Research article

Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus

  • Received: 12 November 2019 Accepted: 02 January 2020 Published: 20 January 2020
  • MSC : Primary: 26A33; Secondary: 33C20, 44A10, 44A20

  • The aim of this paper is to establish an (presumably new) extension of generalized Bessel-Maitland function by using the extension of extended beta function. In addition, investigate several important properties namely integral representation, derivatives, recurrence relation, Beta transform and Mellin transform. Further, certain properties of the Riemann-Liouville fractional calculus associated with extended generalized Bessel-Maitland function are also investigated.

    Citation: D. L. Suthar, A. M. Khan, A. Alaria, S. D. Purohit, J. Singh. Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus[J]. AIMS Mathematics, 2020, 5(2): 1400-1410. doi: 10.3934/math.2020096

    Related Papers:

  • The aim of this paper is to establish an (presumably new) extension of generalized Bessel-Maitland function by using the extension of extended beta function. In addition, investigate several important properties namely integral representation, derivatives, recurrence relation, Beta transform and Mellin transform. Further, certain properties of the Riemann-Liouville fractional calculus associated with extended generalized Bessel-Maitland function are also investigated.


    加载中


    [1] R. Agarwal, Kritika, S. D. Purohit, A mathematical fractional model with non-singular kernel for thrombin receptor activation in calcium signalling, Math. Meth. Appl. Sci., 42 (2019), 7160-7171. doi: 10.1002/mma.5822
    [2] A. Alaria, A. M. Khan, D. L. Suthar, et al., Application of fractional operators in Modelling for charge carrier transport in amorphous semiconductor with multiple trapping, Int. J. Appl. Comput. Math., 5 (2019), doi.org/10.1007/s40819-019-0750-8.
    [3] J. Choi, P. Agarwal, S. Mathur, et al., Certain new integral formulas involving the generalized Bessel functions, Bull. Korean Math. Soc., 51 (2014), 995-1003. doi: 10.4134/BKMS.2014.51.4.995
    [4] R. Ed. Hilfer, Applications of fractional calculus in physics; World Scientific Publishing Company: Singapore, Singapore; Hackensack, NJ, USA; London, UK; Hong Kong, China, 2000.
    [5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations; North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers. Amsterdam, the Netherland; London, UK; New York, NY, USA, 2006.
    [6] D. Kumar, J. Singh, S. D. Purohit, et al., A hybrid analytic algorithm for nonlinear wave-like equations, Math. Model. Nat. Phenom., 14 (2019), 304.
    [7] O. I. Marichev, Handbook of integral transform and Higher transcendental functions, Ellis, Harwood, chichester (John Wiley and Sons), New York, 1983.
    [8] E. Mittal, R. M. Pandey, S. Joshi, On extension of Mittag-Leffler function, Appl. Appl. Math., 11 (2016), 307-316.
    [9] F. W. L. Olver, D. W. Lozier, R. F. Boisvert, et al., NIST handbook of mathematical functions, Cambridge University Press, 2010.
    [10] M. A. Özarslan, B. Yılmaz, The extended Mittag-Leffler function and its properties, J. Inequalities Appl., (2014), 85.
    [11] R. K. Parmar, A class of extended Mittag-Leffler functions and their properties related to integral transforms and fractional calculus, Mathematics, 3 (2015), 1069-1082. doi: 10.3390/math3041069
    [12] R. K. Parmar, P. Chopra, R. B. Paris, On an extension of extended beta and hypergeometric functions, J. Classical Anal., 11 (2017), 91-106.
    [13] R. S. Pathak, Certain convergence theorems and asymptotic properties of a generalization of Lommel and Maitland transform, Proc. Nat. Acad. Sci. India Sect. A., 36 (1966), 81-86.
    [14] S. D. Purohit, S. L. Kalla, D. L. Suthar, Fractional integral operators and the multiindex MittagLeffler functions, Sci. Ser. A Math. Sci. (N.S.), 21 (2011), 87-96.
    [15] S. D. Purohit, D. L. Suthar, S. L. Kalla, Marichev-Saigo-Maeda fractional integration operators of the Bessel functions, Matematiche (Catania), 67 (2012), 12-32.
    [16] S. D. Purohit, F. Ucar, An application of q-Sumudu transform for fractional q-kinetic equation, Turkish J. Math., 42 (2018), 726-734.
    [17] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications; Gordon and Breach: Yverdon, Switzerland, 1993.
    [18] J. B. Sharma, K. K. Sharma, A. Atangana, et al., Hybrid watermarking algorithm using finite radon and fractional Fourier transform, Fundam. Inform., 151 (2017), 523-543. doi: 10.3233/FI-2017-1508
    [19] I. N. Sneddon, The use of integral transform, New Delhi, Tata McGraw Hill, 1979.
    [20] H. M. Srivastava, P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.
    [21] D. L. Suthar, H. Amsalu, Certain integrals associated with the generalized Bessel-Maitland function, Appl. Appl. Math., 12 (2017), 1002-1016.
    [22] D. L. Suthar, H. Habenom, Integrals involving generalized Bessel-Maitland function, J. Sci. Arts, 37 (2016), 357-362.
    [23] D. L. Suthar, S. D. Purohit, R. K. Parmar, Generalized fractional calculus of the multiindex Bessel function, Math. Nat. Sci., 1 (2017), 26-32.
    [24] D. L. Suthar, G. V. Reddy, N. Abeye, Integral formulas involving product of Srivastava's polynomial and generalized Bessel Maitland functions, Int. J. Sci. Res., 11 (2017), 343-351.
    [25] D. L. Suthar, T. Tsagye, Riemann-Liouville fractional integrals and differential formula involving Multiindex Bessel-function, Math. Sci. Lett., 6 (2017), 1-5. doi: 10.18576/msl/060101
    [26] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library edition, Cambridge University Press, 1965, Reprinted 1996.
    [27] X. J. Yang, New rheological problems involving general fractional derivatives with nonsingular power-law kernels, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 19 (2018), 45-52.
    [28] X. J. Yang, General Fractional Derivatives: Theory, Methods and Applications. Chapman and Hall/CRC, 2019.
    [29] X. J. Yang, Y. Y. Feng, C. Cattani, et al., Fundamental solutions of anomalous diffusion equations with the decay exponential kernel, Math. Methods Appl. Sci., 42 (2019), 4054-4060. doi: 10.1002/mma.5634
    [30] X. J. Yang, F. Gao, Y. Ju, et al., Fundamental solutions of the general fractional-order diffusion equations, Math. Methods Appl. Sci., 41 (2018), 9312-9320. doi: 10.1002/mma.5341
    [31] X. J. Yang, F. Gao, Y. Ju, General fractional derivatives with applications in viscoelasticity. Academic Press, 2020.
    [32] X. J. Yang, F. Gao, J. A. T. Machado, et al., A new fractional derivative involving the normalized sinc function without singular kernel, Eur. Phys. J. Spec. Top., 226 (2017), 3567-3575. doi: 10.1140/epjst/e2018-00020-2
    [33] X. J. Yang, F. Gao, H. M. Srivastava, New rheological models within local fractional derivative, Rom. Rep. Phys, 69 (2017), 113.
    [34] X. J. Yang, A. A. Mahmoud, C. Carlo, A new general fractional-order derivative with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer, Ther. Sci., 23 (2019), 1677-1681. doi: 10.2298/TSCI180320239Y
    [35] X. J. Yang, H. M. Srivastava, J. A. T. Machado, A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow, Therm. Sci., 20 (2016), 753-756. doi: 10.2298/TSCI151224222Y
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4160) PDF downloads(512) Cited by(14)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog