Research article

Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus

  • Received: 12 November 2019 Accepted: 02 January 2020 Published: 20 January 2020
  • MSC : Primary: 26A33; Secondary: 33C20, 44A10, 44A20

  • The aim of this paper is to establish an (presumably new) extension of generalized Bessel-Maitland function by using the extension of extended beta function. In addition, investigate several important properties namely integral representation, derivatives, recurrence relation, Beta transform and Mellin transform. Further, certain properties of the Riemann-Liouville fractional calculus associated with extended generalized Bessel-Maitland function are also investigated.

    Citation: D. L. Suthar, A. M. Khan, A. Alaria, S. D. Purohit, J. Singh. Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus[J]. AIMS Mathematics, 2020, 5(2): 1400-1410. doi: 10.3934/math.2020096

    Related Papers:

    [1] Rana Safdar Ali, Saba Batool, Shahid Mubeen, Asad Ali, Gauhar Rahman, Muhammad Samraiz, Kottakkaran Sooppy Nisar, Roshan Noor Mohamed . On generalized fractional integral operator associated with generalized Bessel-Maitland function. AIMS Mathematics, 2022, 7(2): 3027-3046. doi: 10.3934/math.2022167
    [2] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482
    [3] Saima Naheed, Shahid Mubeen, Thabet Abdeljawad . Fractional calculus of generalized Lommel-Wright function and its extended Beta transform. AIMS Mathematics, 2021, 6(8): 8276-8293. doi: 10.3934/math.2021479
    [4] Georgia Irina Oros, Gheorghe Oros, Daniela Andrada Bardac-Vlada . Certain geometric properties of the fractional integral of the Bessel function of the first kind. AIMS Mathematics, 2024, 9(3): 7095-7110. doi: 10.3934/math.2024346
    [5] Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kottakkaran Sooppy Nisar . Estimation of generalized fractional integral operators with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(5): 4492-4506. doi: 10.3934/math.2021266
    [6] Jamshed Nasir, Shahid Qaisar, Saad Ihsan Butt, Ather Qayyum . Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator. AIMS Mathematics, 2022, 7(3): 3303-3320. doi: 10.3934/math.2022184
    [7] Sobia Rafeeq, Sabir Hussain, Jongsuk Ro . On fractional Bullen-type inequalities with applications. AIMS Mathematics, 2024, 9(9): 24590-24609. doi: 10.3934/math.20241198
    [8] Sabir Hussain, Rida Khaliq, Sobia Rafeeq, Azhar Ali, Jongsuk Ro . Some fractional integral inequalities involving extended Mittag-Leffler function with applications. AIMS Mathematics, 2024, 9(12): 35599-35625. doi: 10.3934/math.20241689
    [9] D. L. Suthar, D. Baleanu, S. D. Purohit, F. Uçar . Certain k-fractional calculus operators and image formulas of k-Struve function. AIMS Mathematics, 2020, 5(3): 1706-1719. doi: 10.3934/math.2020115
    [10] Tuba Gulsen, Sertac Goktas, Thabet Abdeljawad, Yusuf Gurefe . Sturm-Liouville problem in multiplicative fractional calculus. AIMS Mathematics, 2024, 9(8): 22794-22812. doi: 10.3934/math.20241109
  • The aim of this paper is to establish an (presumably new) extension of generalized Bessel-Maitland function by using the extension of extended beta function. In addition, investigate several important properties namely integral representation, derivatives, recurrence relation, Beta transform and Mellin transform. Further, certain properties of the Riemann-Liouville fractional calculus associated with extended generalized Bessel-Maitland function are also investigated.


    In applied sciences, many important functions are defined via improper integrals or series (or finite products). The general name of these important functions knows as special functions. In special function, one of the most important function (Bessel function) has gained importance and popularity due to its applications in the problem of cylindrical coordinate system, wave propagation, heat conduction in cylindrical object and static potential etc. In the recent years, some generalizations (unification) and number of integral transforms of Bessel functions have been given by many mathematicians and physicist as well as engineers. The Bessel-Maitland function Jτϑ(z) is a generalization of Bessel function, defined in [7] through a series representation as:

    Jτϑ(z)=n=0(z)nΓ(τn+ϑ+1)n! (1.1)

    In fact, the application of Bessel-Maitland function are found in the diverse field of mathematical physics, engineering, biological, chemical in the book of Watson [26].

    Further, generalization of the generalized Bessel-Maitland function defined by Pathak [13] is as follow:

    Jτ,ςϑ,q(z)=n=0(ς)nqΓ(τn+ϑ+1)(z)nn! (1.2)

    where τ,ϑ,ςC;(τ)0,(ϑ)1,(ς)0,q(0,1)N.

    Motivated by the established potential for application of these Bessel-Maitland functions, we introduce here another interesting extension of the generalized Bessel-Maitland function as follow:

    Jτ,ς,s;ωϑ,q(z;p)=n=0Bω(ς+nq,sς;p)B(ς,sς)(s)nqΓ(τn+ϑ+1)(z)nn! (1.3)

    where τ,ϑ,ς,ωC;p>0,(τ)>0,(ϑ)1,(ς)>0,(s)>0,q(0,1)N, which will be known as extended generalized Bessel Maitland function (EGBMF).

    Here, Bω(x,y;p) is an extension of extended beta function introduced by Parmar et al. [12] in the following way:

    Bω(x,y;p)=2pπ10tx32(1t)y32Kω+12(pt(1t))dt (1.4)

    where Kω+12(.) is the modified Bessel's function. The special case of (1.4) corresponding to ω=0 be easily seen to reduce to the extended beta function

    B(x,y;p)=10tx1(1t)y1exp(pt(1t))dt (1.5)

    upon making use of ([9], Eq (10.39.2)). If p=0 in Eq (1.5), reduces in to the classical beta function. For a detailed account of various properties, generalizations and applications of Bessel-Maitland functions, the readers may refer to the recent work of the researchers [3,15,21,22,23,24,25] and the references cited therein.

    Theorem 2.1. The extended generalized Bessel Maitland function will be able to depict:

    Jτ,ς,s;ωϑ,q(z;p)=1B(ς,ως)2pπ10tς32(1t)sς32
    ×Kω+12(pt(1t))Jτ,sϑ,q(tqz)dt (2.1)

    where τ,ϑ,ς,ωC;p>0,(τ)>0,(ϑ)1,(ς)>0,(s)>0,q(0,1)N.

    Proof. Using Eq (1.4) in Eq (1.3), we obtain

    Jτ,ς,s;ωϑ,q(z;p)=n=0{2pπ10tς+nq32(1t)sς32Kω+12(pt(1t))dt}
    ×(s)nq(z)nB(ς,sς)Γ(τn+ϑ+1)n! (2.2)

    Reciprocate the order of summation and integration, that is surd under the presumption given in the description of Theorem 2.1, we get

    Jτ,ς,s;ωϑ,q(z;p)=1B(ς,sς)n=02pπ10tς+nq32(1t)sς32
    ×Kω+12(pt(1t))(s)nq(z)nΓ(τn+ϑ+1)n!dt (2.3)

    Using Eq (1.2) in Eq (2.3), we obtain the desired result Eq (2.1).

    Corollary 2.2. Let the condition of Theorem 2.1 be satisfied, the following integral representation holds:

    Jτ,ς,s;ωϑ,q(z;p)=1B(ς,sς)2pπ0rς32(1+r)2sKω+12(p(1+r)2r)
    ×Jτ,sϑ,q((r1+r)qz)dr. (2.4)

    Proof. By taking t=r1+r in Theorem 2.1, After simplification, we obtain the desired result Eq (2.4).

    Corollary 2.3. Assume the state of Theorem 2.1 is satisfied, the following integral representation holds:

    Jτ,ς,s;ωϑ,q(z;p)=2B(ς,sς)2pππ20(sinθ)2(ς1)(cosθ)2(ως1)
    ×Kω+12(psin2θcos2θ)Jτ,sϑ,q(zsin2qθ)dθ. (2.5)

    Proof. If we set t=sin2θ in Theorem 2.1, we acquire the above result.

    Theorem 3.1. Let ω,ς,τ,ϑ,C;(τ)>0,(ϑ)1,(ς)>0,(s)>0,p>0,q(0,1)N, then the recurrence relation holds true:

    Jτ,ς,s;ωϑ,q(z;p)=(ϑ+1)Jτ,ς,s;ωϑ+1,q(z;p)+τzddzJτ,ς,s;ωϑ+1,q(z;p) (3.1)

    Proof. Employing Eq (1.3) in right hand side of Eq (3.1), we obtain

    (ϑ+1)Jτ,ς,s;ωϑ+1,q(z;p)+τzddzJτ,ς,s;ωϑ+1,q(z;p)=(ϑ+1)n=0Bω(ς+nq,sς;p)B(ς,sς)(s)nq(z)nΓ(τn+ϑ+2)n!+τzddzn=0Bω(ς+nq,sς;p)B(ς,sς)(s)nq(z)nΓ(τn+ϑ+2)n!=n=0Bω(ς+nq,sς;p)B(ς,sς)(s)nq(τn+ϑ+1)(z)nΓ(τn+ϑ+2)n!=Jτ,ς,s;ωϑ,q(z;p).

    Theorem 4.1. For the extended generalized Bessel Maitland function, we have the following higher derivative formula:

    dndznJτ,ς,s;ωϑ,q(z;p)=(s)q(s+q)q...(s+(n1)q)qJτ,ς+nq,s+nq;ωϑ+nτ,q(z;p). (4.1)

    Proof. Taking the derivative with respect to z in Eq (2.1), we get

    ddzJτ,ς,s;ωϑ,q(z;p)=(s)qJτ,ς+q,s+q;ωϑ+τ,q(z;p) (4.2)

    Again taking the derivative with respect to z in Eq (6.5), we get

    d2dz2Jτ,ς,s;ωϑ,q(z;p)=(s)q(s+q)qJτ,ς+2q,s+2q;ωϑ+2τ,q(z;p) (4.3)

    Ongoing the repetition of this technique n times, we get the desired result Eq (4.1).

    Theorem 4.2. For the extended generalized Bessel Maitland function, the following differentiation holds:

    dndzn{zϑJτ,ς,s;ωϑ,q(σzτ;p)}=zϑnJτ,ς,s;ωϑn,q(σzτ;p). (4.4)

    Proof. Replace z by σzτ in Eq (2.1) and take its product with zϑ, then taking z-derivative n times. We obtain our result.

    Definition 5.1. The Beta transform [19] of a function f(z) is defined as:

    B{f(z); a,b}=10za1(1z)b1f(z)dz (5.1)
    (a,bC,(a)>0,(b)>0).

    Theorem 5.2. Let ω,ς,τ,ϑ,C;(τ)>0,(ϑ)1,(ς)>0,(s)>0,p>0,q(0,1)N, Then the Beta transform of extended generalized Bessel Maitland function holds true:

    B{Jτ,ς,s;ωϑ,q(λzτ;p);ϑ+1,1}=Jτ,ς,s;ωϑ+1,q(λ;p). (5.2)

    Proof. By definition of Beta transform (5.1) and (1.3), we get

    B(Jτ,ς,s;ωϑ,q(zτ;p);ϑ+1,1)
    =10zϑ(1z)n=0Bω(ς+nq,sς;p)B(ς,sς)(s)nqΓ(τn+ϑ+1)(λzτ)nn!dz, (5.3)

    Upon interchanging the order of summation and integration in Eq (5.3), which can easily verified by uniform convergence under the constraint with Theorem 5.2, we get

    B(Jτ,ς,s;ωϑ,q(zτ;p);ϑ+1,1)=n=0Bω(ς+nq,sς;p)B(ς,sς)(s)nqΓ(τn+ϑ+1)(λ)nn!
    ×10zϑ+τn(1z)dz,

    Using the familiar definition of beta function, and interpreting with Eq (1.3), we get the desired representation Eq (5.2).

    Definition 6.1. The Mellin transform [19] of the function f(z) is defined as

    M(f(z);ξ)=0zξ1f(z)dz=f(ξ),((ξ)>0) (6.1)

    then inverse Mellin transform

    f(z)=M1[f(ξ);x]=12πiλ+iλif(ξ)xξdξ. (6.2)

    In the next theorem, we give Mellin transform of the extended generalized Bessel Maitland function. Therefore, we require the definition of Wright generalized hypergeometric function [20] as:

    pψq(z)=pψq[(c1,C1),(c2,C2),...,(cp,Cp);(d1,D1),(d2,D2),...,(dq,Dq);z]=n=0pi=1Γ(ci,Cin)znqj=1Γ(di,Din)n! (6.3)

    where the coefficients Ci(i=1,2,...,p) and Dj(j=1,2,...,q) are positive real numbers such that

    1+qj=1Djpi=1Ci0.

    Theorem 6.2. The Mellin transform of the extended generalized Bessel Maitland function is given by

    M{Jτ,ς,s;ωϑ,q(z;p);ξ}=2ξ1Γ(ξ+sς)πΓ(ς)Γ(sς)Γ(ξω2)Γ(ξ+ω+12)
    ×2ψ2[(s,q),(ς+ξ,q);(ϑ+1,τ),(s+2ξ,q);z] (6.4)

    where ω,ς,τ,ϑ,ξ,C;(τ)>0,(ϑ)1,(ς)>0,(s)>0,(ξ)>0,p>0,q(0,1)N, and 2ψ2 is the Wright generalized hypergeometric function.

    Proof. Using the definition of Melllin transform (6.1) and (1.3), we obtain

    M{Jτ,ς,s;ωϑ,q(z;p);ξ}=1B(ς,sς)0pξ1{2pπ10tς32(1t)sς32
    ×Kω+12(pt(1t))Jτ,sϑ,q(tqz)dt}dp, (6.5)

    Interchanging the order of integration in Eq (6.5), which is admittable because of the conditions in the statement of the Theorem 3.4, we get

    M{Jτ,ς,s;ωϑ,q(z;p);ξ}=1B(ς,sς)2π10tς32(1t)sς32Jτ,sϑ,q(tqz)dt,
    ×{0pξ12Kω+12(pt(1t))dp}dt (6.6)

    Now taking u=pt(1t) in Eq (6.6), we get

    M{Jτ,ς,s;ωϑ,q(z;p);ξ}=1B(ς,sς)2π10tς+ξ1(1t)sς+ξ1Jτ,sϑ,q(tqz)dt
    ×0uξ12Kω+12(u)du, (6.7)

    From Olver et al. [9]:

    0uξ12Kω+12(u)du=2ξ32Γ(ξω2)Γ(ξ+ω+12), (6.8)

    Applying Eq (6.8) in Eq (6.7), we obtain

    M{Jτ,ς,s;ωϑ,q(z;p);ξ}=1B(ς,sς)2ξ1π10tς+ξ1(1t)sς+ξ1Jτ,sϑ,q(tqz)dt
    ×Γ(ξω2)Γ(ξ+ω+12),

    Using Eq (1.2), and interchanging the order of summation and integration which is valid for (τ)>0,(ϑ)>0,(s)>0,(s)>(ς)>0,(s+ξς)>0, we obtain

    M{Jτ,ς,s;ωϑ,q(z;p);ξ}=2ξ1B(ς,sς)πn=0(s)nqΓ(τn+ϑ+1)(z)nn!
    ×Γ(ξω2)Γ(ξ+ω+12)10tς+ξ+nq1(1t)ξ+sς1dt, (6.9)

    Using the relation between Beta function and Gamma function, we obtain

    M{Jτ,ς,s;ωϑ,q(z;p);ξ}=2ξ1B(ς,sς)πn=0(s)nqΓ(τn+ϑ+1)Γ(ξω2)
    ×Γ(ξ+ω+12)Γ(ς+ξ+nq)Γ(s+ξς)Γ(s+2ξ+nq)(z)nn!,

    After simplification, we obtain

    M{Jτ,ς,s;ωϑ,q(z;p);ξ}=2ξ1Γ(ξ+sς)Γ(ξω2)Γ(ξ+ω+12)πΓ(ς)Γ(sς)
    ×n=0Γ(s+nq)Γ(ς+ξ+nq)(z)nΓ(τn+ϑ+1)Γ(s+2ξ+nq)n!, (6.10)

    In view of Eq (6.3), we arrived at our result Eq (6.4).

    Corollary 6.3. Taking ξ=1 in Theorem 6.2, we get

    Jτ,ς,s;ωϑ,q(z;p)=Γ(1+sς)πΓ(ς)Γ(sς)Γ(1ω2)Γ(ω+22)
    ×2ψ2[(s,q),(ς+1,q);(ϑ+1,τ),(s+2,q);z]. (6.11)

    In recent years, the fractional calculus has become a significant instrument for the modeling analysis and assumed a significant role in different fields, for example, material science, science, mechanics, power, science, economy and control theory. In addition, research on fractional differential equations (ordinary or partial) and other analogous topics is very active and extensive around the world. One may refer to the books [28,31], and the recent papers [1,2,6,16,18,27,29,30,32,33,34,35] on the subject. In this portion, we derive a slight interesting properties of EMBMF associated with the right hand sided of Riemann-Liouville (R-L) fractional integral operator Iζa+ and the right sided of R-L fractional derivative operatorDζa+, which are defined for ζC,((ζ)>0), x>0 (See, for details [5,17]):

    (Iζa+f)(x)=1Γ(ζ)xaf(t)(xt)1ζdt, (7.1)

    and

    (Dζa+f)(x)=(ddx)(Iζa+f)(x)=[(ζ)+1]. (7.2)

    where [(ζ)] is the integral part of (ζ).

    A generalization of R-L fractional derivative operator (7.2) by introducing a right hand sided R-L fractional derivative operator Dζ,σa+ of order 0<ζ<1 and 0σ1with respect to x by Hilfer [4] is as follows:

    (Dζ,σa+f)(x)=(Iσ(1ζ)a+ddx)(I(1σ)(1ζ)a+f)(x). (7.3)

    The generalization Eq (7.3) yields the R-L fractional derivative operator Dζa+ when σ=0 and moreover, in its special case when σ=1, the definition (7.3) would reduce to the familiar Caputo fractional derivative operator [5].

    Theorem 7.1. Let ζ,λ,τ,ϑ,ς,sC be such that (ζ)>0, p0 and the conditions given in Eq (1.3) is satisfied, for x>a,the following relation holds:

    (Iζa+{(za)ϑJτ,ς,s;ωϑ,q(λ(za)τ;p)})(x)
    =(xa)ζ+ϑJτ,ς,s;ωϑ+ζ,q(λ(xa)τ;p). (7.4)
    (Dζa+{(za)ϑJτ,ς,s;ωϑ,q(λ(za)τ;p)})(x)
    =(xa)ϑζJτ,ς,s;ωϑζ,q(λ(xa)τ;p). (7.5)
    (Dζ,σa+{(za)ϑJτ,ς,s;ωϑ,q(λ(za)τ;p)})(x)
    =(xa)ϑζJτ,ς,s;ωϑζ,q(λ(xa)τ;p). (7.6)

    Proof. By virtue of the formulas Eq (7.1) and Eq (1.3), the term by term fractional integration and use of the relation [4]

    (Iζa+(za)ϑ1)(x)=Γ(ϑ)Γ(ζ+ϑ)(xa)ζ+ϑ1(ϑ,ζC,(ζ)>0,(ϑ)>0) (7.7)

    yield for x>a.

    (Iζa+{(za)ϑJτ,ς,s;ωϑ,q(λ(za)τ;p)})(x)
    =(Iζa+{n=0Bω(ς+nq,sς;p)B(ς,sς)(s)nqΓ(τn+ϑ+1)(λ)n(za)τn+ϑn!})(x),
    =(xa)ζ+ϑJτ,ς,s;ωϑ+ζ,q(λ(xa)τ;p). (7.8)

    Consequent, by Eq (7.5) and Eq (1.3), we find that

    (Dζa+{(za)ϑJτ,ς,s;ωϑ,q(λ(za)τ;p)})(x)
    =(ddx)(Iζa+{(za)ϑJτ,ς,s;ωϑ,q(λ(za)τ;p)})(x)
    =(ddx)((xa)ϑ+ζ1Jτ,ς,s;ωϑ+ζ,q(λ(xa)τ;p))(x), (7.9)

    Applying Eq (4.4), we are led to the desired result Eq (7.5). Lastly, by Eq (7.3) and Eq (1.3), we becomes

    (Dζ,σa+{(za)ϑJτ,ς,s;ωϑ,q(λ(za)τ;p)})(x)
    =(Dζ,σa+{n=0Bω(ς+nq,sς;p)B(ς,sς)(s)nqΓ(τn+ϑ+1)(λ)n(za)τn+ϑn!})(x)
    =n=0Bω(ς+nq,sς;p)B(ς,sς)(s)nqΓ(τn+ϑ+1)(λ)nn!(Dζ,σa+{(za)τn+ϑ})(x), (7.10)

    Using the familiar relation of Srivatava and Tomovski [11]:

    (Dζ,σa+{(za)ϑ1})(x)=Γ(ϑ)Γ(ϑζ)(xa)ϑζ1 (7.11)
    (x>a;0<ζ<1;0σ1,(ϑ)>0)

    In Eq (7.10), we are led to the result Eq (7.6).

    In the present paper, The properties, integral transform and fractional calculus of the newly defined extended generalized Bessel-Maitland type function are investigated here and find their connection with other functions scattered in the literature of special function. Various special cases of the derived results in the paper can be evaluate by taking suitable values of parameters involved. For example if we set ω=0, β=β1 and z=z in (1.3), we immediately obtain the result due to Mittal et al [18]. For various other special cases we refer [19,21] and we left results for the interested readers.

    The authors are thankful to the referee's for their valuable remarks and comments for the improvement of the paper.

    The authors declare no conflict of interest in this paper.



    [1] R. Agarwal, Kritika, S. D. Purohit, A mathematical fractional model with non-singular kernel for thrombin receptor activation in calcium signalling, Math. Meth. Appl. Sci., 42 (2019), 7160-7171. doi: 10.1002/mma.5822
    [2] A. Alaria, A. M. Khan, D. L. Suthar, et al., Application of fractional operators in Modelling for charge carrier transport in amorphous semiconductor with multiple trapping, Int. J. Appl. Comput. Math., 5 (2019), doi.org/10.1007/s40819-019-0750-8.
    [3] J. Choi, P. Agarwal, S. Mathur, et al., Certain new integral formulas involving the generalized Bessel functions, Bull. Korean Math. Soc., 51 (2014), 995-1003. doi: 10.4134/BKMS.2014.51.4.995
    [4] R. Ed. Hilfer, Applications of fractional calculus in physics; World Scientific Publishing Company: Singapore, Singapore; Hackensack, NJ, USA; London, UK; Hong Kong, China, 2000.
    [5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations; North-Holland Mathematical Studies; Elsevier (North-Holland) Science Publishers. Amsterdam, the Netherland; London, UK; New York, NY, USA, 2006.
    [6] D. Kumar, J. Singh, S. D. Purohit, et al., A hybrid analytic algorithm for nonlinear wave-like equations, Math. Model. Nat. Phenom., 14 (2019), 304.
    [7] O. I. Marichev, Handbook of integral transform and Higher transcendental functions, Ellis, Harwood, chichester (John Wiley and Sons), New York, 1983.
    [8] E. Mittal, R. M. Pandey, S. Joshi, On extension of Mittag-Leffler function, Appl. Appl. Math., 11 (2016), 307-316.
    [9] F. W. L. Olver, D. W. Lozier, R. F. Boisvert, et al., NIST handbook of mathematical functions, Cambridge University Press, 2010.
    [10] M. A. Özarslan, B. Yılmaz, The extended Mittag-Leffler function and its properties, J. Inequalities Appl., (2014), 85.
    [11] R. K. Parmar, A class of extended Mittag-Leffler functions and their properties related to integral transforms and fractional calculus, Mathematics, 3 (2015), 1069-1082. doi: 10.3390/math3041069
    [12] R. K. Parmar, P. Chopra, R. B. Paris, On an extension of extended beta and hypergeometric functions, J. Classical Anal., 11 (2017), 91-106.
    [13] R. S. Pathak, Certain convergence theorems and asymptotic properties of a generalization of Lommel and Maitland transform, Proc. Nat. Acad. Sci. India Sect. A., 36 (1966), 81-86.
    [14] S. D. Purohit, S. L. Kalla, D. L. Suthar, Fractional integral operators and the multiindex MittagLeffler functions, Sci. Ser. A Math. Sci. (N.S.), 21 (2011), 87-96.
    [15] S. D. Purohit, D. L. Suthar, S. L. Kalla, Marichev-Saigo-Maeda fractional integration operators of the Bessel functions, Matematiche (Catania), 67 (2012), 12-32.
    [16] S. D. Purohit, F. Ucar, An application of q-Sumudu transform for fractional q-kinetic equation, Turkish J. Math., 42 (2018), 726-734.
    [17] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications; Gordon and Breach: Yverdon, Switzerland, 1993.
    [18] J. B. Sharma, K. K. Sharma, A. Atangana, et al., Hybrid watermarking algorithm using finite radon and fractional Fourier transform, Fundam. Inform., 151 (2017), 523-543. doi: 10.3233/FI-2017-1508
    [19] I. N. Sneddon, The use of integral transform, New Delhi, Tata McGraw Hill, 1979.
    [20] H. M. Srivastava, P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.
    [21] D. L. Suthar, H. Amsalu, Certain integrals associated with the generalized Bessel-Maitland function, Appl. Appl. Math., 12 (2017), 1002-1016.
    [22] D. L. Suthar, H. Habenom, Integrals involving generalized Bessel-Maitland function, J. Sci. Arts, 37 (2016), 357-362.
    [23] D. L. Suthar, S. D. Purohit, R. K. Parmar, Generalized fractional calculus of the multiindex Bessel function, Math. Nat. Sci., 1 (2017), 26-32.
    [24] D. L. Suthar, G. V. Reddy, N. Abeye, Integral formulas involving product of Srivastava's polynomial and generalized Bessel Maitland functions, Int. J. Sci. Res., 11 (2017), 343-351.
    [25] D. L. Suthar, T. Tsagye, Riemann-Liouville fractional integrals and differential formula involving Multiindex Bessel-function, Math. Sci. Lett., 6 (2017), 1-5. doi: 10.18576/msl/060101
    [26] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library edition, Cambridge University Press, 1965, Reprinted 1996.
    [27] X. J. Yang, New rheological problems involving general fractional derivatives with nonsingular power-law kernels, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., 19 (2018), 45-52.
    [28] X. J. Yang, General Fractional Derivatives: Theory, Methods and Applications. Chapman and Hall/CRC, 2019.
    [29] X. J. Yang, Y. Y. Feng, C. Cattani, et al., Fundamental solutions of anomalous diffusion equations with the decay exponential kernel, Math. Methods Appl. Sci., 42 (2019), 4054-4060. doi: 10.1002/mma.5634
    [30] X. J. Yang, F. Gao, Y. Ju, et al., Fundamental solutions of the general fractional-order diffusion equations, Math. Methods Appl. Sci., 41 (2018), 9312-9320. doi: 10.1002/mma.5341
    [31] X. J. Yang, F. Gao, Y. Ju, General fractional derivatives with applications in viscoelasticity. Academic Press, 2020.
    [32] X. J. Yang, F. Gao, J. A. T. Machado, et al., A new fractional derivative involving the normalized sinc function without singular kernel, Eur. Phys. J. Spec. Top., 226 (2017), 3567-3575. doi: 10.1140/epjst/e2018-00020-2
    [33] X. J. Yang, F. Gao, H. M. Srivastava, New rheological models within local fractional derivative, Rom. Rep. Phys, 69 (2017), 113.
    [34] X. J. Yang, A. A. Mahmoud, C. Carlo, A new general fractional-order derivative with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer, Ther. Sci., 23 (2019), 1677-1681. doi: 10.2298/TSCI180320239Y
    [35] X. J. Yang, H. M. Srivastava, J. A. T. Machado, A new fractional derivative without singular kernel: Application to the modelling of the steady heat flow, Therm. Sci., 20 (2016), 753-756. doi: 10.2298/TSCI151224222Y
  • This article has been cited by:

    1. Ankit Pal, R. K. Jana, A. K. Shukla, Some Integral Representations of the $$_pR_q(\alpha ,\beta ;z)$$ Function, 2020, 6, 2349-5103, 10.1007/s40819-020-00808-3
    2. R. S. Ali, S. Mubeen, I. Nayab, Serkan Araci, G. Rahman, K. S. Nisar, Some Fractional Operators with the Generalized Bessel–Maitland Function, 2020, 2020, 1026-0226, 1, 10.1155/2020/1378457
    3. Kelelaw Tilahun, Hagos Tadessee, D. L. Suthar, The Extended Bessel-Maitland Function and Integral Operators Associated with Fractional Calculus, 2020, 2020, 2314-4629, 1, 10.1155/2020/7582063
    4. Muhammad Saqib, Abdul Rahman Mohd Kasim, Nurul Farahain Mohammad, Dennis Ling Chuan Ching, Sharidan Shafie, Application of Fractional Derivative Without Singular and Local Kernel to Enhanced Heat Transfer in CNTs Nanofluid Over an Inclined Plate, 2020, 12, 2073-8994, 768, 10.3390/sym12050768
    5. K. Jangid, R. K. Parmar, R. Agarwal, Sunil D. Purohit, Fractional calculus and integral transforms of the product of a general class of polynomial and incomplete Fox–Wright functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03067-0
    6. Sapna Meena, Sanjay Bhatter, Kamlesh Jangid, Sunil Dutt Purohit, Certain integral transforms concerning the product of family of polynomials and generalized incomplete functions, 2020, 6, 2351-8227, 243, 10.2478/mjpaa-2020-0019
    7. Waseem Ahmad Khan, Hassen Aydi, Musharraf Ali, Mohd Ghayasuddin, Jihad Younis, Zakia Hammouch, Construction of Generalized k-Bessel–Maitland Function with Its Certain Properties, 2021, 2021, 2314-4785, 1, 10.1155/2021/5386644
    8. Rana Safdar Ali, Saba Batool, Shahid Mubeen, Asad Ali, Gauhar Rahman, Muhammad Samraiz, Kottakkaran Sooppy Nisar, Roshan Noor Mohamed, On generalized fractional integral operator associated with generalized Bessel-Maitland function, 2022, 7, 2473-6988, 3027, 10.3934/math.2022167
    9. D. L. Suthar, Mangesha Ayene, V. K. Vyas, Ali A. Al-Jarrah, 2022, Chapter 7, 978-981-19-5180-0, 93, 10.1007/978-981-19-5181-7_7
    10. D. L. Suthar, Hafte Amsalu, M. Bohra, K. A. Selvakumaran, S. D. Purohit, 2023, Chapter 23, 978-981-19-0178-2, 385, 10.1007/978-981-19-0179-9_23
    11. Umar Muhammad ABUBAKAR, Muhammad Lawan KAURANGİNİ, New extension of beta, Gauss and confluent hypergeometric functions, 2021, 42, 2587-2680, 663, 10.17776/csj.840774
    12. Ankita Chandola, Rupakshi Mishra Pandey, Kottakkaran Sooppy Nisar, On the new bicomplex generalization of Hurwitz–Lerch zeta function with properties and applications, 2022, 0, 0174-4747, 10.1515/anly-2021-1032
    13. Ghazi S. Khammash, Tariq O. Salim, Hassen Aydi, Noor N. Khattab, Choonkil Park, Integral transforms involving a generalized k-Bessel function, 2023, 56, 2391-4661, 10.1515/dema-2022-0246
    14. Shahid Mubeen, Rana Safdar Ali, Yasser Elmasry, Ebenezer Bonyah, Artion Kashuri, Gauhar Rahman, Çetin Yildiz, A. Hussain, On Novel Fractional Integral and Differential Operators and Their Properties, 2023, 2023, 2314-4785, 1, 10.1155/2023/4165363
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4659) PDF downloads(514) Cited by(14)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog