Research article

Approximate solutions of Atangana-Baleanu variable order fractional problems

  • Received: 20 December 2019 Accepted: 27 February 2020 Published: 02 March 2020
  • MSC : 65L60, 65R20

  • The main aim of this paper is to propose a new approach for Atangana-Baleanu variable order fractional problems. We introduce a new reproducing kernel function with polynomial form. The advantage is that its fractional derivatives can be calculated explicitly. Based on this kernel function, a new collocation technique is developed for variable order fractional problems in the Atangana-Baleanu fractional sense. To show the accuracy and effectiveness of our approach, we provide three numerical experiments.

    Citation: Xiuying Li, Yang Gao, Boying Wu. Approximate solutions of Atangana-Baleanu variable order fractional problems[J]. AIMS Mathematics, 2020, 5(3): 2285-2294. doi: 10.3934/math.2020151

    Related Papers:

  • The main aim of this paper is to propose a new approach for Atangana-Baleanu variable order fractional problems. We introduce a new reproducing kernel function with polynomial form. The advantage is that its fractional derivatives can be calculated explicitly. Based on this kernel function, a new collocation technique is developed for variable order fractional problems in the Atangana-Baleanu fractional sense. To show the accuracy and effectiveness of our approach, we provide three numerical experiments.


    加载中


    [1] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A
    [2] S. Qureshia, A. Yusuf, A. A. Shaikha, et al. Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data, Physica A, 534 (2019), 122149.
    [3] A. Yusuf, S. Qureshi, S. F. Shah, Mathematical analysis for an autonomous financial dynamical system via classical and modern fractional operators, Chaos Soliton. Fract., 132 (2020), 109552.
    [4] S. Qureshi, A. Yusuf, Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator, Chaos Soliton. Fract., 126 (2019), 32-40. doi: 10.1016/j.chaos.2019.05.037
    [5] A. Jajarmi, A. Yusuf, D. Baleanu, et al., A new fractional HRSV model and its optimal control: A non-singular operator approach, Physica A, Available from: https://doi.org/10.1016/j.physa.2019.123860.
    [6] S. Qureshi, A. Yusuf, A new third order convergent numerical solver for continuous dynamical systems, J. King Saud Univ. Sci., Available from: https://doi.org/10.1016/j.jksus.2019.11.035.
    [7] A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Soliton. Fract., 89 (2016), 447-454. doi: 10.1016/j.chaos.2016.02.012
    [8] A. Atangana, On the new fractional derivative and application to nonlinear Fishers reactiondiffusion equation, Appl. Math. Comput., 273 (2016), 948-956.
    [9] D. Baleanu, A. Jajarmi, M. Hajipour, A new formulation of the fractional optimal control problems involving Mittag-Leffler nonsingular kernel, J. Optim. Theory Appl., 175 (2017), 718-737. doi: 10.1007/s10957-017-1186-0
    [10] A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Soliton. Fract., 114 (2018), 478-482. doi: 10.1016/j.chaos.2018.07.032
    [11] A. Akgül, M. Modanli, Crank-Nicholson difference method and reproducing kernel function for third order fractional differential equations in the sense of Atangana-Baleanu Caputo derivative, Chaos Soliton. Fract., 127 (2019), 10-16. doi: 10.1016/j.chaos.2019.06.011
    [12] E. K. Akgül, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos, 29 (2019), 023108.
    [13] O. Abu Arqub, B. Maayah, Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense, Chaos Soliton. Fract., 125 (2019), 163-170. doi: 10.1016/j.chaos.2019.05.025
    [14] O. Abu Arqub, M. Al-Smadi, Atangana-Baleanu fractional approach to the solutions of BagleyTorvik and Painlev equations in Hilbert space, Chaos Soliton. Fract., 117 (2018), 161-167. doi: 10.1016/j.chaos.2018.10.013
    [15] O. Abu Arqub, B. Maayah, Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator, Chaos Soliton. Fract., 117 (2018), 117-124. doi: 10.1016/j.chaos.2018.10.007
    [16] O. Abu Arqub, B. Maayah, Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC-Fractional Volterra integro-differential equations, Chaos Soliton. Fract., 126 (2019), 394-402. doi: 10.1016/j.chaos.2019.07.023
    [17] O. Abu Arqub, Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis, Fund. Inform., 166 (2019), 111-137. doi: 10.3233/FI-2019-1796
    [18] S. Yadav, R. K. Pandey, A. K. Shukla, Numerical approximations of Atangana-Baleanu Caputo derivative and its application, Chaos Soliton. Fract., 118 (2019), 58-64. doi: 10.1016/j.chaos.2018.11.009
    [19] S. Hasan, A. El-Ajou, S. Hadid, et al., Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system, Chaos Soliton. Fract., 133 (2020), 109624.
    [20] X. Y. Li, B. Y. Wu, A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations, J. Comput. Appl. Math., 311 (2017), 387-393. doi: 10.1016/j.cam.2016.08.010
    [21] X. Y. Li, B. Y. Wu, A numerical technique for variable fractional functional boundary value problems, Appl. Math. Lett., 43 (2015), 108-113. doi: 10.1016/j.aml.2014.12.012
    [22] X. Y. Li, B. Y. Wu, Error estimation for the reproducing kernel method to solve linear boundary value problems, J. Comput. Appl. Math., 243 (2013), 10-15. doi: 10.1016/j.cam.2012.11.002
    [23] F. Z. Geng, S. P. Qian, Modified reproducing kernel method for singularly perturbed boundary value problems with a delay, Appl. Math. Model., 39 (2015), 5592-5597. doi: 10.1016/j.apm.2015.01.021
    [24] F. Z. Geng, S. P. Qian, Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers, Appl. Math. Lett., 26 (2013), 998-1004. doi: 10.1016/j.aml.2013.05.006
    [25] L. C. Mei, Y. T. Jia, Y. Z. Lin, Simplified reproducing kernel method for impulsive delay differential equations, Appl. Math. Lett., 83 (2018), 123-129. doi: 10.1016/j.aml.2018.03.024
    [26] O. A. Arqub, Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm, Int. J. Numer. Method H., 28 (2018), 828-856. doi: 10.1108/HFF-07-2016-0278
    [27] O. A. Arqub, B. Maayah, Solutions of Bagley-Torvik and Painlev equations of fractional order using iterative reproducing kernel algorithm with error estimates, Neural Comput. Appl., 29 (2018), 1465-1479. doi: 10.1007/s00521-016-2484-4
    [28] M. Al-Smadi, O. Abu Arqub, Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of Dirichlet functions type with error estimates, Appl. Math. Comput., 342 (2019), 280-294.
    [29] M. Al-Smadi, Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation, Ain Shams Eng. J., 9 (2018), 2517-2525. doi: 10.1016/j.asej.2017.04.006
    [30] Z. Altawallbeh, M. Al-Smadi, I. Komashynska, et al., Numerical solutions of fractional systems of two-point BVPs by using the iterative reproducing kernel algorithm, Ukr. Math. J., 70 (2018), 687-701. doi: 10.1007/s11253-018-1526-8
    [31] A. Akgül, Reproducing kernel Hilbert space method based on reproducing kernel functions for investigating boundary layer flow of a Powell-Eyring non-Newtonian fluid, J. Taibah Univ. Sci., 13 (2019), 858-863. doi: 10.1080/16583655.2019.1651988
    [32] A. Akgül, E. K. Akgül, A novel method for solutions of fourth-order fractional boundary value problems, Fractal Fract., 3 (2019), 1-13. doi: 10.3390/fractalfract3010001
    [33] E. K. Akgül, Reproducing kernel Hilbert space method for nonlinear boundary-value problems, Math. Method Appl. Sci., 41 (2018), 9142-9151. doi: 10.1002/mma.5102
    [34] B. Boutarfa, A. Akgül, M. Inc, New approach for the Fornberg-Whitham type equations, J. Comput. Appl. Math., 312 (2017), 13-26. doi: 10.1016/j.cam.2015.09.016
    [35] A. Akgül, E. K. Akgül, S. Korhan, New reproducing kernel functions in the reproducing kernel Sobolev spaces, AIMS Math., 5 (2020), 482-496. doi: 10.3934/math.2020032
    [36] N. Aronszajn, Theory of reproducing kernel, Trans. A.M.S., 168 (1950), 1-50.
    [37] K. Diethelm, The analysis of fractional differential equations, New York: Springer, 2010.
    [38] J. Shawe-Taylor, N. Cristianini, Kernel methods for pattern analysis, New York: Cambridge University Press, 2004.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3902) PDF downloads(492) Cited by(19)

Article outline

Figures and Tables

Figures(1)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog