Research article

H filter design for a class of delayed Hamiltonian systems with fading channel and sensor saturation

  • Received: 03 February 2020 Accepted: 09 March 2020 Published: 19 March 2020
  • MSC : 35Q93

  • This technical note is concerned with the problem of H filtering for a class of time delay nonlinear Hamiltonian systems with wireless network communication. The fading channel phenomenon and sensor saturation in the output measurements are considered. A H filter model is constructed to solve the issue of state estimation for the Hamiltonian systems with time varying delay in the state. Some sufficient conditions are proposed to obtain effective filter gain and achieve the H performance for the augmented system consisted of the Hamiltonian system and the filter. Simulation results illustrate the validity of the main results.

    Citation: Weiwei Sun, Mengyang Qiu, Xinyu Lv. H∞ filter design for a class of delayed Hamiltonian systems with fading channel and sensor saturation[J]. AIMS Mathematics, 2020, 5(4): 2909-2922. doi: 10.3934/math.2020188

    Related Papers:

  • This technical note is concerned with the problem of H filtering for a class of time delay nonlinear Hamiltonian systems with wireless network communication. The fading channel phenomenon and sensor saturation in the output measurements are considered. A H filter model is constructed to solve the issue of state estimation for the Hamiltonian systems with time varying delay in the state. Some sufficient conditions are proposed to obtain effective filter gain and achieve the H performance for the augmented system consisted of the Hamiltonian system and the filter. Simulation results illustrate the validity of the main results.


    加载中


    [1] B. Fu, S. Li, J. Yang, Global output regulation for a class of single input Port-controlled Hamiltonian disturbed systems, Appl. Math. Comput., 325 (2018), 322-331.
    [2] A. Macchelli, Passivity-based control of implicit port-Hamiltonian systems, SIAM J. Control Optim., 52 (2014), 2422-2448. doi: 10.1137/130918228
    [3] R. Ortega, A. J. van der Schaft, F. Castanos, et al. Control by interconnection and standard passivity-based control of port-Hamiltonian systems, IEEE Trans. Autom. Control, 53 (2008), 2527-2542. doi: 10.1109/TAC.2008.2006930
    [4] W. Sun, Stabilization analysis of time-delay Hamiltonian systems in the presence of saturation, Appl. Math. Comput., 217 (2011), 9625-9634.
    [5] G. Liu, X. Liao, Fixed-time H control for port-controlled Hamiltonian systems, IEEE Trans. Autom. Control, 64 (2018), 2753-2765. doi: 10.1109/TAC.2018.2874768
    [6] S. Aoues, F. L. FCardoso-Ribeiro, D. Matignon, et al. Modeling and control of a rotating flexible spacecraft: A port-Hamiltonian approach, IEEE Trans. Control Syst. Technol., 27 (2017), 355-362. doi: 10.1109/TCST.2017.2771244
    [7] B. Fu, S. Li, X. Wang, et al. Output feedback based simultaneous stabilization of two Portcontrolled Hamiltonian systems with disturbances, J. Franklin Inst., 356 (2019), 8154-8166. doi: 10.1016/j.jfranklin.2019.02.039
    [8] W. Sun, Y. Wu, L. Wang, Trajectory tracking of constrained robotic systems via a hybrid control strategy, Neurocomputing, 330 (2019), 188-195. doi: 10.1016/j.neucom.2018.11.008
    [9] D. Yang, X. Li, J. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal.: Hybrid Syst., 32 (2019), 294-305. doi: 10.1016/j.nahs.2019.01.006
    [10] R. Yang, G. Zhang, L. Sun, Finite-time robust simultaneous stabilization of a set of nonlinear time-delay systems, Int. J. Robust Nonlinear Control, 30 (2020), 1733-1753. doi: 10.1002/rnc.4848
    [11] X. Li, X. Yang, T. Huang, Persistence of delayed cooperative models: Impulsive control method, Appl. Math. Comput., 342 (2019), 130-146.
    [12] X. Li, J. Shen, R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Appl. Math. Comput., 329 (2018), 14-22.
    [13] J. Schiffer, E. Fridman, R. Ortega, Stability of a class of delayed port-Hamiltonian systems with application to microgrids with distributed rotational and electronic generation, Automatica, 74 (2016), 71-79. doi: 10.1016/j.automatica.2016.07.022
    [14] W. Sun, B. Fu, Adaptive control of time-varying uncertain nonlinear systems with input delay: A Hamiltonian approach, IET Control Theory Appl., 15 (2016), 1844-1858. doi: 10.1049/iet-cta.2015.1165
    [15] R. Yang, L. Sun, G. Zhang, et al. Finite-time stability and stabilization of nonlinear singular timedelay systems via Hamiltonian method, J. Franklin Inst., 356 (2019), 5961-5992. doi: 10.1016/j.jfranklin.2019.04.033
    [16] R. Yang, W. Pei, Y. Han, et al. Finite-time adaptive robust simultaneous stabilization of nonlinear delay systems by the Hamiltonian function method, Sci. China: Inform. Sci., in press, doi: 10.1007/s11432-019-2804-2.
    [17] A. Venkatraman, A. J. van der Schaft, Full-order observer design for a class of Port-Hamiltonian systems, Automatica, 46 (2010), 555-561. doi: 10.1016/j.automatica.2010.01.019
    [18] A. Yaghmaei, M. J. Yazdanpanah, Structure preserving observer design for port-Hamiltonian systems, IEEE Trans. Autom. Control, 64 (2019), 1214-1220. doi: 10.1109/TAC.2018.2847904
    [19] W. Sun, X. Lv, K. Wang, et al. Observer-based output feedback stabilisation and L2-disturbance attenuation of uncertain Hamiltonian systems with input and output delays, Int. J. Syst. Sci., 50 (2019), 2565-2578. doi: 10.1080/00207721.2019.1671532
    [20] M. Fu, C. de Souza, Z. Luo, Finite-horizon robust Kalman filter design, IEEE Trans. Signal Process., 49 (2001), 2103-2112. doi: 10.1109/78.942638
    [21] A. Elsayed, M. J. Grimble, A new approach to the H design of optimal digital linear filters, IMA J. Math. Control Inform., 6 (1989), 233-251. doi: 10.1093/imamci/6.2.233
    [22] F. Wang, Z. Wang, J. Liang, et al. A survey on filtering issues for two-dimensional systems: Advances and challenges, Int. J. Control. Autom. Syst., 18 (2020), 629-642. doi: 10.1007/s12555-019-1000-x
    [23] D. Chen, W. Chen, J. Hu, et al. Variance-constrained filtering for discrete-time genetic regulatory networks with state delay and random measurement delay, Int. J. Syst. Sci., 50 (2019), 231-243. doi: 10.1080/00207721.2018.1542045
    [24] S. Liu, Z. Wang, Y. Chen, et al. Protocol-based unscented Kalman filtering in the presence of stochastic uncertainties, IEEE Trans. Autom. Control, 65 (2020), 1303-1309. doi: 10.1109/TAC.2019.2929817
    [25] H. Yang, P. Li, Y. Xia, et al. Reduced-order H filter design for delta operator systems over multiple frequency intervals, IEEE Trans. Autom. Control, in press, doi: 10.1109/TAC.2020.2968962.
    [26] B. Umberto, K. Dongnam, Z. Enrique, Dynamics and control for multi-agent networked systems: A finite-difference approach, Math. Models Methods Appl. Sci., 29 (2019), 755-790. doi: 10.1142/S0218202519400050
    [27] Y. Li, H. Li, W. Sun, Event-triggered control for robust set stabilization of logical control networks, Automatica, 95 (2018), 556-560. doi: 10.1016/j.automatica.2018.06.030
    [28] W. Sun, X. Lv, Practical finite-time fuzzy control for Hamiltonian systems via adaptive eventtriggered approach, Int. J. Fuzzy Syst, 22 (2020), 35-45. doi: 10.1007/s40815-019-00773-0
    [29] S. Dey, A. S. Leong, J. S. Evans, Kalman filtering with faded measurements, Automatica, 45 (2009), 2223-2233. doi: 10.1016/j.automatica.2009.06.025
    [30] D. E. Quevedo, A. Ahlén, A. S. Leong, et al., On Kalman filtering over fading wireless channels with controlled transmission powers, Automatica, 48 (2012), 1306-1316. doi: 10.1016/j.automatica.2012.03.025
    [31] Y. Chen, Z. Wang, Y. Yuan, et al., Distributed H filtering for switched stochastic delayed systems over sensor networks with fading measurements, IEEE Trans. Cybern., 50 (2020), 2-14. doi: 10.1109/TCYB.2018.2852290
    [32] H. Dong, Z. Wang, H. Gao, et al., Event-based H filter design for a class of nonlinear timevarying systems with fading channels and multiplicative noises, IEEE Trans. Signal Process., 63 (2015), 3387-3395. doi: 10.1109/TSP.2015.2422676
    [33] Q. Liu, W. Chen, Z. Wang, et al., Stabilization of MIMO systems over multiple independent and memoryless fading noisy channels, IEEE Trans. Autom. Control, 64 (2019), 1581-1594. doi: 10.1109/TAC.2018.2854643
    [34] Y. Li, S. Liu, M. Zhong, State estimation for stochastic discrete-time systems with multiplicative noises and unknown inputs over fading channels, Appl. Math. Comput., 320 (2018), 116-130.
    [35] J. Hu, Z. Wang, H. Gao, et al., Joint state and fault estimation for time-varying nonlinear systems with randomly occurring faults and sensor saturations, Automatica, 97 (2018), 150-160. doi: 10.1016/j.automatica.2018.07.027
    [36] H. Yang, Y. Li, H. Yuan, et al., Adaptive dynamic programming for security of networked control systems with actuator saturation, Inform. Sci., 460 (2018), 51-64. doi: 10.1016/j.ins.2018.05.039
    [37] Z. Wang, B. Shen, X. Liu, H filtering with randomly occurring sensor saturations and missing measurements, Automatica, 48 (2012), 556-562. doi: 10.1016/j.automatica.2012.01.008
    [38] R. W. Eustace, B. A. Woodyatt, G. L. Merrington, et al., Fault signatures obtained from fault implant tests on an F404 engine, J. Eng. Gas Turbines Power, 116 (1994), 178-183. doi: 10.1115/1.2906789
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3884) PDF downloads(364) Cited by(4)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog