Research article

Approximate solutions of Atangana-Baleanu variable order fractional problems

  • Received: 20 December 2019 Accepted: 27 February 2020 Published: 02 March 2020
  • MSC : 65L60, 65R20

  • The main aim of this paper is to propose a new approach for Atangana-Baleanu variable order fractional problems. We introduce a new reproducing kernel function with polynomial form. The advantage is that its fractional derivatives can be calculated explicitly. Based on this kernel function, a new collocation technique is developed for variable order fractional problems in the Atangana-Baleanu fractional sense. To show the accuracy and effectiveness of our approach, we provide three numerical experiments.

    Citation: Xiuying Li, Yang Gao, Boying Wu. Approximate solutions of Atangana-Baleanu variable order fractional problems[J]. AIMS Mathematics, 2020, 5(3): 2285-2294. doi: 10.3934/math.2020151

    Related Papers:

    [1] Yumei Chen, Jiajie Zhang, Chao Pan . Numerical approximation of a variable-order time fractional advection-reaction-diffusion model via shifted Gegenbauer polynomials. AIMS Mathematics, 2022, 7(8): 15612-15632. doi: 10.3934/math.2022855
    [2] Najat Almutairi, Sayed Saber . Chaos control and numerical solution of time-varying fractional Newton-Leipnik system using fractional Atangana-Baleanu derivatives. AIMS Mathematics, 2023, 8(11): 25863-25887. doi: 10.3934/math.20231319
    [3] Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046
    [4] Fatmawati, Muhammad Altaf Khan, Ebenezer Bonyah, Zakia Hammouch, Endrik Mifta Shaiful . A mathematical model of tuberculosis (TB) transmission with children and adults groups: A fractional model. AIMS Mathematics, 2020, 5(4): 2813-2842. doi: 10.3934/math.2020181
    [5] Ahmed Abouelregal, Meshari Alesemi, Husam Alfadil . Thermoelastic reactions in a long and thin flexible viscoelastic cylinder due to non-uniform heat flow under the non-Fourier model with fractional derivative of two different orders. AIMS Mathematics, 2022, 7(5): 8510-8533. doi: 10.3934/math.2022474
    [6] Miguel Vivas-Cortez, Muhammad Uzair Awan, Sehrish Rafique, Muhammad Zakria Javed, Artion Kashuri . Some novel inequalities involving Atangana-Baleanu fractional integral operators and applications. AIMS Mathematics, 2022, 7(7): 12203-12226. doi: 10.3934/math.2022678
    [7] Muhammad Altaf Khan, Muhammad Ismail, Saif Ullah, Muhammad Farhan . Fractional order SIR model with generalized incidence rate. AIMS Mathematics, 2020, 5(3): 1856-1880. doi: 10.3934/math.2020124
    [8] Changdev P. Jadhav, Tanisha B. Dale, Vaijanath L. Chinchane, Asha B. Nale, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On solutions of fractional differential equations for the mechanical oscillations by using the Laplace transform. AIMS Mathematics, 2024, 9(11): 32629-32645. doi: 10.3934/math.20241562
    [9] Rahat Zarin, Abdur Raouf, Amir Khan, Aeshah A. Raezah, Usa Wannasingha Humphries . Computational modeling of financial crime population dynamics under different fractional operators. AIMS Mathematics, 2023, 8(9): 20755-20789. doi: 10.3934/math.20231058
    [10] Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876
  • The main aim of this paper is to propose a new approach for Atangana-Baleanu variable order fractional problems. We introduce a new reproducing kernel function with polynomial form. The advantage is that its fractional derivatives can be calculated explicitly. Based on this kernel function, a new collocation technique is developed for variable order fractional problems in the Atangana-Baleanu fractional sense. To show the accuracy and effectiveness of our approach, we provide three numerical experiments.


    We are concerned with Atangana-Baleanu variable order fractional problems:

    {Lu(x)=ABCDα(x)u(x)+a(x)u(x)=f(x,u),x[0,1],B(u)=0, (1.1)

    where 0<α(x)<1, ABCDα(x)(x) denotes the α(x) order Atangana-Baleanu Caputo derivatives, B(u) is the linear boundary condition, which includes initial value condition, periodic condition, final value condition and so on.

    The α(x)(0<α(x)<1) order Atangana-Baleanu Caputo derivatives of a function u(x) is firstly defined by Atangana and Baleanu [1]

    ABCDα(x)u(x)=M(α(x))1α(x)x0Eα(x)(α(x)1α(x)(xt)α(x))u(t)dt, (1.2)

    where Eα(x)(x) is the Mittag-Leffler function.

    Fractional order differential equations (FDEs) have important applications in several fields such as materials, chemistry transmission dynamics, optimal control and engineering [2,3,4,5,6]. In fact, the classical fractional derivatives are defined with weak singular kernels and the solutions of FDEs inherit the weak singularity. The Mittag-Leffler (ML) function was firstly introduced by Magnus Gösta Mittag-Leffler. Recently, it is found that this function has close relation to FDEs arising in real applications.

    Atangana and Baleanu [1] introduced a new fractional derivative by using the ML function, which is nonlocal and nonsingular. The new fractional derivatives is very important and have been applied to several different fields (see e.g. [7,8,9]). Up to now, several numerical algorithms have been developed for solving Atangana-Baleanu FDEs. Akgül et al. [10,11,12] proposed effective difference techniques and kernels based approaches for Atangana-Baleanu FDEs. On the basis of the Sobolev kernel functions, Arqub et al. [13,14,15,16,17] proposed the numerical techniques for Atangana-Baleanu fractional Riccati and Bernoulli equations, Bagley-Torvik and Painlev equations, Volterra and Fredholm integro-differential equations. Yadav et al. [18] introduced the numerical algorithms and application of Atangana-Baleanu FDEs. El-Ajou, Hadid, Al-Smadi et al. [19] developed approximated technique for solutions of population dynamics of Atangana-Baleanu fractional order.

    Reproducing kernel Hilbert space (RKHS) is ideal for function approximation and estimate of fractional derivatives. In recent years, reproducing kernel functions (RKF) theory have been employed to solve linear and nonlinear fractional order problems, singularly perturbed problems, singular integral equations, fuzzy differential equations, and so on (see, e.g. [10,11,12,13,14,15,16,17,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35]). However, there exists little discussion on numerical schemes for solving variable order Atangana-Baleanu FDEs.

    In this paper, by using polynomials RKF, we will present a new collocation method for solving variable order Atangana-Baleanu FDEs.

    This work is organized as follows. We summarize fractional derivatives and RKHS theory in Section 2. In Section 3, we develop RKF based collocation technique for Atangana-Baleanu variable order FDEs. Numerical experiments are provided in Section 4. Concluding remarks are included in the last section.

    Definition 2.1. Let H be a Hilbert function space defined on E. The function K:E×ER is known as an RKF of space H if

    (1)K(,t)HforalltE,(2)w(t)=(w(),K(,t)),foralltEandallwH.

    If there exists a RKF in a Hilbert space, then the space is a RKHS.

    Definition 2.2. Symmetric function K:E×ER is known as a positive definite kernel (PDK) if ni,j=1cicjK(xi,xj)0 for any nN, x1,x2,,xnE,c1,c2,,cnR.

    Theorem 2.1. [36] The RKF of an RKHS is positive definite. Besides, every PDK can define a unique RKHS, of which it is the RKF.

    Definition 2.3. Let q>0. The one parameter Mittag-Leffler function of order q is defined by

    Eq(z)=j=0zjΓ(jq+1). (2.1)

    Definition 2.4. Let q1,q2>0. The two-parameter Mittag-Leffler function is defined by

    Eq1,q2(z)=j=0zjΓ(jq1+q2). (2.2)

    For the domains of convergence of the Mittag-Leffler functions, please refer to the following theorem.

    Theorem 2.2. [37] For q1,q2>0, the two-parameter Mittag-Leffler function Eq1,q2(z) is convergent for all zC.

    Definition 2.5. The Sobolev space H1(0,T) is defined as follows

    H1(0,T)={u|uL2(0,T),uL2(0,T)}.

    Definition 2.6. The α(0,1) order Atangana- Baleanu fractional derivative of a function uH1(a,b) is defined

    ABCDαu(x)=M(α)1αx0Eα(α1α(xt)α)u(t)dt, (2.3)

    where M(α) is the normalization term satisfying M(0)=M(1)=1.

    Theorem 2.3. [38] The function k(x,y)=(xy+c)m for c>0,mN is a PDK.

    According to Theorem 2.1, there exists an associated RKHS Qm with k as an RKF.

    To solve (1.1), we will construct the RKF which satisfies the homogenous boundary condition.

    Definition 3.1.

    Qm,0={w(t)w(t)Qm,B(w)=0}.

    Theorem 3.1. The space Qm,0 is an RKHS and its RKF is expressed by

    K(x,y)=k(x,y)Bxk(x,y)Byk(x,y)BxByk(x,y).

    Proof. If Byk(x,y)=0 or Bxk(x,y)=0, then

    K(x,y)=k(x,y).

    If Byk(x,y)0, then

    BxK(x,y)=Bxk(x,y)Bxk(x,y)BxByk(x,y)BxByk(x,y),=0,

    and naturally K(x,y)Qm,0.

    For all u(y)Qm,0, we have u(y)Qm and Byu(y)=0.

    We have

    (u(y),K(x,y))=(u(y),k(x,y))(u(y),Bxk(x,y)Byk(x,y)BxByk(x,y)=u(x)Byk(x,y)BxByk(x,y)(u(y),Bxk(x,y))=u(x)Byk(x,y)BxByk(x,y)Bx(u(y),k(x,y))=u(x)Byk(x,y)BxByk(x,y)Bxu(x)=u(x)0=0.

    Thus, K(x,y) is the RKF of space Qm,0 and the proof is complete.

    Suppose that L:Qm,0H1 is a bounded linear operator. It is easy to proved that its inverse operator L1 is also bounded since both Qm,0 and H1 are Banach spaces.

    Choose N distinct scattered points in [0,1], such as {x1,x2,,xN}. Put ψi(x)=K(x,xi),i=1,2,,N. By using RKF basis, the RKF collocation solution uN(x) for (1.1) can be written as follows

    uN(x)=Ni=1ciψi(x), (3.1)

    where {ci}Ni=1 are undetermined constants.

    Collocating (1.1) at N nodes x1,x2,,xN provides N equations:

    LuN(xk)=Ni=1ciLψi(xk)=f(xk,uN(xk)),k=1,2,,N. (3.2)

    System (3.3) of equations is simplified to the matrix form:

    Ac=f, (3.3)

    where Aik=Lxψk(x)|x=xi,i,k=1,2,,N, f=(f(x1,uN(x1)),f(x2,uN(x2)),,f(xN,uN(xN)).

    Theorem 3.2. If γ>0, then

    ABCDα(x)xγ=M(α(x))1α(x)Γ(γ+1)xγEα(x),γ+1(α(x)1α(x)xα(x)),

    and therefore matrix A can be computed exactly.

    Proof. It is noticed that

    ABCDα(x)xγ=M(α(x))1α(x)x0Eα(x)(α(x)1α(x)(xt)α(x))γtγ1dt=M(α(x))1α(x)x0j=0(α(x)1α(x)(xt)α(x))jΓ(jα(x)+1)γtγ1dt=M(α(x))1α(x)γj=0(α(x)1α(x))jΓ(jα(x)+1)x0(xt)α(x)tγ1dt=M(α(x))1α(x)γj=0(α(x)1α(x))jΓ(jα(x)+1)Γ(jα(x)+1)Γ(γ)Γ(jα(x)+γ+1)xjα(x)+γ=M(α(x))1α(x)Γ(γ+1)xγj=0(α(x)1α(x)xα(x))jΓ(jα(x)+γ+1)=M(α(x))1α(x)Γ(γ+1)xγEα(x),γ+1(α(x)1α(x)xα(x)).

    Since RKF K(x,y) is a polynomials, matrix A in (3.3) can be calculated exactly. The proof is complete.

    If f(x,u) is linear, then (3.3) is a system of linear equations and it is convenient to determine the value of the unknowns {ci}Ni=1. If f(x,u) is nonlinear, then (3.3) is a system of nonlinear equations, we solve it by using the tool "FindRoot" in soft Mathematica 11.0.

    The residual function is defined as

    RN(x)=LuN(x)f(x,uN(x)).

    Theorem 3.3. If a(x) and f(x,u)C4[0,1], then

    RN(x)maxx[x1,xN]RN(x)∣≤ch4,

    where c>0 is a real number, h=max1iNxi+1xi.

    Proof. For the proof, please refer to [22].

    Three experiments are illustrated in this section to show the applicability and effectiveness of the mentioned approach. We take M(α)=1 in the following experiments.

    Problem 4.1

    Solve fractional linear initial value problems (IVPs) as follows:

    {ABCDαu(x)+exu(x)=f(x),x(0,1],u(0)=1,

    where α(x)=0.5x+0.1, f(x)=ex(x2+x3+1)+M(α(x))1α(x)2x2Eα(x),3(α(x)1α(x)xα(x))++M(α(x))1α(x)6x3Eα(x),4(α(x)1α(x)xα(x)). The true solution of this equation is u(x)=x2+x3+1.

    Selecting m=8,N=8, xi=iN,i=1,2,,N, we apply our new method to Problem 4.1. The obtained numerical results are shown in Tables 1. The Mathematica codes for Problem 4.1 is provided as follows:

    tru[x_]=x2+x3+1;p[x_]=Ex;α[x_]=0.5x+0.1;B[x_]=1;a[x_]=1Gamma[2α[x]];K[x_,y_]=(xy+1)8;R[x_,y_]=K[x,y]K[x,0]K[0,y]/K[0,0];w[x_,y_]=p[x]R[x,y];v[x_,d_]=B[α[x]]Gamma[d+1]xdMittagLefflerE[2,d+1,α[x]xα[x]/(1α[x])];fu[x_,y_]=8yv[x,1]+28y2v[x,2]+56y3v[x,3]+70y4v[x,4]+56y5v[x,5]+28y6v[x,6]+8y7v[x,7]+y8v[x,8];m=8;xx=Table[0,{i,1,m}];A=Table[0,{i,1,m},{j,1,m}];For[i=1,im,i++,xx[[i]]=i/m];For[i=1,im,i++,For[j=1,jm,j++,A[[i,j]]=w[xx[[i]],xx[[j]]]+fu[xx[[i]]+xx[[j]]]]];v[x_]=tru[0];f0[x]=p[x]tru[x]+v[x,2]+v[x,3];f[x]=f0[x]p[x]v[x];b=Table[f[xx[[k]]],{i,1,m}];c=LinearSolve[A,b];u[x_]=mi=1c[[i]]R[x,xx[[i]]];u[x_]=u[x]+v[x];
    Table 1.  Errors of numerical results for Problem 4.1.
    Nodes x Exact solution Absolute error Relative error
    0.10 1.011 1.88×1013 1.86×1013
    0.20 1.048 2.57×1013 2.45×1013
    0.30 1.117 9.50×1014 8.50×1014
    0.40 1.224 6.35×1013 5.19×1013
    0.50 1.375 0 0
    0.60 1.576 2.17×1014 1.38×1014
    0.70 1.833 7.65×1013 4.17×1013
    0.80 2.152 8.65×1013 4.02×1013
    0.90 2.539 2.40×1013 9.46×1014
    1.00 3.000 9.09×1013 3.03×1013

     | Show Table
    DownLoad: CSV

    Problem 4.2

    Solve the variable order fractional linear terminal value problems

    {ABCDαu(x)+2u(x)=f(x),x[0,1),u(1)=3,

    where α(x)=sinx, f(x)=2(x4+2)+M(α(x))1α(x)24x4Eα(x),5(α(x)1α(x)xα(x)). The exact solution is u(x)=x4+2.

    Selecting m=8,N=8, xi=i1N,i=1,2,,N, the obtained absolute and relative errors of numerical results using our method are listed in Tables 2.

    Table 2.  Errors of numerical results for Problem 4.2.
    Nodes x Exact solution Absolute error Relative error
    0.00 2.0000 2.75×1010 1.37×1010
    0.10 2.0001 1.02×1010 5.14×1011
    0.20 2.0016 9.96×1011 4.97×1011
    0.30 2.0081 1.08×1010 5.39×1011
    0.40 2.0256 1.12×1010 5.56×1011
    0.50 2.0625 1.10×1010 5.37×1011
    0.60 2.1296 1.05×1010 4.96×1011
    0.70 2.2401 1.08×1010 4.83×1011
    0.80 2.4096 9.36×1011 3.88×1011
    0.90 2.6561 4.38×1011 1.64×1011

     | Show Table
    DownLoad: CSV

    Problem 4.3

    We apply our method to the nonlinear variable order fractional IVPs as follows

    {ABCDαu(x)+sinhxu(x)+sin(u)=f(x),x(0,1],u(0)=1,

    where α(x)=0.5x+0.1, f(x)=sinhx(x+x3+1)+M(α(x))1α(x)xEα(x),2(α(x)1α(x)xα(x))+M(α(x))1α(x)6x3Eα(x),4(α(x)1α(x)xα(x)). Its true solution is u(x)=x+x3+1.

    Choosing m=8,N=8, xi=iN,i=1,2,,N, we plot the absolute and relative errors in Figure 1.

    Figure 1.  Absolute errors (left) and relative errors (right) for Problem 4.3.

    In this work, a new RKF based collocation technique is developed for Atangana-Baleanu variable order fractional problems. The proposed scheme is meshless and therefore it does not require any background meshes. From the numerical results, it is found that the accuracy of obtained approximate solutions is high and can reach to O(1010). Also, for nonlinear fractional problems, our method can yield highly accurate numerical solutions. Hence, our new method is very effective and easy to implement for the considered problems.

    The work was supported by the National Natural Science Foundation of China (No.11801044, No.11326237).

    All authors declare no conflicts of interest in this paper.



    [1] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A
    [2] S. Qureshia, A. Yusuf, A. A. Shaikha, et al. Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data, Physica A, 534 (2019), 122149.
    [3] A. Yusuf, S. Qureshi, S. F. Shah, Mathematical analysis for an autonomous financial dynamical system via classical and modern fractional operators, Chaos Soliton. Fract., 132 (2020), 109552.
    [4] S. Qureshi, A. Yusuf, Mathematical modeling for the impacts of deforestation on wildlife species using Caputo differential operator, Chaos Soliton. Fract., 126 (2019), 32-40. doi: 10.1016/j.chaos.2019.05.037
    [5] A. Jajarmi, A. Yusuf, D. Baleanu, et al., A new fractional HRSV model and its optimal control: A non-singular operator approach, Physica A, Available from: https://doi.org/10.1016/j.physa.2019.123860.
    [6] S. Qureshi, A. Yusuf, A new third order convergent numerical solver for continuous dynamical systems, J. King Saud Univ. Sci., Available from: https://doi.org/10.1016/j.jksus.2019.11.035.
    [7] A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Soliton. Fract., 89 (2016), 447-454. doi: 10.1016/j.chaos.2016.02.012
    [8] A. Atangana, On the new fractional derivative and application to nonlinear Fishers reactiondiffusion equation, Appl. Math. Comput., 273 (2016), 948-956.
    [9] D. Baleanu, A. Jajarmi, M. Hajipour, A new formulation of the fractional optimal control problems involving Mittag-Leffler nonsingular kernel, J. Optim. Theory Appl., 175 (2017), 718-737. doi: 10.1007/s10957-017-1186-0
    [10] A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Soliton. Fract., 114 (2018), 478-482. doi: 10.1016/j.chaos.2018.07.032
    [11] A. Akgül, M. Modanli, Crank-Nicholson difference method and reproducing kernel function for third order fractional differential equations in the sense of Atangana-Baleanu Caputo derivative, Chaos Soliton. Fract., 127 (2019), 10-16. doi: 10.1016/j.chaos.2019.06.011
    [12] E. K. Akgül, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos, 29 (2019), 023108.
    [13] O. Abu Arqub, B. Maayah, Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense, Chaos Soliton. Fract., 125 (2019), 163-170. doi: 10.1016/j.chaos.2019.05.025
    [14] O. Abu Arqub, M. Al-Smadi, Atangana-Baleanu fractional approach to the solutions of BagleyTorvik and Painlev equations in Hilbert space, Chaos Soliton. Fract., 117 (2018), 161-167. doi: 10.1016/j.chaos.2018.10.013
    [15] O. Abu Arqub, B. Maayah, Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator, Chaos Soliton. Fract., 117 (2018), 117-124. doi: 10.1016/j.chaos.2018.10.007
    [16] O. Abu Arqub, B. Maayah, Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC-Fractional Volterra integro-differential equations, Chaos Soliton. Fract., 126 (2019), 394-402. doi: 10.1016/j.chaos.2019.07.023
    [17] O. Abu Arqub, Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis, Fund. Inform., 166 (2019), 111-137. doi: 10.3233/FI-2019-1796
    [18] S. Yadav, R. K. Pandey, A. K. Shukla, Numerical approximations of Atangana-Baleanu Caputo derivative and its application, Chaos Soliton. Fract., 118 (2019), 58-64. doi: 10.1016/j.chaos.2018.11.009
    [19] S. Hasan, A. El-Ajou, S. Hadid, et al., Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system, Chaos Soliton. Fract., 133 (2020), 109624.
    [20] X. Y. Li, B. Y. Wu, A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations, J. Comput. Appl. Math., 311 (2017), 387-393. doi: 10.1016/j.cam.2016.08.010
    [21] X. Y. Li, B. Y. Wu, A numerical technique for variable fractional functional boundary value problems, Appl. Math. Lett., 43 (2015), 108-113. doi: 10.1016/j.aml.2014.12.012
    [22] X. Y. Li, B. Y. Wu, Error estimation for the reproducing kernel method to solve linear boundary value problems, J. Comput. Appl. Math., 243 (2013), 10-15. doi: 10.1016/j.cam.2012.11.002
    [23] F. Z. Geng, S. P. Qian, Modified reproducing kernel method for singularly perturbed boundary value problems with a delay, Appl. Math. Model., 39 (2015), 5592-5597. doi: 10.1016/j.apm.2015.01.021
    [24] F. Z. Geng, S. P. Qian, Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers, Appl. Math. Lett., 26 (2013), 998-1004. doi: 10.1016/j.aml.2013.05.006
    [25] L. C. Mei, Y. T. Jia, Y. Z. Lin, Simplified reproducing kernel method for impulsive delay differential equations, Appl. Math. Lett., 83 (2018), 123-129. doi: 10.1016/j.aml.2018.03.024
    [26] O. A. Arqub, Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm, Int. J. Numer. Method H., 28 (2018), 828-856. doi: 10.1108/HFF-07-2016-0278
    [27] O. A. Arqub, B. Maayah, Solutions of Bagley-Torvik and Painlev equations of fractional order using iterative reproducing kernel algorithm with error estimates, Neural Comput. Appl., 29 (2018), 1465-1479. doi: 10.1007/s00521-016-2484-4
    [28] M. Al-Smadi, O. Abu Arqub, Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of Dirichlet functions type with error estimates, Appl. Math. Comput., 342 (2019), 280-294.
    [29] M. Al-Smadi, Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation, Ain Shams Eng. J., 9 (2018), 2517-2525. doi: 10.1016/j.asej.2017.04.006
    [30] Z. Altawallbeh, M. Al-Smadi, I. Komashynska, et al., Numerical solutions of fractional systems of two-point BVPs by using the iterative reproducing kernel algorithm, Ukr. Math. J., 70 (2018), 687-701. doi: 10.1007/s11253-018-1526-8
    [31] A. Akgül, Reproducing kernel Hilbert space method based on reproducing kernel functions for investigating boundary layer flow of a Powell-Eyring non-Newtonian fluid, J. Taibah Univ. Sci., 13 (2019), 858-863. doi: 10.1080/16583655.2019.1651988
    [32] A. Akgül, E. K. Akgül, A novel method for solutions of fourth-order fractional boundary value problems, Fractal Fract., 3 (2019), 1-13. doi: 10.3390/fractalfract3010001
    [33] E. K. Akgül, Reproducing kernel Hilbert space method for nonlinear boundary-value problems, Math. Method Appl. Sci., 41 (2018), 9142-9151. doi: 10.1002/mma.5102
    [34] B. Boutarfa, A. Akgül, M. Inc, New approach for the Fornberg-Whitham type equations, J. Comput. Appl. Math., 312 (2017), 13-26. doi: 10.1016/j.cam.2015.09.016
    [35] A. Akgül, E. K. Akgül, S. Korhan, New reproducing kernel functions in the reproducing kernel Sobolev spaces, AIMS Math., 5 (2020), 482-496. doi: 10.3934/math.2020032
    [36] N. Aronszajn, Theory of reproducing kernel, Trans. A.M.S., 168 (1950), 1-50.
    [37] K. Diethelm, The analysis of fractional differential equations, New York: Springer, 2010.
    [38] J. Shawe-Taylor, N. Cristianini, Kernel methods for pattern analysis, New York: Cambridge University Press, 2004.
  • This article has been cited by:

    1. Huafeng Xia, Yan Ji, Yongqing Yang, Feng Ding, Tasawar Hayat, Improved least‐squares identification for multiple‐output non‐linear stochastic systems, 2020, 14, 1751-8652, 964, 10.1049/iet-cta.2019.0915
    2. Shujun Fan, Feng Ding, Tasawar Hayat, Recursive Identification of Errors-in-Variables Systems Based on the Correlation Analysis, 2020, 39, 0278-081X, 5951, 10.1007/s00034-020-01441-7
    3. Xiuying Li, Boying Wu, Reproducing kernel functions-based meshless method for variable order fractional advection-diffusion-reaction equations, 2020, 59, 11100168, 3181, 10.1016/j.aej.2020.07.034
    4. Longjin Wang, Yan Ji, Hualin Yang, Ling Xu, Decomposition‐based multiinnovation gradient identification algorithms for a special bilinear system based on its input‐output representation, 2020, 30, 1049-8923, 3607, 10.1002/rnc.4959
    5. Fazhan Geng, Xinyuan Wu, Kernel functions‐based approach for distributed order diffusion equations, 2021, 37, 0749-159X, 1269, 10.1002/num.22578
    6. F. Z. Geng, Piecewise reproducing kernel-based symmetric collocation approach for linear stationary singularly perturbed problems, 2020, 5, 2473-6988, 6020, 10.3934/math.2020385
    7. Yan Ji, Chen Zhang, Zhen Kang, Tao Yu, Parameter estimation for block‐oriented nonlinear systems using the key term separation, 2020, 30, 1049-8923, 3727, 10.1002/rnc.4961
    8. Junaid Akhtar, Aly R. Seadawy, Kalim U. Tariq, Dumitru Baleanu, On some novel exact solutions to the time fractional (2 + 1) dimensional Konopelchenko–Dubrovsky system arising in physical science, 2020, 18, 2391-5471, 806, 10.1515/phys-2020-0188
    9. Ting Cui, Feiyan Chen, Feng Ding, Jie Sheng, Combined estimation of the parameters and states for a multivariable state‐space system in presence of colored noise, 2020, 34, 0890-6327, 590, 10.1002/acs.3101
    10. Chang Phang, Yoke Teng Toh, Farah Suraya Md Nasrudin, An Operational Matrix Method Based on Poly-Bernoulli Polynomials for Solving Fractional Delay Differential Equations, 2020, 8, 2079-3197, 82, 10.3390/computation8030082
    11. Mohammed K. A. Kaabar, Ahmed Refice, Mohammed Said Souid, Francisco Martínez, Sina Etemad, Zailan Siri, Shahram Rezapour, Existence and U-H-R Stability of Solutions to the Implicit Nonlinear FBVP in the Variable Order Settings, 2021, 9, 2227-7390, 1693, 10.3390/math9141693
    12. Yumei Chen, Jiajie Zhang, Chao Pan, Numerical approximation of a variable-order time fractional advection-reaction-diffusion model via shifted Gegenbauer polynomials, 2022, 7, 2473-6988, 15612, 10.3934/math.2022855
    13. Yahong Wang, Wenmin Wang, Liangcai Mei, Yingzhen Lin, Hongbo Sun, An ε-Approximate Approach for Solving Variable-Order Fractional Differential Equations, 2023, 7, 2504-3110, 90, 10.3390/fractalfract7010090
    14. MAYS BASIM, NORAZAK SENU, ZARINA BIBI IBRAHIM, ALI AHMADIAN, SOHEIL SALAHSHOUR, A ROBUST OPERATIONAL MATRIX OF NONSINGULAR DERIVATIVE TO SOLVE FRACTIONAL VARIABLE-ORDER DIFFERENTIAL EQUATIONS, 2022, 30, 0218-348X, 10.1142/S0218348X22400412
    15. Mdi Begum Jeelani, Abeer S. Alnahdi, Mohammed A. Almalahi, Mohammed S. Abdo, Hanan A. Wahash, Nadiyah Hussain Alharthi, Tianqing An, Qualitative Analyses of Fractional Integrodifferential Equations with a Variable Order under the Mittag-Leffler Power Law, 2022, 2022, 2314-8888, 1, 10.1155/2022/6387351
    16. M. Basim, Z. B. Ibrahim, S. Salahshour, Solving fractional variable-order differential equations of the non-singular derivative using Jacobi operational matrix, 2023, 2714-4704, 1221, 10.46481/jnsps.2023.1221
    17. Saleh S. Redhwan, Maoan Han, Mohammed A. Almalahi, Maryam Ahmed Alyami, Mona Alsulami, Najla Alghamdi, Piecewise implicit coupled system under ABC fractional differential equations with variable order, 2024, 9, 2473-6988, 15303, 10.3934/math.2024743
    18. Yihui Xu, Benoumran Telli, Mohammed Said Souid, Sina Etemad, Jiafa Xu, Shahram Rezapour, Stability on a boundary problem with RL-Fractional derivative in the sense of Atangana-Baleanu of variable-order, 2024, 32, 2688-1594, 134, 10.3934/era.2024007
    19. Mays Basim, Ali Ahmadian, Norazak Senu, Zarina Bibi Ibrahim, Numerical simulation of variable-order fractal-fractional delay differential equations with nonsingular derivative, 2023, 42, 22150986, 101412, 10.1016/j.jestch.2023.101412
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4246) PDF downloads(492) Cited by(19)

Figures and Tables

Figures(1)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog