}.
The corresponding Ci,j4-weight under a total labeling ϕ would be:
wtϕ(Ci,j4)=∑v∈V(Ci,j4)ϕ(v)+∑e∈E(Ci,j4)ϕ(e).=j+1∑k=j(ϕ(x(k)i)+ϕ(c(k))+ϕ(c(k)x(k)i))+(ϕ(x(j)ix(j+1)i)+ϕ(c(j)c(j+1))) |
For our convenience, throughout this paper by i=¯1,p, we mean i=1,2,…,p and vice versa.
Theorem 1. Let p,q≥3 be positive integers and Sp be a star on p+1 vertices. Then stacked book graph SB(p,q) admits a super (α,1)-C4-antimagic labeling.
Proof. The total labeling ϕ0 have the form:
ϕ0(c(j))={⌈q2⌉+j2 j≡0 (mod2)j+12 j≡1 (mod2) |
ϕ0(x(j)i)=q+i+(j−1)pif i=¯1,p,j=¯1,qϕ0(c(j)x(j)i)=p(2q+1−j)+q+1−iif i=¯1,p,j=¯1,qϕ0(c(j)c(j+1))=2q(p+1)−jif i=¯1,p,j=¯1,q−1ϕ0(x(j)ix(j+1)i)=q(2p+1)+i(q−1)+jif i=¯1,p,j=¯1,q−1 |
Evidently,
ϕ0(x(j)i)+ϕ(c(j)x(j)i)=2q(p+1)+1ϕ0(c(j))+ϕ(c(j+1))+ϕ(c(j)c(j+1))=⌈q2⌉+2q(p+1)+1 | (2.1) |
and therefore,
wtϕ0(Ci,j4)∖ ϕ(x(j)ix(j+1)i)=6q(p+1)+3+⌈q2⌉ | (2.2) |
Equations (2.1) and (2.2) gives:
wtϕ0(Ci,j4)=8q(p+1)+2+⌈q2⌉+j+(i−1)(q−1) | (2.3) |
For convenience, define wtϕ0(partial)=8q(p+1)+2+⌈q2⌉.
Therefore the Ci,j4-weights are:
wtϕ0(C1,14)={wtϕ0(partial)}+1wtϕ0(C1,24)={wtϕ0(partial)}+2. . . wtϕ0(C1,q−14)={wtϕ0(partial)}+q−1wtϕ0(C2,14)={wtϕ0(partial)}+1+(q−1)wtϕ0(C2,24)={wtϕ0(partial)}+2+(q−1). . . wtϕ0(C2,q−14)={wtϕ0(partial)}+2(q−1)wtϕ0(C2,q−14)={wtϕ0(partial)}+2(q−1) |
. . . wtϕ0(Cp,14)={wtϕ0(partial)}+1+(P−1)(q−1)wtϕ0(Cp,24)={wtϕ0(partial)}+2+(P−1)(q−1). . . wtϕ0(Cp,q−14)={wtϕ0(partial)}+p(q−1) | (2.4) |
which makes the total labeling ϕ0 a super (α,1)-C4-antimagic labeling and the proof is complete.
Let G be a graph and r≥1 be a positive integer. By G(r), we define r-subdivided graph of G constructed by inserting r new vertices into every edge of G.
In this way, SB(p,q)(r) is the r-subdivided graph of stacked book graph with the vertex set {c(j),x(j)i,u(i,j)r:1≤i≤p,1≤j≤q}∪{ϵ(j)r,δ(i,j)r:1≤i≤p,1≤j≤q−1} and the edge set
{c(j)u(i,j)1,x(j)iu(i,j)r,u(i,j)ku(i,j)k+1:1≤i≤p,1≤j≤q,1≤k≤r−1}∪ |
{c(j)ϵ(j)1,c(j+1)ϵ(j)r,x(j)iδ(i,j)1,x(j+1)iδ(i,j)r,ϵ(j)kϵ(j)k+1,δ(i,j)kδ(i,j)k+1:1≤i≤p,1≤j≤q−1,1≤k≤r−1} |
where u(i,j)r, ϵ(j)r, δ(i,j)r are r new vertices inserted into the edges c(j)x(j)i, c(j)c(j+1) and x(j)ix(j+1)i respectively. Clearly r-subdivided stacked book graph SB(p,q)(r) admits C4(r+1)-covering.
Let Ci,j4(r+1) be the (i,j)th-cycle for 1≤i≤p,1≤j≤q−1 in SB(p,q)(r). Each (i,j)th-cycle Ci,j4(r+1) in SB(p,q)(r) has the vertex set
{c(j),c(j+1),x(j)i,x(j+1)i},∪rk=1{u(i,j)k,u(i,j+1)k,ϵ(j)k,δ(i,j)k} |
and the edge set {u(i,j)ku(i,j)k+1,u(i,j+1)ku(i,j+1)k+1,ϵ(j)kϵ(j)k+1,δ(i,j)kδ(i,j)k+1:1≤k≤r−1}∪
{c(j)u(i,j)1,c(j+1)u(i,j+1)1,x(j)iu(i,j)r,x(j+1)iu(i,j+1)r,c(j)ϵ(j)1,c(j+1)ϵ(j)r,x(j)iδ(i,j)1,x(j+1)iδ(i,j)r} |
Ci,j4(r+1)-weight under a total labeling ϕ would be:
wtϕ(Ci,j4(r+1))=∑v∈V(Ci,j4(r+1))ϕ(v)+∑e∈E(Ci,j4(r+1))ϕ(e).=j+1∑s=j(ϕ(c(s))+ϕ(x(s)i))+r∑s=1(j+1∑t=j(ϕ(u(i,t)s))+ϕ(ϵ(j)s)+ϕ(δ(i,j)s))++j+1∑s=j(ϕ(c(s)u(i,s)1)+ϕ(x(s)iu(i,s)r))+ϕ(c(j)ϵ(j)1)+ϕ(c(j+1)ϵ(j)r)+ϕ(x(j)iδ(i,j)1)++ϕ(x(j+1)iδ(i,j)r)+r−1∑k=1(ϕ(ϵ(j)kϵ(j)k+1)+ϕ(δ(i,j)kδ(i,j)k+1))+j+1∑s=j(r−1∑k=1ϕ(u(i,s)ku(i,s)k+1))=Partial1+2Partial2+Partial3 | (3.1) |
where
Partial1=ϕ(c(j)ϵ(j)1)+ϕ(c(j+1)ϵ(j)r)+j+1∑s=jϕ(c(s))+r∑k=1ϕ(ϵ(j)k)+r−1∑k=1ϕ(ϵ(j)kϵ(j)k+1) | (3.2) |
Partial2=ϕ(x(j)i)+ϕ(x(j)iu(i,j)r)+ϕ(c(j)u(i,j)1)+r∑k=1ϕ(u(i,j)k)+r−1∑k=1ϕ(u(i,j)ku(i,j)k+1) | (3.3) |
Partial3=ϕ(x(j)iδ(i,j)1)+ϕ(x(j+1)iδ(i,j)r)+r∑k=1ϕ(δ(i,j)k)+r−1∑k=1ϕ(δ(i,j)kδ(i,j)k+1)+ | (3.4) |
Theorem 2. Let p,q≥3 and r≥1 be positive integers and SB(p,q)(r) be r-subdivided stacked book graph then SB(p,q)(r) admits a super (β,1)-C4(r+1)-antimagic labeling.
Proof. The total labeling ϕ have the form:
ϕ(c(j))={⌈q2⌉+j2 j≡0 (mod2)j+12 j≡1 (mod2) |
ϕ(x(j)i)=j+iqif i=¯1,p, j=¯1,qϕ(ϵ(j)k)=pq+k(q−1)+1+jif j=¯1,q−1, k=¯1,rϕ(δ(i,j)k)=p+(q−1)(pk+r+i)+1+jif i=¯1,p, j=¯1,q−1, k=¯1,rϕ(u(i,j)k)=r(p+1)(q−1)+q(pk+i)+jif i=¯1,p, j=¯1,q, k=¯1,rϕ(c(j)u(i,j)1)=r(p+1)(q−1)+q(p(r+2)+2−i)+1−jif i=¯1,p, j=¯1,qϕ(x(j)iu(i,j)r)=r(p+1)(q−1)+q(p(r+3)+2−i)+1−jif i=¯1,p, j=¯1,qϕ(u(i,j)ku(i,j)k+1)=r(p+1)(q−1)+q(p(2r+3−k)+2−i)+1−jif i=¯1,p, j=¯1,q, k=¯1,r−1ϕ(c(j)ϵ(j)1)=r(p+1)(q−1)+2q(p(r+1)+1)−jif j=¯1,q−1ϕ(c(j+1)ϵ(j)r)=r(p+1)(q−1)+q(2p(r+1)+3)−(1+j)if j=¯1,q−1ϕ(ϵ(j)kϵ(j)k+1)=p(3qr+2q−r)−(q−1)(k−2r)+3q−1−jif j=¯1,q−1, k=¯1,r−1ϕ(x(j)iδ(i,j)1)=(q−1)[r(p+2)+i]+2pq(r+1)+q+jif i=¯1,p, j=¯1,q−1ϕ(x(j+1)iδ(i,j)r)=(q−1)[r(p+2)+2p+1−i]+2pq(r+1)+2q−jif i=¯1,p, j=¯1,q−1ϕ(δ(i,j)kδ(i,j)k+1)=(q−1)[2(pr+p+r)+1−i−pk]+2q[pr+p+1]−jif i=¯1,p, j=¯1,q−1, k=¯1,r−1 |
Using expressions (3.2), (3.3) and (3.4), we have:
Partial1=⌈q2⌉+j+1+r[pq+(r+1)(q−1)2+1+j]++2r(p+1)(q−1)+4pq(r+1)+5q−1−2j+(r−1)[p(3qr+2q−r)+2r(q−1)+3q−1−j−r(q−1)2]=⌈q2⌉+1+pqr(4+3r)+p(1+r)(2q−r)+r(2r+1)(q−1)+q(3r+2) | (3.5) |
Partial2=iq+j+2r(p+1)(q−1)+pq(2r+5)+2q(2−i)+2−2j++r[r(p+1)(q−1)+qi+j+pq(r+1)2]+(r−1)[r(p+1)(q−1)+pq(2r+3)+q(2−i)+1−j−pqr2]=r(p+1)(q−1)(1+2r)+(1+r)[2pq(1+r)+1+2q]+1 | (3.6) |
Partial3=p+(q−1)(r+i)+1+j+pr(q−1)(r+1)2−pr(q−1)(r−1)2+(q−1)[2r(p+2)+2p+1]+4pq(r+1)+3q−(r−1)j(r−1)(q−1)[2pr+2p+2r+1−i]+2q(r−1)[pr+p+1]=r(r+1)(q−1)(2p+3)+q(2pr2+5pr+2p+2r+1)+r+i(q−1)+j=SPartial3+i(q−1)+j | (3.7) |
where SPartial3=r(r+1)(q−1)(2p+3)+q(2pr2+5pr+2p+2r+1)+r
wtϕ(Ci,j4(r+1))=Partial1+2Partial2+Partial3=Partial1+2Partial2+SPartial3+i(q−1)+j | (3.8) |
One can observe here that the Partial1+2Partial2+SPartial3 are independent of i and j. Equation (3.8) clearly shows that wtϕ(Ci,j4(r+1)) only depends on i and j. Equation (3.8) with equation (2.4) proves that SB(p,q)(r) admits a super (β,1)-C4(r+1)-antimagic labeling which completes the proof.
In this manuscript, we prove results related to super (α,1)-C4-antimagic labeling of stacked book graphs SB(p,q) and super (α,1)-C4(r+1)-antimagic labeling of its r subdivided graph SB(p,q)(r). One can extend these results for other differences d and for disjoint union of stacked book graphs. One can also prove results about applications of graph labeling in data science and communication networks.
The study was supported by the Key Industrial Technology Development Project of Chongqing Development and Reform Commission, China (Grant No. 2018148208), Key Technological Innovation and Application Development Project of Chongqing, China (Grant No. cstc2019jscx-fxydX0094), Innovation and Entrepreneurship Demonstration Team of Yingcai Program of Chongqing, China (Grant No. CQYC201903167), Science and Technology Innovation Project of Yongchuan District (Ycstc,2020cc0501).
The research was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 11871202, 61673169, 11701176, 11626101, 11601485).
The authors are grateful to the anonymous reviewers of this journal who helped to improve the paper.
The authors declare that there is no conflict of interests.
[1] | N. Ali, M. A. Umar, A. Tabassum, et al. Super (a,d)-C3-antimagicness of a Corona Graph, Open J. Math. sci., 2 (2018), 371-278. |
[2] | M. Bača and M. Miller, Super edge-antimagic graphs: A wealth of problems and some solutions, Brown Walker Press, Boca Raton, Florida, 2008. Open J. Math. Sci., 3 (2019), 129-138. |
[3] | A. Gutiérrez, A. Lladó, Magic coverings, J. Combin. Math. Combin. Comput., 55 (2005), 43-56. |
[4] |
N. Inayah, A. Lladó and J. Moragas, Magic and antimagic H-decompositions, Discrete Math., 312 (2012), 1367-1371. doi: 10.1016/j.disc.2011.11.041
![]() |
[5] | N. Inayah, A. N. M. Salman and R. Simanjuntak, On (a, d)-H-antimagic coverings of graphs, J. Combin. Math. Combin. Comput., 71 (2009), 273-281. |
[6] | N. Inayah, R. Simanjuntak, A. N. M. Salman, et al. On (a, d)-H-antimagic total labelings for shackles of a connected graph H, Australas. J. Comb., 57 (2013), 127-138. |
[7] | P. Jeyanthi and P. Selvagopal, More classes of H-supermagic graphs, Intern. J. Algor. Comput. Math., 3 (2010), 93-108. |
[8] |
A. Lladó and J. Moragas, Cycle-magic graphs, Discrete Math., 307 (2007), 2925-2933. doi: 10.1016/j.disc.2007.03.007
![]() |
[9] | T. K. Maryati, E. T. Baskoro and A. N. M. Salman, Ph-(super)magic labelings of some trees, J. Combin. Math. Combin. Comput., 65 (2008), 198-204. |
[10] |
T. K. Maryati, A. N. M. Salman and E. T. Baskoro, Supermagic coverings of the disjoint union of graphs and amalgamations, Discrete Math., 313 (2013), 397-405. doi: 10.1016/j.disc.2012.11.005
![]() |
[11] |
A. A. G. Ngurah, A. N. M. Salman and L. Susilowati, H-supermagic labelings of graphs, Discrete Math., 310 (2010), 1293-1300. doi: 10.1016/j.disc.2009.12.011
![]() |
[12] | M. A. Umar, M. A. Javed, M. Hussain, et al. Super (a, d)-C4-antimagicness of Book Graphs, Open J. Math. Sci., 2 (2018), 115-121. |
[13] |
M. A. Umar, N. Ali, A. Tabassum, et al. Book graphs are cycle antimagic, Open J. Math. Sci., 3 (2019), 184-190. doi: 10.30538/oms2019.0061
![]() |
[14] |
M. A. Umar, Cycle-antimagic construction of Ladders, Eng. Appl. Sci. Lett., 2 (2019), 43-47. doi: 10.30538/psrp-easl2019.0020
![]() |
[15] | M. J. Lee, W. H. Tsai, C. Lin, Super (a,1)-cycle-antimagic labeling of the grid, Ars Comb., 112 (2013), 3-12. |
[16] | A. M. Marr and W. D. Wallis, Magic Graphs, Birkhäuser, New York, 2013. |
1. | Hafiz Usman Afzal, Ahmed Alamer, Muhammad Javaid, Computing Antimagic Labeling of Lattically Designed Symmetric Networks, 2022, 10, 2169-3536, 32394, 10.1109/ACCESS.2022.3160715 | |
2. | Nur Inayah, Faisal Susanto, Andrea Semaničová-Feňovčíková, On H-antimagic coverings for m-shadow and closed m-shadow of connected graphs, 2021, 7, 24058440, e08203, 10.1016/j.heliyon.2021.e08203 |