Research article Topical Sections

Differential geometry of collective models

  • Received: 01 January 2019 Accepted: 13 February 2019 Published: 05 March 2019
  • MSC : 53Z05, 70F25, 81T13

  • The classical astrophysical theory of Riemann ellipsoids and the quantum nuclear theory of Bohr and Mottelson share a common mathematical foundation in terms of the differential geometry of a principal bundle ${\cal P}$ and its associated vector bundle E, respectively. The bundle ${\cal P} = GL_+(3, R)$ is the connected component of the general linear group, the structure group G = SO(3) is the vorticity group, and the base manifold is the space of positive-definite real $3\times 3$ symmetricmatrices, identified geometrically with the space of inertia ellipsoids. The bundle is a Riemannian manifold whose metric is inherited from three-dimensional Euclidean space. A nonholonomic constraint force, like irrotational flow, determines a connection on the bundle. Wave functions of the Bohr-Mottelson model are sections of the associated vector bundle E = ${\cal P}\times_\rho$V, where $\rho$ denotes an irreducible representation of the vorticity group on the vector space Ⅴ. Using the de Rham Laplacian $\triangle = \star d_\nabla \star d_\nabla$ for the kinetic energy introduces a "magnetic" term due to the connection between base manifold rotational and fiber vortex degrees of freedom. A class of Ehresmann connections creates a new model of nuclear rotation that predicts moments of inertia in agreement with experiment.

    Citation: George Rosensteel. Differential geometry of collective models[J]. AIMS Mathematics, 2019, 4(2): 215-230. doi: 10.3934/math.2019.2.215

    Related Papers:

  • The classical astrophysical theory of Riemann ellipsoids and the quantum nuclear theory of Bohr and Mottelson share a common mathematical foundation in terms of the differential geometry of a principal bundle ${\cal P}$ and its associated vector bundle E, respectively. The bundle ${\cal P} = GL_+(3, R)$ is the connected component of the general linear group, the structure group G = SO(3) is the vorticity group, and the base manifold is the space of positive-definite real $3\times 3$ symmetricmatrices, identified geometrically with the space of inertia ellipsoids. The bundle is a Riemannian manifold whose metric is inherited from three-dimensional Euclidean space. A nonholonomic constraint force, like irrotational flow, determines a connection on the bundle. Wave functions of the Bohr-Mottelson model are sections of the associated vector bundle E = ${\cal P}\times_\rho$V, where $\rho$ denotes an irreducible representation of the vorticity group on the vector space Ⅴ. Using the de Rham Laplacian $\triangle = \star d_\nabla \star d_\nabla$ for the kinetic energy introduces a "magnetic" term due to the connection between base manifold rotational and fiber vortex degrees of freedom. A class of Ehresmann connections creates a new model of nuclear rotation that predicts moments of inertia in agreement with experiment.


    加载中


    [1] B. Riemann, Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Abh. K. Ges. Wiss. Göttingen, 9 (1860), 43-66.
    [2] N. R. Lebovitz, Rotating fluid masses, Annu. Rev. Astron. Astr., 5 (1967), 465-480. doi: 10.1146/annurev.aa.05.090167.002341
    [3] S. Chandrasekhar, Ellipsoidal Figures of Equilibrium, New Haven: Yale Univ. Press, 1969.
    [4] T. Iwai, A gauge theory for the quantum planar three-body problem, J. Math. Phys., 28 (1987), 964-974. doi: 10.1063/1.527588
    [5] T. Iwai, A geometric setting for internal motions of the quantum three-body problem, J. Math. Phys., 28 (1987), 1315-1326. doi: 10.1063/1.527534
    [6] A. Shapere and F. Wilczek, Geometric Phases in Physics, Singapore: World Scientific, 1989.
    [7] A. Shapere and F. Wilczek, Gauge kinematics of deformable bodies, Am. J. Phys., 57 (1989), 514-518.
    [8] M. J. Enos, Dynamics and Control of Mechanical Systems: The Falling Cat and Related Problems, Providence, RI: American Mathematical Society, 1993.
    [9] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, New York: Springer-Verlag, 1994.
    [10] A. Bohr and B. R. Mottelson, Nuclear Structure, v. II, Reading, MA: Benjamin, 1976.
    [11] P. G. L. Dirichlet, UntersuchungenÜber ein Problem der Hydrodynamik, 1860. 181.
    [12] N. R. Lebovitz, On the fission theory of binary stars. IV - Exact solutions in polynomial spaces, The Astrophysical Journal, 284 (1984), 364-380. doi: 10.1086/162415
    [13] M. Fujimoto, Gravitational collapse of rotating gaseous ellipsoids, The Astrophysical Journal, 152 (1968), 523-536. doi: 10.1086/149569
    [14] D. Lyndon-Bell, On the gravitational collapse of a cold rotating gas cloud, Mathematical Proceedings of the Cambridge Philosophical Society, 58 (1962), 709-711. doi: 10.1017/S0305004100040767
    [15] J. P. Cox, Theory of Stellar Pulsation, Princeton: Princeton Univ. Press, 1980.
    [16] M. D. Weinberg and S. Tremaine, The Riemann disks I. Equilibrium and secular evolution, The Astrophysical Journal, 271 (1983), 586-594. doi: 10.1086/161225
    [17] F. J. Dyson, Dynamics of a spinning gas cloud, Indiana U. Math. J., 18 (1968), 91-101. doi: 10.1512/iumj.1969.18.18009
    [18] S. Cohen, F. Plasil and W. J. Swiatecki, Equilibrium configurations of rotating charged or gravitating liquid masses with surface tension. II, Ann. Phys. (N.Y.), 82 (1974), 557-596. doi: 10.1016/0003-4916(74)90126-2
    [19] G. Rosensteel, Lax representations of Riemann ellipsoids, Appl. Math. Lett., 6 (1993), 55-58.
    [20] N. Steenrod, The Topology of Fibre Bundles, Princeton: Princeton Univ. Press, 1951.
    [21] S, Kobayashi and K. Nomizu, Foundations of Differential Geometry, New York: Interscience, 1963.
    [22] S. Y. Shieh, Lagrange equations for a spinning gas cloud, J. Math. Phys. 24 (1983), 2438-2440. doi: 10.1063/1.525625
    [23] G. Rosensteel, Rapidly rotating nuclei as Riemann ellipsoids, Ann. Phys. (N.Y.), 186 (1988), 230-291. doi: 10.1016/0003-4916(88)90002-4
    [24] G. Rosensteel and H. Q. Tran, Hamiltonian dynamics of self-gravitating ellipsoids The Astrophysical Journal, 366 (1991), 30-37.
    [25] T. R. Kane and M. P. Sher, A dynamical explanation of the falling cat phenomena, Int. J. Solids Struct., 5 (1969), 663-670. doi: 10.1016/0020-7683(69)90086-9
    [26] M. J. Enos, Dynamics and Control of Mechanical Systems: The Falling Cat and Related Problems, Providence, RI: American Mathematical Society, 1993.
    [27] D. J. Rowe and J. L. Wood, Fundamentals of Nuclear Models, Singapore: World Scientific, 2010.
    [28] J. M. Eisenberg and W. Greiner, Nuclear Theory: Nuclear Models, Amsterdam: North-Holland, 2010.
    [29] R. G. Littlejohn and M. Reinsch, Gauge fields in the separation of rotations and internal motions in the n-body problem, Rev. Mod. Phys., 69 (1997), 213-275. doi: 10.1103/RevModPhys.69.213
    [30] E. Massa and E. Pagani, Classical dynamics of non-holonomic systems: a geometric approach, Annales De L Institut Henri Poincare-physique Theorique, 55 (1991), 511-544.
    [31] L. Bates and J. Sniatycki, Nonholonomic reduction Rep. Math. Phys.. 32 (1993), 99-115.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3768) PDF downloads(636) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog