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1. Introduction

We are concerned with Atangana-Baleanu variable order fractional problems:{
Lu(x) =ABC Dα(x)u(x) + a(x)u(x) = f (x, u), x ∈ [0, 1],
B(u) = 0,

(1.1)

where 0 < α(x) < 1, ABCDα(x)(x) denotes the α(x) order Atangana-Baleanu Caputo derivatives, B(u)
is the linear boundary condition, which includes initial value condition, periodic condition, final value
condition and so on.
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The α(x)(0 < α(x) < 1) order Atangana-Baleanu Caputo derivatives of a function u(x) is firstly
defined by Atangana and Baleanu [1]

ABCDα(x)u(x) =
M(α(x))
1 − α(x)

∫ x

0
Eα(x)(−

α(x)
1 − α(x)

(x − t)α(x))u′(t)dt, (1.2)

where Eα(x)(x) is the Mittag-Leffler function.
Fractional order differential equations (FDEs) have important applications in several fields such as

materials, chemistry transmission dynamics, optimal control and engineering [2–6]. In fact, the
classical fractional derivatives are defined with weak singular kernels and the solutions of FDEs
inherit the weak singularity. The Mittag-Leffler (ML) function was firstly introduced by Magnus
Gösta Mittag-Leffler. Recently, it is found that this function has close relation to FDEs arising in real
applications.

Atangana and Baleanu [1] introduced a new fractional derivative by using the ML function, which
is nonlocal and nonsingular. The new fractional derivatives is very important and have been applied to
several different fields (see e.g. [7–9]). Up to now, several numerical algorithms have been developed
for solving Atangana-Baleanu FDEs. Akgül et al. [10–12] proposed effective difference techniques
and kernels based approaches for Atangana-Baleanu FDEs. On the basis of the Sobolev kernel
functions, Arqub et al. [13–17] proposed the numerical techniques for Atangana-Baleanu fractional
Riccati and Bernoulli equations, Bagley-Torvik and Painlev equations, Volterra and Fredholm
integro-differential equations. Yadav et al. [18] introduced the numerical algorithms and application
of Atangana-Baleanu FDEs. El-Ajou, Hadid, Al-Smadi et al. [19] developed approximated technique
for solutions of population dynamics of Atangana-Baleanu fractional order.

Reproducing kernel Hilbert space (RKHS) is ideal for function approximation and estimate of
fractional derivatives. In recent years, reproducing kernel functions (RKF) theory have been
employed to solve linear and nonlinear fractional order problems, singularly perturbed problems,
singular integral equations, fuzzy differential equations, and so on (see, e.g. [10–17, 19–35]).
However, there exists little discussion on numerical schemes for solving variable order
Atangana-Baleanu FDEs.

In this paper, by using polynomials RKF, we will present a new collocation method for solving
variable order Atangana-Baleanu FDEs.

This work is organized as follows. We summarize fractional derivatives and RKHS theory in Section
2. In Section 3, we develop RKF based collocation technique for Atangana-Baleanu variable order
FDEs. Numerical experiments are provided in Section 4. Concluding remarks are included in the last
section.

2. Preliminaries to fractional derivatives and RKHS theory

Definition 2.1. Let H be a Hilbert function space defined on E. The function K : E × E → R is known
as an RKF of space H if

(1) K(·, t) ∈ H f or all t ∈ E,
(2) w(t) = (w(·), K(·, t)), f or all t ∈ E and all w ∈ H.

If there exists a RKF in a Hilbert space, then the space is a RKHS.
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Definition 2.2. Symmetric function K : E × E → R is known as a positive definite kernel (PDK) if
n∑

i, j=1
cic jK(xi, x j) ≥ 0 for any n ∈ N, x1, x2, . . . , xn ∈ E, c1, c2, . . . , cn ∈ R.

Theorem 2.1. [36] The RKF of an RKHS is positive definite. Besides, every PDK can define a unique
RKHS, of which it is the RKF.

Definition 2.3. Let q > 0. The one parameter Mittag-Leffler function of order q is defined by

Eq(z) =

∞∑
j=0

z j

Γ( jq + 1)
. (2.1)

Definition 2.4. Let q1, q2 > 0. The two-parameter Mittag-Leffler function is defined by

Eq1,q2(z) =

∞∑
j=0

z j

Γ( jq1 + q2)
. (2.2)

For the domains of convergence of the Mittag-Leffler functions, please refer to the following
theorem.

Theorem 2.2. [37] For q1, q2 > 0, the two-parameter Mittag-Leffler function Eq1,q2(z) is convergent
for all z ∈ C.

Definition 2.5. The Sobolev space H1(0,T ) is defined as follows

H1(0,T ) = {u| u ∈ L2(0,T ), u′ ∈ L2(0,T )}.

Definition 2.6. The α ∈ (0, 1) order Atangana- Baleanu fractional derivative of a function u ∈ H1(a, b)
is defined

ABCDαu(x) =
M(α)
1 − α

∫ x

0
Eα(−

α

1 − α
(x − t)α)u′(t)dt, (2.3)

where M(α) is the normalization term satisfying M(0) = M(1) = 1.

Theorem 2.3. [38] The function k(x, y) = (xy + c)m for c > 0,m ∈ N is a PDK.

According to Theorem 2.1, there exists an associated RKHS Qm with k as an RKF.

3. Collocation method

To solve (1.1), we will construct the RKF which satisfies the homogenous boundary condition.

Definition 3.1.
Qm,0 = {w(t) | w(t) ∈ Qm, B(w) = 0}.

Theorem 3.1. The space Qm,0 is an RKHS and its RKF is expressed by

K(x, y) = k(x, y) −
Bxk(x, y)Byk(x, y)

BxByk(x, y)
.
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Proof. If Byk(x, y) = 0 or Bxk(x, y) = 0, then

K(x, y) = k(x, y).

If Byk(x, y) , 0, then
BxK(x, y) = Bxk(x, y) − Bxk(x,y)BxByk(x,y)

BxByk(x,y) ,

= 0,

and naturally K(x, y) ∈ Qm,0.
For all u(y) ∈ Qm,0, we have u(y) ∈ Qm and Byu(y) = 0.
We have

(u(y),K(x, y)) = (u(y), k(x, y)) − (u(y), Bxk(x,y)Byk(x,y)
BxByk(x,y)

= u(x) − Byk(x,y)
BxByk(x,y) (u(y), Bxk(x, y))

= u(x) − Byk(x,y)
BxByk(x,y) Bx(u(y), k(x, y))

= u(x) − Byk(x,y)
BxByk(x,y) Bxu(x)

= u(x) − 0
= 0.

Thus, K(x, y) is the RKF of space Qm,0 and the proof is complete. �

Suppose that L : Qm,0 → H1 is a bounded linear operator. It is easy to proved that its inverse
operator L−1 is also bounded since both Qm,0 and H1 are Banach spaces.

Choose N distinct scattered points in [0, 1], such as {x1, x2, . . . , xN}. Put
ψi(x) = K(x, xi), i = 1, 2, . . . ,N. By using RKF basis, the RKF collocation solution uN(x) for (1.1) can
be written as follows

uN(x) =

N∑
i=1

ciψi(x), (3.1)

where {ci}
N
i=1 are undetermined constants.

Collocating (1.1) at N nodes x1, x2, . . . , xN provides N equations:

LuN(xk) =

N∑
i=1

ciLψi(xk) = f (xk, uN(xk)), k = 1, 2, . . . ,N. (3.2)

System (3.3) of equations is simplified to the matrix form:

Ac = f, (3.3)

where Aik = Lxψk(x)|x=xi , i, k = 1, 2, . . . ,N, f = ( f (x1, uN(x1)), f (x2, uN(x2)), . . . , f (xN , uN(xN)).

Theorem 3.2. If γ > 0, then

ABCDα(x)xγ =
M(α(x))
1 − α(x)

Γ(γ + 1)xγEα(x),γ+1(−
α(x)

1 − α(x)
xα(x)),

and therefore matrix A can be computed exactly.
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Proof. It is noticed that

ABCDα(x)xγ =
M(α(x))
1−α(x)

∫ x

0
Eα(x)(−

α(x)
1−α(x) (x − t)α(x))γtγ−1dt

=
M(α(x))
1−α(x)

∫ x

0

∞∑
j=0

(− α(x)
1−α(x) (x−t)α(x)) j

Γ( jα(x)+1) γtγ−1dt

=
M(α(x))
1−α(x) γ

∞∑
j=0

(− α(x)
1−α(x) ) j

Γ( jα(x)+1)

∫ x

0
(x − t)α(x)tγ−1dt

=
M(α(x))
1−α(x) γ

∞∑
j=0

(− α(x)
1−α(x) ) j

Γ( jα(x)+1)
Γ( jα(x)+1)Γ(γ)
Γ( jα(x)+γ+1) x jα(x)+γ

=
M(α(x))
1−α(x) Γ(γ + 1)xγ

∞∑
j=0

(− α(x)
1−α(x) xα(x)) j

Γ( jα(x)+γ+1)

=
M(α(x))
1−α(x) Γ(γ + 1)xγEα(x),γ+1(− α(x)

1−α(x) xα(x)).

Since RKF K(x, y) is a polynomials, matrix A in (3.3) can be calculated exactly. The proof is
complete. �

If f (x, u) is linear, then (3.3) is a system of linear equations and it is convenient to determine the
value of the unknowns {ci}

N
i=1. If f (x, u) is nonlinear, then (3.3) is a system of nonlinear equations, we

solve it by using the tool ”FindRoot” in soft Mathematica 11.0.
The residual function is defined as

RN(x) = LuN(x) − f (x, uN(x)).

Theorem 3.3. If a(x) and f (x, u) ∈ C4[0, 1], then

‖ RN(x) ‖∞, max
x∈[x1,xN ]

| RN(x) |≤ c h4,

where c > 0 is a real number, h = max
1≤i≤N

| xi+1 − xi |.

Proof. For the proof, please refer to [22]. �

4. Numerical experiments

Three experiments are illustrated in this section to show the applicability and effectiveness of the
mentioned approach. We take M(α) = 1 in the following experiments.

Problem 4.1
Solve fractional linear initial value problems (IVPs) as follows:{

ABCDαu(x) + exu(x) = f (x), x ∈ (0, 1],
u(0) = 1,

where α(x) = 0.5x + 0.1,
f (x) = ex(x2 + x3 + 1) +

M(α(x))
1−α(x) 2x2Eα(x),3(− α(x)

1−α(x) xα(x)) + +
M(α(x))
1−α(x) 6x3Eα(x),4(− α(x)

1−α(x) xα(x)). The true
solution of this equation is u(x) = x2 + x3 + 1.

Selecting m = 8,N = 8, xi = i
N , i = 1, 2, . . . ,N, we apply our new method to Problem 4.1. The

obtained numerical results are shown in Tables 1. The Mathematica codes for Problem 4.1 is provided

AIMS Mathematics Volume 5, Issue 3, 2285–2294.



2290

as follows:
tru[x ] = x2 + x3 + 1; p[x ] = Ex;α[x ] = 0.5x + 0.1;
B[x ] = 1; a[x ] = 1

Gamma[2−α[x]] ; K[x , y ] = (xy + 1)8;
R[x , y ] = K[x, y] − K[x, 0] K[0, y]/K[0, 0]; w[x , y ] = p[x] ∗ R[x, y];
v[x , d ] = B[α[x]] ∗Gamma[d + 1] ∗ xd ∗ MittagLe f f lerE[2, d + 1,−α[x] ∗ xα[x]/(1 − α[x])];
f u[x , y ] = 8yv[x, 1] + 28y2v[x, 2] + 56y3v[x, 3] + 70y4v[x, 4]
+56y5v[x, 5] + 28y6v[x, 6] + 8y7v[x, 7] + y8v[x, 8];
m = 8; xx = Table[0, {i, 1,m}]; A = Table[0, {i, 1,m}, { j, 1,m}];
For[i = 1, i ≤ m, i + +, xx[[i]] = i/m];
For[i = 1, i ≤ m, i + +, For[ j = 1, j ≤ m, j + +, A[[i, j]] = w[xx[[i]], xx[[ j]]] + f u[xx[[i]] + xx[[ j]]]]];
v[x ] = tru[0]; f 0[x] = p[x] ∗ tru[x] + v[x, 2] + v[x, 3]; f [x] = f 0[x] − p[x] ∗ v[x];
b = Table[ f [xx[[k]]], {i, 1,m}]; c = LinearS olve[A, b];

u[x ] =
m∑

i=1
c[[i]] ∗ R[x, xx[[i]]]; u[x ] = u[x] + v[x];

Table 1. Errors of numerical results for Problem 4.1.

Nodes x Exact solution Absolute error Relative error

0.10 1.011 1.88 × 10−13 1.86 × 10−13

0.20 1.048 2.57 × 10−13 2.45 × 10−13

0.30 1.117 9.50 × 10−14 8.50 × 10−14

0.40 1.224 6.35 × 10−13 5.19 × 10−13

0.50 1.375 0 0
0.60 1.576 2.17 × 10−14 1.38 × 10−14

0.70 1.833 7.65 × 10−13 4.17 × 10−13

0.80 2.152 8.65 × 10−13 4.02 × 10−13

0.90 2.539 2.40 × 10−13 9.46 × 10−14

1.00 3.000 9.09 × 10−13 3.03 × 10−13

Problem 4.2

Solve the variable order fractional linear terminal value problems

{
ABCDαu(x) + 2u(x) = f (x), x ∈ [0, 1),
u(1) = 3,

where α(x) = sin x, f (x) = 2(x4+2)+ M(α(x))
1−α(x) 24x4Eα(x),5(− α(x)

1−α(x) xα(x)). The exact solution is u(x) = x4+2.

Selecting m = 8,N = 8, xi = i−1
N , i = 1, 2, . . . ,N, the obtained absolute and relative errors of

numerical results using our method are listed in Tables 2.
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Table 2. Errors of numerical results for Problem 4.2.

Nodes x Exact solution Absolute error Relative error

0.00 2.0000 2.75 × 10−10 1.37 × 10−10

0.10 2.0001 1.02 × 10−10 5.14 × 10−11

0.20 2.0016 9.96 × 10−11 4.97 × 10−11

0.30 2.0081 1.08 × 10−10 5.39 × 10−11

0.40 2.0256 1.12 × 10−10 5.56 × 10−11

0.50 2.0625 1.10 × 10−10 5.37 × 10−11

0.60 2.1296 1.05 × 10−10 4.96 × 10−11

0.70 2.2401 1.08 × 10−10 4.83 × 10−11

0.80 2.4096 9.36 × 10−11 3.88 × 10−11

0.90 2.6561 4.38 × 10−11 1.64 × 10−11

Problem 4.3
We apply our method to the nonlinear variable order fractional IVPs as follows{

ABCDαu(x) + sinh xu(x) + sin(u) = f (x), x ∈ (0, 1],
u(0) = 1,

where α(x) = 0.5x + 0.1,
f (x) = sinh x(x + x3 + 1) +

M(α(x))
1−α(x) xEα(x),2(− α(x)

1−α(x) xα(x)) +
M(α(x))
1−α(x) 6x3Eα(x),4(− α(x)

1−α(x) xα(x)). Its true solution
is u(x) = x + x3 + 1.

Choosing m = 8,N = 8, xi = i
N , i = 1, 2, . . . ,N, we plot the absolute and relative errors in Figure 1.
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Figure 1. Absolute errors (left) and relative errors (right) for Problem 4.3

5. Conclusions

In this work, a new RKF based collocation technique is developed for Atangana-Baleanu variable
order fractional problems. The proposed scheme is meshless and therefore it does not require any
background meshes. From the numerical results, it is found that the accuracy of obtained approximate
solutions is high and can reach to O(10−10). Also, for nonlinear fractional problems, our method
can yield highly accurate numerical solutions. Hence, our new method is very effective and easy to
implement for the considered problems.
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