Research article Special Issues

Novel analytical superposed nonlinear wave structures for the eighth-order (3+1)-dimensional Kac-Wakimoto equation using improved modified extended tanh function method

  • Higher-order nonlinear partial differential equations, such as the eighth-order Kac-Wakimoto model, are useful for studying wave turbulence in fluids, where energy transfers across a range of wave numbers. This phenomenon is observed in oceanographic research involving sea surface and internal waves, where intricate multi-dimensional interactions play a crucial role. In this work, we use the improved modified extended tanh function method for the first time to extract the exact solutions of the eighth-order (3+1)-dimensional Kac-Wakimoto equation, which describes the dynamics of fields and the structure of solutions in various physical and mathematical contexts. The proposed method is simple and quick to execute, and it offers more innovative solutions than other methods. As a consequence, through the donation of suitable assumptions for the parameters, some new solutions for dark and singular soliton, as well as Jacobi elliptic, exponential, hyperbolic, and singular periodic forms, are developed. Furthermore, to enhance understanding, graphical representations of certain solutions are included.

    Citation: Wafaa B. Rabie, Hamdy M. Ahmed, Taher A. Nofal, E. M. Mohamed. Novel analytical superposed nonlinear wave structures for the eighth-order (3+1)-dimensional Kac-Wakimoto equation using improved modified extended tanh function method[J]. AIMS Mathematics, 2024, 9(12): 33386-33400. doi: 10.3934/math.20241593

    Related Papers:

    [1] Junjie Li, Gurpreet Singh, Onur Alp İlhan, Jalil Manafian, Yusif S. Gasimov . Modulational instability, multiple Exp-function method, SIVP, solitary and cross-kink solutions for the generalized KP equation. AIMS Mathematics, 2021, 6(7): 7555-7584. doi: 10.3934/math.2021441
    [2] Wafaa B. Rabie, Hamdy M. Ahmed, Taher A. Nofal, Soliman Alkhatib . Wave solutions for the (3+1)-dimensional fractional Boussinesq-KP-type equation using the modified extended direct algebraic method. AIMS Mathematics, 2024, 9(11): 31882-31897. doi: 10.3934/math.20241532
    [3] Naeem Ullah, Muhammad Imran Asjad, Jan Awrejcewicz, Taseer Muhammad, Dumitru Baleanu . On soliton solutions of fractional-order nonlinear model appears in physical sciences. AIMS Mathematics, 2022, 7(5): 7421-7440. doi: 10.3934/math.2022415
    [4] Jamilu Sabi'u, Sekson Sirisubtawee, Surattana Sungnul, Mustafa Inc . Wave dynamics for the new generalized (3+1)-D Painlevé-type nonlinear evolution equation using efficient techniques. AIMS Mathematics, 2024, 9(11): 32366-32398. doi: 10.3934/math.20241552
    [5] Gaukhar Shaikhova, Bayan Kutum, Ratbay Myrzakulov . Periodic traveling wave, bright and dark soliton solutions of the (2+1)-dimensional complex modified Korteweg-de Vries system of equations by using three different methods. AIMS Mathematics, 2022, 7(10): 18948-18970. doi: 10.3934/math.20221043
    [6] Yazid Alhojilan, Islam Samir . Investigating stochastic solutions for fourth order dispersive NLSE with quantic nonlinearity. AIMS Mathematics, 2023, 8(7): 15201-15213. doi: 10.3934/math.2023776
    [7] Abeer S. Khalifa, Hamdy M. Ahmed, Niveen M. Badra, Wafaa B. Rabie, Farah M. Al-Askar, Wael W. Mohammed . New soliton wave structure and modulation instability analysis for nonlinear Schrödinger equation with cubic, quintic, septic, and nonic nonlinearities. AIMS Mathematics, 2024, 9(9): 26166-26181. doi: 10.3934/math.20241278
    [8] Azzh Saad Alshehry, Safyan Mukhtar, Ali M. Mahnashi . Optical fractals and Hump soliton structures in integrable Kuralay-Ⅱ system. AIMS Mathematics, 2024, 9(10): 28058-28078. doi: 10.3934/math.20241361
    [9] Naveed Iqbal, Muhammad Bilal Riaz, Meshari Alesemi, Taher S. Hassan, Ali M. Mahnashi, Ahmad Shafee . Reliable analysis for obtaining exact soliton solutions of (2+1)-dimensional Chaffee-Infante equation. AIMS Mathematics, 2024, 9(6): 16666-16686. doi: 10.3934/math.2024808
    [10] Abeer S. Khalifa, Hamdy M. Ahmed, Niveen M. Badra, Jalil Manafian, Khaled H. Mahmoud, Kottakkaran Sooppy Nisar, Wafaa B. Rabie . Derivation of some solitary wave solutions for the (3+1)- dimensional pKP-BKP equation via the IME tanh function method. AIMS Mathematics, 2024, 9(10): 27704-27720. doi: 10.3934/math.20241345
  • Higher-order nonlinear partial differential equations, such as the eighth-order Kac-Wakimoto model, are useful for studying wave turbulence in fluids, where energy transfers across a range of wave numbers. This phenomenon is observed in oceanographic research involving sea surface and internal waves, where intricate multi-dimensional interactions play a crucial role. In this work, we use the improved modified extended tanh function method for the first time to extract the exact solutions of the eighth-order (3+1)-dimensional Kac-Wakimoto equation, which describes the dynamics of fields and the structure of solutions in various physical and mathematical contexts. The proposed method is simple and quick to execute, and it offers more innovative solutions than other methods. As a consequence, through the donation of suitable assumptions for the parameters, some new solutions for dark and singular soliton, as well as Jacobi elliptic, exponential, hyperbolic, and singular periodic forms, are developed. Furthermore, to enhance understanding, graphical representations of certain solutions are included.



    Nonlinear partial differential equations (NLPDEs) are used to model a variety of physical phenomena in a broad range of scientific sectors, including solid state physics, quantum mechanics, optical fibers, and chemical physics, such as Kadomtsev-Petviashvili equation [1,2], Manakov model [3], Non-linear Schrödinger equation [4], Korteweg-de Vries-Zakharov-Kuznetsov equation [5], Biswas-Milovic model [6], Sasa-Satsuma equation [7,8], Lakshmanan-Porsezian-Daniel equation [9], concatenation model [10], and Schrödinger-Hirota equation[11]. The exact solutions of NLPDEs provide both symbolic and physical insights into the mechanisms underlying many nonlinear complex phenomena. Various techniques have been developed to investigate the exact wave structures of NLPDEs, for example, extended F-expansion method [12], variational method [13] and improved modified extended tanh-function method [14].

    The study of nonlinear waves and transitions in higher-dimensional models with variable coefficients is an essential area of research in understanding complex nonlinear phenomena across different physical systems. These systems encompass a diverse range of applications such as magnetic media, water waves, optics, plasmas, and Bose-Einstein condensates; for example, Yang et al. [15] investigated the soliton structures of a variable-coefficient Gross-Pitaevskii equation with partially nonlocal nonlinearity under a harmonic potential. Zhu and Xu [16] discussed the dynamics of solitons for a variable-coefficient partially nonlocal coupled Gross-Pitaevskii equation in a harmonic potential. Yan et al. [17] obtained the soliton solutions and lump-type solutions to the (2+1)-dimensional Kadomtsev-Petviashvili equation with variable coefficient. Wu and Sun [18] studied the dynamic mechanism of nonlinear waves for the (3+1)-dimensional generalized variable-coefficient shallow water wave equation. Adeyemo and Khalique [19] discussed the dynamical soliton wave structures for a higher-dimensional soliton equation with various applications in ocean physics and mechatronics engineering. Hamed et al. [20] obtained soliton solutions and modulation instability for a generalized (3+1)-dimensional coupled variable-coefficient nonlinear Schrödinger equations in nonlinear optics. Kumar and Mohan [21] studied multi-soliton solutions, breast her, lumps, and their interactions for the Kadomtsev-Petviashvili equation. The Kac-Wakimoto equation is a mathematical framework that encompasses various intricate concepts in algebraic structures and their interplay with soliton equations, vertex operators, and singularity theory. The Kac-Wakimoto equation is deeply rooted in the realms of representation theory, affine Kac-Moody algebras, and the study of hierarchies of soliton equations associated with pseudo unitary modular tensor categories [22,23]. The (3+1)-dimensional variable-coefficient eight-order nonintegrable Kac-Wakimoto equation is a significant model that captures complex nonlinear phenomena in various physical systems.

    In this work, we aim to delve into the intertwined spatial-temporal modulations leading to multiple non-linear mechanisms, by exploring the eight-order (3+1)-dimensional Kac-Wakimoto equation. The suggested model is represented by the subsequent equation [24]:

    ζ(y)(420 Ux UxxUxxx+420 U3x Uxx+210U2x Uxxxx+28UxUxxxxxx+28UxxUxxxxx+70UxxxUxxxx+Uxxxxxxxx)(y) (3UxUxy+3UxxUy+Uxxxy)σ(y)Uxt+μ(y)Uzz=0, (1.1)

    where U=U(x,y,z,t) is the nonlinear wave evolution field, while ζ(y),(y), and σ(y) are dispersive nonlinearity coefficients that change based on the spatial dimension y, and the subscripts indicate partial derivatives concerning spatial dimensions (x,y,z) and time t.

    In this study, we utilize the improved modified extended tanh function (IMETF) method to explore the traveling wave solutions of the equation represented by Eq (1.1). Through this method, various types of precise wave solutions are attainable, including dark and singular solitons, as well as Jacobi elliptic, exponential, hyperbolic, and singular periodic solutions. These unique solutions showcase the method's effectiveness and robustness, not reported elsewhere. Additionally, contour, 2D, and 3D plots illustrate the model's physical behaviors.

    The layout of the paper is organized in the following manner: Section 2 acts as the fundamental framework of this paper by outlining a recap of the suggested approach. Moving on to Section 3, the suggested approach was put into practice on the designated model, allowing us to derive a fresh resolution for the model. Within Section 4, a range of numerical solutions is offered through visual depictions of a selection of the inferred solutions, and lastly. Section 5 delivers the summary and ultimate remarks of this paper.

    This segment outlines the foundational structure of this paper, providing a succinct overview of the proposed method (see [25,26]).

    In order to explain the IMETF method, we assume that the nonlinear (NL) model of the PDE under study can be represented as follows:

    R(U,Ut,Ux,Uy,Uz,Uxx,Uyy,Uzz,Uxt,...)=0, (2.1)

    which is a function of the dependent variable U and its various partial derivatives with respect to time t and spatial coordinates x,y, and z. Equation (2.1) can be simplified into a nonlinear ordinary differential equation (NLODE) through the transformation provided below:

    U(x,y,z,t)=H(),=xW1+yW2+zW3+tW4. (2.2)

    This transformation captures the interactions between the different dimensions in a single variable. Therefore, Eq (2.1) could be reformulated as

    V(H,H,H,)=0. (2.3)

    Following the proposed method, we can represent the general solution of Eq (2.3) as

    H()=Ni=0biψi()+Nj=1AjΨj(), (2.4)

    where Ψ() satisfies the following auxiliary equation:

    Ψ()=ϵd0+d1Ψ()+d2Ψ2()+d3Ψ3()+d4Ψ4(), (2.5)

    where ϵ=±1.

    The highest power term and the highest derivative term of Eq (2.3) will be balanced to get the positive integer N.

    Equation (2.5) has the following cases for its solutions:

    Case 1: When d0=d1=d3=0, the following solutions are brought up:

    Ψ()=d2d4sech[d2],d2>0,d4<0,
    Ψ()=d2d4sec[d2],d2<0,d4>0,
    Ψ()=1d4,d2=0,d4>0.

    Case 2: When d1=d3=0, the following solutions are brought up:

    Ψ()=d22d4tanh[d22],d2<0,d4>0,d0=d224d4,
    Ψ()=d22d4tan[d22],d2>0,d4>0,d0=d224d4,
    Ψ()=m2d2(2m21)d4cn[d22m21],d2>0,d4<0,d0=m2(1m2)d224(2m21)2d4,
    Ψ()=m2(2m2)d4dn[d22m2],d2>0,d4<0,d0=(1m2)d22(2m2)2d4,
    Ψ()=m2d2(m2+1)d4sn[d2m2+1],d2<0,d4>0,d0=m2d22(m2+1)2d4.

    Case 3: When d3=d4=0, the following solution is brought up:

    Ψ()=d12d2+ed2,d2>0,d0=d214d2.

    Case 4: When d1=d3=d4=0, the following solutions are brought up:

    Ψ()=d0d2sin[d2],d0>0,d2<0,
    Ψ()=d0d2sinh[d2],d0>0,d2>0.

    Case 5: When d0=d1=0, the following solutions are brought up:

    Ψ()=d2sec2[12d2]2d2d4tan[12d2]+d3,d2<0,d4>0,d3±2d2d4,
    Ψ()=d2 sech 2[12d2]2d2d4tanh[12d2]d3,d2>0,d4>0,d3±2d2d4,
    Ψ()=12d2d4(tanh[12d2]+1),d2>0,d4>0,d3=±2d2d4.

    The highest power term and the highest derivative term of Eq (2.3) will be balanced to get the positive integer N.

    By putting Eq (2.4) through Eq (2.5) into Eq (2.3), the outcome is a polynomial in Ψ(). Next, we set the sum of terms with matching powers equal to zero. To solve the resulting system, we will use Mathematical software.

    In this section, the method proposed in Section 2 is applied to Eq (1.1). When we use the wave transform shown in Eq (2.2) on Eq (1.1), under constraints ζ(y)=a1, (y)=a2, μ(y)=a3 and σ(y)=a4, where al(l=1,2,3,4) are constants, then, we can formulate Eq (1.1) as follows:

    a1 W81 H(8)+28a1 W71 H(6) H+28a1W71H(5) H+70a1 W71 H(3) H(4)+210a1 W61 H(4) (H)2a2 W2 W31 H(4)+420a1 W51(H)3 H6a2 W2 W21 H H+420a1 W61 H(3) H H+(a3 W23a4 W1 W4) H=0. (3.1)

    Integrating Eq (3.1) with respect to and setting the constant of integration to zero yields the following expression:

    a1 W81 H(7)+28 a1 W71 H H(5)+35 a1 W71 (H)2+210 a1 W61 H2 H+105 a1 W51 H4a2 W31W2 H3 a2 W2 W21H2+(a3 W23a4 W1W4)H=0. (3.2)

    To keep it straightforward, we assume that

    H()=G(). (3.3)

    Thus, Eq (3.2) can be expressed as

    a1 W81 G(6)+28 a1 W71 G G(4)+35 a1 W71 (G)2+210 a1 W61 G2 G+105 a1 W51 G4a2 W31W2 G3 a2 W2 W21 G2+(a3 W23a4 W1W4) G=0. (3.4)

    We perform the application of the principle of balance to the equation presented (3.4), for G(6) and G4, resulting in N=2.

    Therefore, the solution to Eq (3.4) can be written as

    G()=b0+b1 ψ()+b2 ψ()2+A1ψ()+A2ψ()2, (3.5)

    the constants bi(i=0,1,2) and Aj(j=1,2) require further analysis to compute, while it is important to note that b22+A220.

    Substituting Eq (3.5) and Eq (2.5) into Eq (3.4), we set the coefficients of common powers to zero. This system is then solved using Mathematical to derive the solutions of Eq (1.1) under the condition b0=0, resulting in the following cases:

    Case 1: d0=d1=d3=0.

    A1=A2=b1=0,b2=2 d4 W1,W2=64 a1 d32 W81a4 W4 W1+a3 W234a2 d2 W31.

    The outcomes of these cases will classify the solution to Eq(1.1) as follows:

    Sub-case 1.1: Dark soliton, when d2>0 and d4<0:

    U1.1=2 W1 d2 tanh[(xW1+yW2+zW3+tW4) d2]. (3.6)

    Sub-case 1.2: Singular periodic solution, when d2<0 and d4>0:

    U1.2=2 W1 d2 tan[(xW1+yW2+zW3+tW4) d2]. (3.7)

    Sub-case 1.3: When d2=0 and d4>0, a rational-type solution is available, as shown:

    U1.3=2 W1xW1+yW2+zW3+tW4. (3.8)

    Case 2: d1=d3=0.

    Sub-case 2.1:

    A1=b1=b2=0,A2=2d0 W1,W2=4a1W51(4d2217d0 d4)a2,a4=432a1d0d2d4W81+a3W23W1 W4.

    Sub-case 2.2:

    A1=b1=A2=0,b2=2 d4 W1,W2=4a1W51(4d2217 d0 d4)a2,a4=432 a1 d0 d2 d4 W81+a3 W23W1 W4.

    Sub-case 2.3:

    A1=b1=0,A2=2d0W1,b2=2d4W1,W2=16a1W51(31d22+17d0d4)a2,
    a4=1920a1d32W812496a1d0d2d4W81+a3W23W1W4.

    The outcomes of Sub-case 2.1 will classify the solution to Eq (1.1) as follows:

    (2.1, 1) Singular soliton, when d2<0, d4>0 and d0=d224 d4:

    U2.1.1= W1 2 d2 ((xW1+yW2+zW3+tW4) d22coth[(xW1+yW2+zW3+tW4) d22]). (3.9)

    (2.1, 2) When d2>0, d4>0 and d0=d224 d4, a singular periodic-type solution is available, as shown:

    U2.1.2= W1 2 d2 ((xW1+yW2+zW3+tW4) d22+cot[(xW1+yW2+zW3+tW4) d22]). (3.10)

    (2.1, 3) When d2<0, d4>0, d0=d22m2d4(1+m2)2 and 0m1, a Jacobi elliptic solution (JES) is available, as shown:

    U2.1.3=( d2m2+1cs[d2m2+1]dn[d2m2+1]JacobiEpsilon[d2m2+1])×[2W1d2m2+1], (3.11)

    where =xW1+yW2+zW3+tW4.

    Setting m=1 or m=0 in Eq (3.11) leads to the singular soliton-type solution or singular periodic-type solution, as shown:

    U2.1.4=W1(2d2coth[(xW1+yW2+zW3+tW4)d2]+d2[xW1+yW2+zW3+tW4]), (3.12)

    or

    U2.1.5=2W1d2 cot[(xW1+yW2+zW3+tW4) d2]. (3.13)

    The outcomes of Sub-case 2.2 will classify the solution to Eq (1.1) as follows:

    (2.2, 1) When d2>0, d4<0 and d0=d22m2(1m2)d4(2m21)2, a dark soliton-type solution is available, as shown:

    U2.2.1=W1 2d2[(xW1+yW2+zW3+tW4)d22tanh[(xW1+yW2+zW3+tW4)d22]]. (3.14)

    (2.2, 2) Singular periodic solution, when d2>0, d4<0 and d0=d22(1m2)d4(2m2)2:

    U2.2.2=W1 2d2[(xW1+yW2+zW3+tW4)d22tan[(xW1+yW2+zW3+tW4)d22]]. (3.15)

    (2.2, 3) When d2>0, d4<0 and d0=m2d22(1m2)d4(2m21)2 a Jacobi elliptic solution is available, as shown:

    U2.2.3=2m W1 d22 m21 [(m1) d22 m21JacobiEpsilon(d22 m21)], (3.16)

    where =xW1+yW2+zW3+tW4.

    Setting m=1 in Eq (3.16) leads to a dark soliton-type solution that is available, as shown:

    U2.2.4=2W1d2tanh[(xW1+yW2+zW3+tW4)d2]. (3.17)

    (2.2, 4) When d2>0, d4<0 and d0=m2d22(1m2)d4(2m2)2 a Jacobi elliptic solution is available, as shown:

    U2.2.5=2 m2 W1d2 (2m2) JacobiEpsilon[xW1+yW2+zW3+tW4)d22m2]. (3.18)

    Setting m=1 in Eq (3.18) leads to a dark soliton-type solution that is available, as shown:

    U2.2.6=2 W1d2tanh[(xW1+yW2+zW3+tW4)d2]. (3.19)

    The outcomes of Sub-case 2.3 will classify the solution to Eq (1.1) as follows:

    (2.3, 1) When d2<0, d4>0 and d0=d224 d4, a singular soliton-type solution is available, as shown:

    U2.3.1=2 W1 ((xW1+yW2+zW3+tW4) d22d2 coth[(xW1+yW2+zW3+tW4) 2d2]). (3.20)

    (2.3, 2) When d2>0, d4>0 and d0=d224 d4, a singular periodic-type solution is available, as shown:

    U2.3.2=W1 (2 d2 (xW1+yW2+zW3+tW4) +d22cot[(xW1+yW2+zW3+tW4) 2 d2]). (3.21)

    (2.3, 3) Jacobi elliptic solution (JES), when d2>0, d4<0, d0=d22m2(1m2)d4(2m21)2 and 0m1:

    U2.3.3=2W1d22 m21 ((xW1+yW2+zW3+tW4)(m1)+JacobiEpsilon[(xW1+yW2+zW3+tW4) d22 m21](m+1)dn[(xW1+yW2+zW3+tW4) d22 m21]sn[(xW1+yW2+zW3+tW4) d22 m21]cn[(xW1+yW2+zW3+tW4) d22 m21]). (3.22)

    Setting m=1 or m=0 in Eq (3.22) leads to the dark soliton-type solution or singular periodic solution are available, as shown:

    U2.3.4=2 W1d2 tanh[(xW1+yW2+zW3+tW4)d2], (3.23)

    or

    U2.3.5=2 W1d2 tan[(xW1+yW2+zW3+tW4)d2]. (3.24)

    (2.3, 4) When d2>0, d4<0, d0=d22(1m2)d4(2m2)2 and 0<m1, a JES is available, as shown:

    U2.3.6=2W1m2 d2 (2 m2) [(m4+d22(m+1))JacobiEpsilon[(xW1+yW2+zW3+tW4) d2 m22]m(m+1)cn[(xW1+yW2+zW3+tW4) d22 m2]sn[(xW1+yW2+zW3+tW4) d22 m2]dn[(xW1+yW2+zW3+tW4) d22 m2]]. (3.25)

    Setting m=1 in Eq (3.25) leads to a dark soliton-type solution that's available, as shown:

    U2.3.7=2 W1d2 tanh[(xW1+yW2+zW3+tW4)d2]. (3.26)

    Case 3: d3=d4=0.

    Sub-case 3.1:

    A1=d1 W1,b1=b2=0,A2=2 d0 W1,W2=21a1 d22 W51a2,a4=a3 W2320 a1 d32 W81W1 W4.

    Sub-case 3.2:

    A1=2d1W1,b1=b2=0,A2=4d0W1,d2=d214d0,W2=21a1d41W5116a2d20,a4=16a3d30W235a1d61W8116 d30W1W4.

    The outcomes of Sub-case 3.1 will classify the solution to Eq (1.1) as follows:

    (3.1, 1) When d2>0, d0=d214d2, d10 and d12 d2 e(W1 x+W2 y+W3 z+W4 t+Φ)d2, the exponential solution is available, as shown:

    U3.1,1=2 d1 W1 d2d12 d2 e(xW1+yW2+zW3+tW4)d2. (3.27)

    (3.1, 2) When d2<0 and d0=0, the singular periodic solution is available, as shown:

    U3.1,2=4 W1 d21cot[(xW1+yW2+zW3+tW4) d22]. (3.28)

    (3.1, 3) When d2>0 and d0=0, the hyperbolic solution is available, as shown:

    U3.1,3=2 W1 2 d2 tanh1[1+tanh[12(W1 x+W2 y+W3 z+W4 t) d2]2]. (3.29)

    (3.1, 4) Singular periodic solution, when d2<0, d1=0 and d0>0:

    U3.1,4=2 W1 d2 cot[(xW1+yW2+zW3+tW4)d2]. (3.30)

    (3.1, 5) Singular soliton, when d2>0, d1=0 and d0>0:

    U3.1,4=2 W1 d2 coth[(xW1+yW2+zW3+tW4)d2]. (3.31)

    The outcomes of Sub-case 3.2 will classify the solution to Eq (1.1) as follows:

    (3.2) When d2>0, d0=d214d2, d10 and d12 d2 e(W1 x+W2 y+W3 z+W4 t+Φ)d2, the exponential solution is available, as shown:

    U3.2=2 d1 W1 d2d12 d2 e(xW1+yW2+zW3+tW4)d2. (3.32)

    Case 4: d0=d1=0.

    Sub-case 4.1:

    A1=b1=0,b2=2d4W1,A2=d3=0,a4=64 a1 d32 W814 a2 d2 W2 W31+a3 W23W1 W4.

    Sub-case 4.2:

    A1=0,b1=±2W1d2d4,b2=2d4W1,A2=0,d3=2d2d4,a4=a1d32W81a2d2W2W31+a3W23W1W4.

    The outcomes of Sub-case 4.1 will classify the solution to Eq (1.1) as follows:

    (4.1, 1) Singular periodic solution, when d2<0:

    U4.1,1=2 W1 d2 cot[(xW1+yW2+zW3+tW4)d2]. (3.33)

    (4.1, 2) Singular soliton, when d2>0, and d43d2 d4:

    U4.1,2=2 W1 d2 coth[(xW1+yW2+zW3+tW4)d2]. (3.34)

    The outcomes of Sub-case 4.2 will classify the solution to Eq (1.1) as follows:

    (4.2) When d2>0, and d43=4 d2 d4, a dark soliton-type solution is available, as shown:

    U4.2,1=W1 d2 [tanh(d22)+4log[1tanh(d22)], (3.35)

    where =(xW1+yW2+zW3+tW4).

    This section presents graphical representations of some derived solutions in two and three dimensions. Figure 1 depicts a dark soliton from Eq (3.6) with W1=0.47, d2=1 and W4=0.47. Dark solitons are localized zones of reduced amplitude within a surrounding medium, often linked to lower fluid density or pressure in fluid dynamics. Figure 2 depicts a singular periodic solution from Eq (3.7) with W1=0.85, d2=1 and W4=0.57. A system displaying these periodic solutions alongside abrupt shifts or severe events is characterized by unique periodic behavior in physical phenomena. Such singularities or discontinuities may arise from non-linearities, boundary conditions, or external stimuli.

    Figure 1.  Dark soliton.
    Figure 2.  Singular periodic solution.

    Figure 3 depicts a singular soliton from Eq (3.9) with W1=0.76, d2=0.5 and W4=0.7. These solutions are primarily characterized by a narrow region approaching a peak at infinity. Figure 4 depicts a Jacobi elliptic solution from Eq (3.18) with ρ1=0.86, d2=0.7, W4=0.85 and m=0.8.

    Figure 3.  Singular soliton.
    Figure 4.  Jacobi elliptic solution.

    The study significantly opens up numerous avenues for further comprehensive investigation into various nonlinear phenomena, delving into intricate soliton interactions. This exploration paves the way for considerable advancements in our understanding of complex wave dynamics, which is crucial for various scientific applications. Additionally, the research highlights the vital importance of obtaining exact solutions to nonlinear equations. This is essential for achieving a deeper and more refined understanding of nonlinear systems, especially within the realms of applied sciences and the broader field of nonlinear dynamics. The findings not only enhance theoretical knowledge but also provide practical insights that can lead to innovative applications and methodologies in related disciplines. The IMETF method has been used to study the eight-order (3+1)-dimensional Kac-Wakimoto equation, successfully yielding new solutions not previously reported in [24]. We were successful in achieving the primary purpose of this work, which was to suggest novel and different solutions for our proposed model that had not before been presented in the literature, with the anticipation that this research will have a significant impact on future studies.

    This work introduced the improved modified extended tanh function approach for the first time to derive exact solutions of the proposed model, facilitating the analysis of fluid wave behavior. The reason behind using this method over the other methods is that it offers more types of complex solutions, making it suitable for several types of NLPDEs. We presented various solutions, including dark and singular solitons, as well as Jacobi elliptic, exponential, hyperbolic, and singular periodic solutions. The obtained solutions are novel ones that haven't been documented in previous works. Additionally, these solutions–which come from this model–showcase the efficiency and resilience of the employed approach in comparison to alternative approaches. We believe this work will significantly influence future research in the field of solitons. To enhance the physical representation of the model's dynamic features, we provided several important solutions displayed through contour, 2D, and 3D plots.

    Wafaa B. Rabie: Formal analysis, Software; Hamdy M. Ahmed: Validation, Methodology; Taher A. Nofal: Resources, Writing–review & editing; E. M. Mohamed: Software, Investigation. All authors have read and approved the final version of the manuscript for publication.

    The authors extend their appreciation to Taif University, Saudi Arabia, for supporting this work through project number (TU-DSPP-2024-46).

    This research was funded by Taif University, Saudi Arabia, Project No. (TU-DSPP-2024-46).

    The authors declare that they have no conflicts of interest.



    [1] A. M. Wazwaz, Two forms of (3+1)-dimensional B-type Kadomtsev-Petviashvili equation: multiple soliton solutions, Phys. Scr., 86 (2012), 035007. https://doi.org/10.1088/0031-8949/86/03/035007 doi: 10.1088/0031-8949/86/03/035007
    [2] U. Demirbilek, M. Nadeem, F. M. Çelik, H. Bulut, M. Şenol, Generalized extended (2+1)-dimensional Kadomtsev-Petviashvili equation in fluid dynamics: analytical solutions, sensitivity and stability analysis, Nonlinear Dyn., 112 (2024), 13393–13408. https://doi.org/10.1007/s11071-024-09724-3 doi: 10.1007/s11071-024-09724-3
    [3] Y. Yıldırım, Optical soliton molecules of Manakov model by trial equation technique, Optik, 185 (2019), 1146–1151. https://doi.org/10.1016/j.ijleo.2019.04.041 doi: 10.1016/j.ijleo.2019.04.041
    [4] W. B. Rabie, H. M. Ahmed, A. R. Seadawy, A. Althobaiti, The higher-order nonlinear Schrödinger's dynamical equation with fourth-order dispersion and cubic-quintic nonlinearity via dispersive analytical soliton wave solutions, Opt. Quantum Electron., 53 (2021), 1–25. https://doi.org/10.1007/s11082-021-03278-z doi: 10.1007/s11082-021-03278-z
    [5] H. U. Rehman, A. U. Awan, A. M. Hassan, S. Razzaq, Analytical soliton solutions and wave profiles of the (3+1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation, Results Phys., 52 (2023), 106769. https://doi.org/10.1016/j.rinp.2023.106769 doi: 10.1016/j.rinp.2023.106769
    [6] P. Albayrak, Optical solitons of Biswas-Milovic model having spatio-temporal dispersion and parabolic law via a couple of Kudryashov's schemes, Optik, 279 (2023), 170761. https://doi.org/10.1016/j.ijleo.2023.170761 doi: 10.1016/j.ijleo.2023.170761
    [7] M. Borg, N. M. Badra, H. M. Ahmed, W. B. Rabie, Solitons behavior of Sasa-Satsuma equation in birefringent fibers with Kerr law nonlinearity using extended F-expansion method, Ain Shams Eng. J., 15 (2024), 102290. https://doi.org/10.1016/j.asej.2023.102290 doi: 10.1016/j.asej.2023.102290
    [8] Y. Yıldırım, Optical solitons to Sasa-Satsuma model with modified simple equation approach, Optik, 184 (2019), 271–276. https://doi.org/10.1016/j.ijleo.2019.03.020 doi: 10.1016/j.ijleo.2019.03.020
    [9] A. A. Al Qarni, A. M. Bodaqah, A. S. H. F. Mohammed, A. A. Alshaery, H. O. Bakodah, A. Biswas, Cubic-quartic optical solitons for Lakshmanan-Porsezian-Daniel equation by the improved Adomian decomposition scheme, Ukr. J. Phys. Opt., 23 (2022), 228–242. https://doi.org/10.3116/16091833/23/4/228/2022 doi: 10.3116/16091833/23/4/228/2022
    [10] W. B. Rabie, H. M. Ahmed, A. Darwish, H. H. Hussein, Construction of new solitons and other wave solutions for a concatenation model using modified extended tanh-function method, Alex. Eng. J., 74 (2023), 445–451. https://doi.org/10.1016/j.aej.2023.05.046 doi: 10.1016/j.aej.2023.05.046
    [11] L. Akinyemi, H. Rezazadeh, Q. H. Shi, M. Inc, M. M. Khater, H. Ahmad, A. Jhangeer, M. A. Akbar, New optical solitons of perturbed nonlinear Schrödinger-Hirota equation with spatio-temporal dispersion, Results Phys., 29 (2021), 104656. https://doi.org/10.1016/j.rinp.2021.104656 doi: 10.1016/j.rinp.2021.104656
    [12] W. B. Rabie, H. M. Ahmed, Cubic-quartic solitons perturbation with couplers in optical metamaterials having triple-power law nonlinearity using extended F-expansion method, Optik, 262 (2022), 169255. https://doi.org/10.1016/j.ijleo.2022.169255 doi: 10.1016/j.ijleo.2022.169255
    [13] A. R. Seadawy, Approximation solutions of derivative nonlinear Schrödinger equation with computational applications by variational method, Eur. Phys. J. Plus, 130 (2015), 1–10. https://doi.org/10.1140/epjp/i2015-15182-5 doi: 10.1140/epjp/i2015-15182-5
    [14] M. S. Ghayad, N. M. Badra, H. M. Ahmed, W. B. Rabie, M. Mirzazadeh, M. S. Hashemi, Highly dispersive optical solitons in fiber Bragg gratings with cubic quadratic nonlinearity using improved modified extended tanh-function method, Opt. Quantum Electron., 56 (2024), 1184. https://doi.org/10.1007/s11082-024-07064-5 doi: 10.1007/s11082-024-07064-5
    [15] J. Yang, Y. Zhu, W. Qin, S. H. Wang, C. Q. Dai, J. T. Li, Higher-dimensional soliton structures of a variable-coefficient Gross-Pitaevskii equation with the partially nonlocal nonlinearity under a harmonic potential, Nonlinear Dyn., 108 (2022), 2551–2562. https://doi.org/10.1007/s11071-022-07337-2 doi: 10.1007/s11071-022-07337-2
    [16] H. P. Zhu, Y. J. Xu, High-dimensional vector solitons for a variable-coefficient partially nonlocal coupled Gross-Pitaevskii equation in a harmonic potential, Appl. Math. Lett., 124 (2022), 107701. https://doi.org/10.1016/j.aml.2021.107701 doi: 10.1016/j.aml.2021.107701
    [17] X. Y. Yan, J. Z. Liu, X. P. Xin, Soliton solutions and lump-type solutions to the (2+1)-dimensional Kadomtsev-Petviashvili equation with variable coefficient, Phys. Lett. A, 457 (2023), 128574. https://doi.org/10.1016/j.physleta.2022.128574 doi: 10.1016/j.physleta.2022.128574
    [18] X. Y. Wu, Y. Sun, Dynamic mechanism of nonlinear waves for the (3+1)-dimensional generalized variable-coefficient shallow water wave equation, Phys. Scr., 97 (2022), 095208. https://doi.org/10.1088/1402-4896/ac878d
    [19] O. D. Adeyemo, C. M. Khalique, Dynamical soliton wave structures of one-dimensional Lie subalgebras via group-invariant solutions of a higher-dimensional soliton equation with various applications in ocean physics and mechatronics engineering, Commun. Appl. Math. Comput., 4 (2022), 1531–1582. https://doi.org/10.1007/s42967-022-00195-0 doi: 10.1007/s42967-022-00195-0
    [20] A. A. Hamed, S. Shamseldeen, M. S. Abdel Latif, H. M. Nour, Analytical soliton solutions and modulation instability for a generalized (3+1)-dimensional coupled variable-coefficient nonlinear Schrödinger equations in nonlinear optics, Modern Phys. Lett. B, 35 (2021), 2050407. https://doi.org/10.1142/S0217984920504072 doi: 10.1142/S0217984920504072
    [21] S. Kumar, B. Mohan, A study of multi-soliton solutions, breather, lumps, and their interactions for Kadomtsev-Petviashvili equation with variable time coeffcient using Hirota method, Phys. Scr., 96 (2021), 125255.
    [22] D. S. Wang, L. H. Piao, N. Zhang, Some new types of exact solutions for the Kac-Wakimoto equation associated with e(1)6, Phys. Scr., 95 (2020), 035202.
    [23] M. Singh, Infinite-dimensional symmetry group, Kac-Moody-Virasoro algebras and integrability of Kac-Wakimoto equation, Pramana, 96 (2022), 200. https://doi.org/10.1007/s12043-022-02445-5 doi: 10.1007/s12043-022-02445-5
    [24] S. Singh, K. Sakkaravarthi, K. Manikandan, R. Sakthivel, Superposed nonlinear waves and transitions in a (3+1)-dimensional variable-coefficient eight-order nonintegrable Kac-Wakimoto equation, Chaos Solitons Fract., 185 (2024), 115057. https://doi.org/10.1016/j.chaos.2024.115057 doi: 10.1016/j.chaos.2024.115057
    [25] Z. H. Yang, B. Y. Hon, An improved modified extended tanh-function method, Z. Naturforschung A, 61 (2006), 103–115. https://doi.org/10.1515/zna-2006-3-401 doi: 10.1515/zna-2006-3-401
    [26] K. K. Ahmed, N. M. Badra, H. M. Ahmed, W. B. Rabie, Soliton solutions and other solutions for Kundu-Eckhaus equation with quintic nonlinearity and Raman effect using the improved modified extended tanh-function method, Mathematics, 10 (2022), 1–11. https://doi.org/10.3390/math10224203 doi: 10.3390/math10224203
  • This article has been cited by:

    1. Bacui Li, Fuzhang Wang, New solutions to a category of nonlinear PDEs, 2025, 13, 2296-424X, 10.3389/fphy.2025.1547245
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(713) PDF downloads(94) Cited by(1)

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog