Research article Special Issues

A numerical study of the ferromagnetic flow of Carreau nanofluid over a wedge, plate and stagnation point with a magnetic dipole

  • Received: 18 December 2019 Accepted: 10 April 2020 Published: 05 May 2020
  • MSC : 76A05, 76R05

  • Present communication mainly addresses the fluid transport characteristics of ferromagnetic Carreau nanofluid over a porous wedge, plate, and stagnation point with magnetic dipole effect for shear thinning/shear thickening cases. Suitable self-similarity variables are employed to convert the fluid transport equations into ordinary differential equations which are solved with the use of the Runge-Kutta-Fehlberg (RKF) approach. To check the accuracy of the present model, numerical results for various thermophoretic values for the cases of shear thinning/shear thickening, have been compared with the results obtained by using bvp4c (MATLAB) which divulges good agreement. Influence of active parameters like ferromagnetic-hydrodynamic interaction, thermophoretic, dimensionless distance, Brownian diffusion, suction/injection, Weissenberg number are graphically presented. Computed results manifest that shear thinning and shear thickening fluids express the opposite nature in fluid velocity and temperature for higher values of Weissenberg number. Among the wedge, plate and stagnation point of the plate, the magnitude of heat transfer over the plate is significant for increasing Ferromagnetic-hydrodynamic interaction parameter. Furthermore, it is noticed that higher values of suction/injection parameter decline the fluid temperature over a plate, wedge and stagnation point of a flat plate.

    Citation: H. Thameem Basha, R. Sivaraj, A. Subramanyam Reddy, Ali J. Chamkha, H. M. Baskonus. A numerical study of the ferromagnetic flow of Carreau nanofluid over a wedge, plate and stagnation point with a magnetic dipole[J]. AIMS Mathematics, 2020, 5(5): 4197-4219. doi: 10.3934/math.2020268

    Related Papers:

  • Present communication mainly addresses the fluid transport characteristics of ferromagnetic Carreau nanofluid over a porous wedge, plate, and stagnation point with magnetic dipole effect for shear thinning/shear thickening cases. Suitable self-similarity variables are employed to convert the fluid transport equations into ordinary differential equations which are solved with the use of the Runge-Kutta-Fehlberg (RKF) approach. To check the accuracy of the present model, numerical results for various thermophoretic values for the cases of shear thinning/shear thickening, have been compared with the results obtained by using bvp4c (MATLAB) which divulges good agreement. Influence of active parameters like ferromagnetic-hydrodynamic interaction, thermophoretic, dimensionless distance, Brownian diffusion, suction/injection, Weissenberg number are graphically presented. Computed results manifest that shear thinning and shear thickening fluids express the opposite nature in fluid velocity and temperature for higher values of Weissenberg number. Among the wedge, plate and stagnation point of the plate, the magnitude of heat transfer over the plate is significant for increasing Ferromagnetic-hydrodynamic interaction parameter. Furthermore, it is noticed that higher values of suction/injection parameter decline the fluid temperature over a plate, wedge and stagnation point of a flat plate.


    加载中


    [1] R. Sivaraj, B. R. Kumar, Unsteady MHD dusty viscoelastic fluid Couette flow in an irregular channel with varying mass diffusion, Int. J. Heat Mass Tran., 55 (2012), 3076-3089. doi: 10.1016/j.ijheatmasstransfer.2012.01.049
    [2] B. R. Kumar, R. Sivaraj, Heat and mass transfer in MHD viscoelastic fluid flow over a vertical cone and flat plate with variable viscosity, Int. J. Heat Mass Tran., 56 (2013), 370-379. doi: 10.1016/j.ijheatmasstransfer.2012.09.001
    [3] B. R. Kumar, R. Sivaraj, MHD viscoelastic fluid non-Darcy flow over a vertical cone and a flat plate, Int. Commun. Heat Mass Tran., 40 (2013), 1-6. doi: 10.1016/j.icheatmasstransfer.2012.10.025
    [4] A. J. Benazir, R. Sivaraj, M. M. Rashidi, Comparison between Casson fluid flow in the presence of heat and mass transfer from a vertical cone and flat plate, J. Heat Trans., 138 (2016), 1-6.
    [5] Z. Li, A. Shafee, M. Ramzan, et al. Simulation of natural convection of Fe3O4-water ferrofluid in a circular porous cavity in the presence of a magnetic field, Eur. Phys. J. Plus, 134 (2019), 77.
    [6] P. Besthapu, R. Ul Haq, S. Bandari, et al. Thermal radiation and slip effects on MHD stagnation point flow of non-Newtonian nanofluid over a convective stretching surface, Neural Comput. Appl., 31 (2019), 207-217. doi: 10.1007/s00521-017-2992-x
    [7] F. A. Soomro, R. Ul Haq, Q. M. Al-Mdallal, et al. Heat generation/absorption and nonlinear radiation effects on stagnation point flow of nanofluid along a moving surface, Results Phys., 8 (2018), 404-414. doi: 10.1016/j.rinp.2017.12.037
    [8] K. Ur Rehman, I. Shahzadi, M. Y. Malik, et al. On heat transfer in the presence of nano-sized particles suspended in a magnetized rotatory flow field, Case Stud. Therm. Eng., 14 (2019), 1-10.
    [9] P. Ragupathi, A. K. A. Hakeem, Q. M. Al-Mdallal, et al. Non-uniform heat source/sink effects on the three-dimensional flow of Fe3O4/Al2O3 nanoparticles with different base fluids past a Riga plate, Case Stud. Therm. Eng., 15 (2019), 1-9.
    [10] S. Saranya, P. Ragupathi, B.Ganga, et al. Non-linear radiation effects on magnetic/non-magnetic nanoparticles with different base fluids over a flat plate, Adv. Powder Technol., 29 (2018), 1977-1990. doi: 10.1016/j.apt.2018.05.002
    [11] S. Aman, Q. Al-Mdallal, Flow of ferrofluids under second order slip effect, AIP Conference Proceedings, 2116 (2019), 030012.
    [12] S. S. Papell, Low viscosity magnetic fluid obtained by colloidal suspension of magnetic particles, U. S. Patent, 215 (1965), 572.
    [13] K. Raj, R. Moskowitz, Commercial applications of ferrofluids, J. Magn. Magn. Mater., 85 (1990), 233-245. doi: 10.1016/0304-8853(90)90058-X
    [14] D. B. Hathaway, Use of ferrofluid in moving coil loudspeakers, dB-sound Eng. Mag., 13 (1979), 42-44.
    [15] M. I. I. Shliomis, Comment on "Ferrofluids as Thermal Ratchets", Phys. Rev. Lett., 92 (2004) 188902.
    [16] J. C. Misra, G. C. Shit, Flow of a biomagnetic visco-elastic fluid in a channel with stretching walls, J. Appl. Mech., 76 (2015), 1-9.
    [17] A. Majeed, A. Zeeshan, R. Ellahi, Unsteady ferromagnetic liquid flow and heat transfer analysis over a stretching sheet with the effect of dipole and prescribed heat flux, J. Mol. Liq., 223 (2016), 528-533. doi: 10.1016/j.molliq.2016.07.145
    [18] N. Muhammad, S. Nadeem, Ferrite nanoparticles Ni-ZnFe2O4, Mn-ZnFe2O4 and Fe2O4 in the flow of ferromagnetic nanofluid, Eur. Phys. J. Plus, 132 (2017), 377.
    [19] P. J. Carreau, An analysis of the viscous behavior of polymer solutions, Can. J. Chem. Eng., 57 (1979), 135-140.
    [20] S. I. Abdelsalam, M. M. Bhatti, New insight into AuNP applications in tumour treatment and cosmetics through wavy annuli at the nanoscale, Sci. Rep., 9 (2019), 1-14. doi: 10.1038/s41598-018-37186-2
    [21] Y. Yang, Y. Zhang, E. Omairey, et al. Intermediate pyrolysis of organic fraction of municipal solid waste and rheological study of the pyrolysis oil for potential use as bio-bitumen, J. Clean. Prod., 187 (2018), 390-399. doi: 10.1016/j.jclepro.2018.03.205
    [22] K. L. Hsiao, To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau-Nanofluid with parameters control method, Energy, 130 (2017), 486-499. doi: 10.1016/j.energy.2017.05.004
    [23] M. Khan, M. Azam, A. Munir, On unsteady Falkner-Skan flow of MHD Carreau nanofluid past a static/moving wedge with convective surface condition, J. Mol. Liq., 230 (2017), 48-58. doi: 10.1016/j.molliq.2016.12.097
    [24] M. Waqas, M. I. Khan, T. Hayat, et al. Numerical simulation for magneto Carreau nanofluid model with thermal radiation: A revised model, Comput. Method. Appl. Mech. Eng., 324 (2017), 640-653. doi: 10.1016/j.cma.2017.06.012
    [25] M. Khan, M. Irfan, W. A. Khan, Numerical assessment of solar energy aspects on 3D magnetoCarreau nanofluid: A revised proposed relation, Int. J. Hydrogen Energ., 42 (2017), 22054-22065. doi: 10.1016/j.ijhydene.2017.07.116
    [26] S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, In: Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, California, 1995, 99-105.
    [27] J. Buongiorno, Convective transport in nanofluids, J. Heat Trans., 128 (2006), 240.
    [28] M. I. Khan, S. Qayyum, T. Hayat, et al. Entropy generation in radiative motion of tangent hyperbolic nanofluid in presence of activation energy and nonlinear mixed convection, Phys. Lett. A, 382 (2018), 2017-2026. doi: 10.1016/j.physleta.2018.05.021
    [29] S. S. Ghadikolaei, K. Hosseinzadeh, D. D. Ganji, Investigation on Magneto Eyring-Powell nanofluid flow over inclined stretching cylinder with nolinear thermal radiation and Joule heating effect, World J. Eng., 16 (2019), 51-63. doi: 10.1108/WJE-06-2018-0204
    [30] Y. Lin, Y. Jiang, Effects of Brownian motion and thermophoresis on nanofluids in a rotating circular groove: A numerical simulation, Int. J. Heat Mass Tran., 123 (2018), 569-582. doi: 10.1016/j.ijheatmasstransfer.2018.02.103
    [31] V. M. Falkner, S. W. Skan, Some approximate solutions of the boundary-layer equations, Philos. Mag., 12 (1931), 865-896. doi: 10.1080/14786443109461870
    [32] H. T. Lin, L. K. Lin, Similarity solutions for laminar forced convection heat transfer from wedges to fluids of any Prandtl number, Int. J. Heat Mass Tran., 30 (1987), 1111-1118. doi: 10.1016/0017-9310(87)90041-X
    [33] S. Nadeem, S. Ahmad, N. Muhammad, Computational study of Falkner-Skan problem for a static and moving wedge, Sensor. Actuat. B Chem., 263 (2018), 69-76. doi: 10.1016/j.snb.2018.02.039
    [34] F. A. Hendi, M. Hussain, Analytic solution for MHD Falkner-Skan flow over a porous surface, J. Appl. Math., 2012 (2012), 1-9.
    [35] M. S. Alam, M. A. Khatun, M. M. Rahman, et al. Effects of variable fluid properties and thermophoresis on unsteady forced convective boundary layer flow along a permeable stretching/shrinking wedge with variable Prandtl and Schmidt numbers, Int. J. Mech. Sci., 105 (2016), 191-205 doi: 10.1016/j.ijmecsci.2015.11.018
    [36] M. Khan, M. Azam, A. S. Alshomrani, Unsteady slip flow of Carreau nanofluid over a wedge with nonlinear radiation and new mass flux condition, Results Phys., 7 (2017), 2261-2270. doi: 10.1016/j.rinp.2017.06.038
    [37] H. Sardar, L. Ahmad, M. Khan, et al. Investigation of mixed convection flow of Carreau nanofluid over a wedge in the presence of Soret and Dufour effects, Int. J. Heat Mass Tran., 137 (2019), 809-822. doi: 10.1016/j.ijheatmasstransfer.2019.03.132
    [38] H. T. Basha, R. Sivaraj, A. S. Reddy, et al. Impacts of temperature-dependent viscosity and variable Prandtl number on forced convective Falkner-Skan flow of Williamson nanofluid, SN Appl. Sci., 2 (2020), 1-14.
    [39] H. T. Basha, R. Sivaraj, A. S. Reddy, et al. SWCNH/diamond-ethylene glycol nanofluid flow over a wedge, plate and stagnation point with induced magnetic field and nonlinear radiation-solar energy application, Eur. Phys. J. Spec. Top., 228 (2019), 2531-2551
    [40] W. Gao, M. Partohaghighi, H. Mehmet, et al. Regarding the group preserving scheme and method of line to the numerical simulations of Klein-Gordon model, Results Phys., 15 (2019), 1-7.
    [41] W. Gao, H. F. Ismael, S. A. Mohammed, et al. Complex and real optical soliton properties of the paraxial non-linear Schrödinger equation in Kerr media with M-fractional, Front. Phys., 7 (2019), 1-8. doi: 10.3389/fphy.2019.00001
    [42] W. Gao, H. F. Ismael, H. Bulut, et al. Instability modulation for the (2+1)-dimension paraxial wave equation and its new optical soliton solutions in Kerr media, Phys. Scr., 2019.
    [43] W. Gao, B. Ghanbari, H. Günerhan, et al. Some mixed trigonometric complex soliton solutions to the perturbed nonlinear Schrödinger equation, Mod. Phys. Lett. B, 34 (2020), 2050034.
    [44] A. Ciancio, Analysis of time series with wavelets, Int. J. Wavelets, Multi., 5 (2007), 241-256. doi: 10.1142/S0219691307001744
    [45] A. Ciancio, A. Quartarone, A hybrid model for tumor-immune competition, U. P. B. Sci. Bull. Ser. A, 75 (2013), 125-136.
    [46] A. Cordero, J. P. Jaiswal, J. R. Torregrosa, Stability analysis of fourth-order iterative method for finding multiple roots of non-linear equations, Appl. Math. Nonlinear Sci., 4 (2019), 43-56. doi: 10.2478/AMNS.2019.1.00005
    [47] P. K. Pandey, A new computational algorithm for the solution of second order initial value problems in ordinary differential equations, Appl. Math. Nonlinear Sci., 3 (2018), 167-174. doi: 10.21042/AMNS.2018.1.00013
    [48] H. Chen, J. Jiang, D. Cao, et al. Numerical investigation on global dynamics for nonlinear stochastic heat conduction via global random attractors theory, Appl. Math. Nonlinear Sci., 3 (2018), 175-186. doi: 10.21042/AMNS.2018.1.00014
    [49] L. F. Shampine, I. Gladwell, S. Thompson, Solving ODEs with MATLAB, Cambridge University Press, Cambridge, 2003.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5202) PDF downloads(523) Cited by(38)

Article outline

Figures and Tables

Figures(23)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog