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Abstract: Higher-order nonlinear partial differential equations, such as the eighth-order Kac-
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range of wave numbers. This phenomenon is observed in oceanographic research involving sea surface
and internal waves, where intricate multi-dimensional interactions play a crucial role. In this work, we
use the improved modified extended tanh function method for the first time to extract the exact solutions
of the eighth-order (3+1)-dimensional Kac-Wakimoto equation, which describes the dynamics of fields
and the structure of solutions in various physical and mathematical contexts. The proposed method
is simple and quick to execute, and it offers more innovative solutions than other methods. As a
consequence, through the donation of suitable assumptions for the parameters, some new solutions
for dark and singular soliton, as well as Jacobi elliptic, exponential, hyperbolic, and singular periodic
forms, are developed. Furthermore, to enhance understanding, graphical representations of certain
solutions are included.
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1. Introduction

Nonlinear partial differential equations (NLPDEs) are used to model a variety of physical
phenomena in a broad range of scientific sectors, including solid state physics, quantum mechanics,
optical fibers, and chemical physics, such as Kadomtsev-Petviashvili equation [1, 2], Manakov
model [3], Non-linear Schrödinger equation [4], Korteweg-de Vries-Zakharov-Kuznetsov
equation [5], Biswas-Milovic model [6], Sasa-Satsuma equation [7, 8], Lakshmanan-Porsezian-Daniel
equation [9], concatenation model [10], and Schrödinger-Hirota equation [11]. The exact solutions of
NLPDEs provide both symbolic and physical insights into the mechanisms underlying many
nonlinear complex phenomena. Various techniques have been developed to investigate the exact wave
structures of NLPDEs, for example, extended F-expansion method [12], variational method [13] and
improved modified extended tanh-function method [14].

The study of nonlinear waves and transitions in higher-dimensional models with variable
coefficients is an essential area of research in understanding complex nonlinear phenomena across
different physical systems. These systems encompass a diverse range of applications such as magnetic
media, water waves, optics, plasmas, and Bose-Einstein condensates; for example, Yang et al. [15]
investigated the soliton structures of a variable-coefficient Gross-Pitaevskii equation with partially
nonlocal nonlinearity under a harmonic potential. Zhu and Xu [16] discussed the dynamics of solitons
for a variable-coefficient partially nonlocal coupled Gross-Pitaevskii equation in a harmonic potential.
Yan et al. [17] obtained the soliton solutions and lump-type solutions to the (2+1)-dimensional
Kadomtsev-Petviashvili equation with variable coefficient. Wu and Sun [18] studied the dynamic
mechanism of nonlinear waves for the (3+1)-dimensional generalized variable-coefficient shallow
water wave equation. Adeyemo and Khalique [19] discussed the dynamical soliton wave structures
for a higher-dimensional soliton equation with various applications in ocean physics and
mechatronics engineering. Hamed et al. [20] obtained soliton solutions and modulation instability for
a generalized (3+1)-dimensional coupled variable-coefficient nonlinear Schrödinger equations in
nonlinear optics. Kumar and Mohan [21] studied multi-soliton solutions, breast her, lumps, and their
interactions for the Kadomtsev-Petviashvili equation. The Kac-Wakimoto equation is a mathematical
framework that encompasses various intricate concepts in algebraic structures and their interplay with
soliton equations, vertex operators, and singularity theory. The Kac-Wakimoto equation is deeply
rooted in the realms of representation theory, affine Kac-Moody algebras, and the study of hierarchies
of soliton equations associated with pseudo unitary modular tensor categories [22, 23]. The
(3+1)-dimensional variable-coefficient eight-order nonintegrable Kac-Wakimoto equation is a
significant model that captures complex nonlinear phenomena in various physical systems.

In this work, we aim to delve into the intertwined spatial-temporal modulations leading to multiple
non-linear mechanisms, by exploring the eight-order (3+1)-dimensional Kac-Wakimoto equation. The
suggested model is represented by the subsequent equation [24]:

ζ(y)(420Ux UxxUxxx + 420U3
x Uxx + 210U2

x Uxxxx + 28UxUxxxxxx + 28UxxUxxxxx

+ 70UxxxUxxxx +Uxxxxxxxx) − ℏ(y)
(
3UxUxy + 3UxxUy +Uxxxy

)
− σ(y)Uxt + µ(y)Uzz = 0,

(1.1)

whereU = U(x, y, z, t) is the nonlinear wave evolution field, while ζ(y), ℏ(y), and σ(y) are dispersive
nonlinearity coefficients that change based on the spatial dimension y, and the subscripts indicate partial
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derivatives concerning spatial dimensions (x, y, z) and time t.
In this study, we utilize the improved modified extended tanh function (IMETF) method to explore

the traveling wave solutions of the equation represented by Eq (1.1). Through this method, various
types of precise wave solutions are attainable, including dark and singular solitons, as well as Jacobi
elliptic, exponential, hyperbolic, and singular periodic solutions. These unique solutions showcase the
method’s effectiveness and robustness, not reported elsewhere. Additionally, contour, 2D, and 3D plots
illustrate the model’s physical behaviors.

The layout of the paper is organized in the following manner: Section 2 acts as the fundamental
framework of this paper by outlining a recap of the suggested approach. Moving on to Section 3,
the suggested approach was put into practice on the designated model, allowing us to derive a fresh
resolution for the model. Within Section 4, a range of numerical solutions is offered through visual
depictions of a selection of the inferred solutions, and lastly. Section 5 delivers the summary and
ultimate remarks of this paper.

2. Proposed strategy outline

This segment outlines the foundational structure of this paper, providing a succinct overview of the
proposed method (see [25, 26]).

In order to explain the IMETF method, we assume that the nonlinear (NL) model of the PDE under
study can be represented as follows:

R
(
U, Ut, Ux, Uy, Uz, Uxx, Uyy, Uzz, Uxt, ...

)
= 0, (2.1)

which is a function of the dependent variableU and its various partial derivatives with respect to time
t and spatial coordinates x, y, and z.

Equation (2.1) can be simplified into a nonlinear ordinary differential equation (NLODE) through
the transformation provided below:

U (x, y, z, t) = H(ℏ), ℏ = xW1 + yW2 + zW3 + tW4. (2.2)

This transformation captures the interactions between the different dimensions in a single variable.
Therefore, Eq (2.1) could be reformulated as

V(H ,H ′,H ′′, . . .) = 0. (2.3)

Following the proposed method, we can represent the general solution of Eq (2.3) as

H(ℏ) =
N∑

i=0

bi ψ
i(ℏ) +

N∑
j=1

A j Ψ
− j(ℏ), (2.4)

where Ψ(ℏ) satisfies the following auxiliary equation:

Ψ′(ℏ) = ϵ
√

d0 + d1 Ψ(ℏ) + d2 Ψ2(ℏ) + d3 Ψ3(ℏ) + d4 Ψ4(ℏ), (2.5)

where ϵ = ±1.
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The highest power term and the highest derivative term of Eq (2.3) will be balanced to get the
positive integer N.

Equation (2.5) has the following cases for its solutions:
Case 1: When d0 = d1 = d3 = 0, the following solutions are brought up:

Ψ(ℏ) =

√
−

d2

d4
sech

[
ℏ
√

d2

]
, d2 > 0, d4 < 0,

Ψ(ℏ) =

√
−

d2

d4
sec

[
ℏ
√
−d2

]
, d2 < 0, d4 > 0,

Ψ(ℏ) = −
1
ℏ
√

d4
, d2 = 0, d4 > 0.

Case 2: When d1 = d3 = 0, the following solutions are brought up:

Ψ(ℏ) =

√
−d2

2d4
tanh

ℏ
√
−d2

2

 , d2 < 0, d4 > 0, d0 =
d2

2

4d4
,

Ψ(ℏ) =

√
d2

2d4
tan

ℏ
√

d2

2

 , d2 > 0, d4 > 0, d0 =
d2

2

4d4
,

Ψ(ℏ) =

√
−

m2d2(
2m2 − 1

)
d4

cn

ℏ
√

d2

2m2 − 1

 , d2 > 0, d4 < 0, d0 =
m2

(
1 − m2

)
d2

2

4
(
2m2 − 1

)2 d4

,

Ψ(ℏ) =

√
−

m2(
2 − m2) d4

dn

ℏ
√

d2

2 − m2

 , d2 > 0, d4 < 0, d0 =

(
1 − m2

)
d2

2(
2 − m2)2 d4

,

Ψ(ℏ) =

√
−

m2d2(
m2 + 1

)
d4

sn

ℏ
√
−d2

m2 + 1

 , d2 < 0, d4 > 0, d0 =
m2d2

2(
m2 + 1

)2 d4

.

Case 3: When d3 = d4 = 0, the following solution is brought up:

Ψ(ℏ) = −
d1

2d2
+ eℏ

√
d2 , d2 > 0, d0 =

d2
1

4d2
.

Case 4: When d1 = d3 = d4 = 0, the following solutions are brought up:

Ψ(ℏ) =

√
−

d0

d2
sin

[
ℏ
√
−d2

]
, d0 > 0, d2 < 0,

Ψ(ℏ) =

√
d0

d2
sinh

[
ℏ
√

d2

]
, d0 > 0, d2 > 0.

Case 5: When d0 = d1 = 0, the following solutions are brought up:

Ψ(ℏ) =
d2 sec2

[
1
2ℏ
√
−d2

]
2
√
−d2d4 tan

[
1
2ℏ
√
−d2

]
+ d3

, d2 < 0, d4 > 0, d3 , ±2
√

d2d4,
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Ψ(ℏ) =
d2 sech2

[
1
2ℏ
√

d2

]
2
√

d2d4 tanh
[

1
2ℏ
√

d2

]
− d3

, d2 > 0, d4 > 0, d3 , ±2
√

d2d4,

Ψ(ℏ) =
1
2

√
d2

d4

(
tanh

[
1
2
ℏ
√

d2

]
+ 1

)
, d2 > 0, d4 > 0, d3 = ±2

√
d2d4.

The highest power term and the highest derivative term of Eq (2.3) will be balanced to get the positive
integer N.

By putting Eq (2.4) through Eq (2.5) into Eq (2.3), the outcome is a polynomial in Ψ(ℏ). Next, we
set the sum of terms with matching powers equal to zero. To solve the resulting system, we will use
Mathematical software.

3. Deriving exact solutions for the Kac-Wakimoto equation

In this section, the method proposed in Section 2 is applied to Eq (1.1). When we use the wave
transform shown in Eq (2.2) on Eq (1.1), under constraints ζ(y) = a1, ℏ(y) = a2, µ(y) = a3 and
σ(y) = a4, where al(l = 1, 2, 3, 4) are constants, then, we can formulate Eq (1.1) as follows:

a1 W8
1 H

(8) + 28a1 W7
1 H

(6) H ′ + 28a1W7
1H

(5) H ′′ + 70a1 W7
1 H

(3) H (4)

+ 210a1 W6
1 H

(4) (
H ′

)2
− a2 W2 W3

1 H
(4) + 420a1 W5

1
(
H ′

)3
H ′′ − 6a2 W2 W2

1 H
′ H ′′

+ 420a1 W6
1 H

(3) H ′ H ′′ +
(
a3 W2

3 − a4 W1 W4

)
H ′′ = 0.

(3.1)

Integrating Eq (3.1) with respect to ℏ and setting the constant of integration to zero yields the following
expression:

a1 W8
1 H

(7) + 28 a1 W7
1 H

′ H (5) + 35 a1 W7
1

(
H ′′′

)2
+ 210 a1 W6

1 H
′2 H ′′′ + 105 a1 W5

1 H
′4

− a2 W3
1 W2 H

′′′ − 3 a2 W2 W2
1H

′2 +
(
a3 W2

3 − a4 W1W4

)
H ′ = 0.

(3.2)

To keep it straightforward, we assume that

H ′(ℏ) = G(ℏ). (3.3)

Thus, Eq (3.2) can be expressed as

a1 W8
1 G

(6) + 28 a1 W7
1 G G

(4) + 35 a1 W7
1

(
G′′

)2
+ 210 a1 W6

1 G
2 G′′ + 105 a1 W5

1 G
4

− a2 W3
1 W2 G

′′ − 3 a2 W2 W2
1 G

2 +
(
a3 W2

3 − a4 W1W4

)
G = 0.

(3.4)

We perform the application of the principle of balance to the equation presented (3.4), for G(6) and G4,
resulting in N = 2.

Therefore, the solution to Eq (3.4) can be written as

G(ℏ) = b0 + b1 ψ(ℏ) + b2 ψ(ℏ)2 +
A1

ψ(ℏ)
+
A2

ψ(ℏ)2 , (3.5)

the constants bi (i = 0, 1, 2) andA j ( j = 1, 2) require further analysis to compute, while it is important
to note that b2

2 +A
2
2 , 0.
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Substituting Eq (3.5) and Eq (2.5) into Eq (3.4), we set the coefficients of common powers to zero.
This system is then solved using Mathematical to derive the solutions of Eq (1.1) under the condition
b0 = 0, resulting in the following cases:
Case 1: d0 = d1 = d3 = 0.

A1 = A2 = b1 = 0, b2 = −2 d4 W1, W2 =
64 a1 d3

2 W8
1 − a4 W4 W1 + a3 W2

3

4a2 d2 W3
1

.

The outcomes of these cases will classify the solution to Eq(1.1) as follows:
Sub-case 1.1: Dark soliton, when d2 > 0 and d4 < 0:

U1.1 = 2 W1

√
d2 tanh

[
(xW1 + yW2 + zW3 + tW4)

√
d2

]
. (3.6)

Sub-case 1.2: Singular periodic solution, when d2 < 0 and d4 > 0:

U1.2 = −2 W1

√
−d2 tan

[
(xW1 + yW2 + zW3 + tW4)

√
−d2

]
. (3.7)

Sub-case 1.3: When d2 = 0 and d4 > 0, a rational-type solution is available, as shown:

U1.3 =
2 W1

xW1 + yW2 + zW3 + tW4
. (3.8)

Case 2: d1 = d3 = 0.
Sub-case 2.1:

A1 = b1 = b2 = 0, A2 = −2d0 W1, W2 =
4a1W5

1

(
4d2

2 − 17d0 d4

)
a2

, a4 =
432a1d0d2d4W8

1 + a3W2
3

W1 W4
.

Sub-case 2.2:

A1 = b1 = A2 = 0, b2 = −2 d4 W1, W2 =
4a1W5

1

(
4d2

2 − 17 d0 d4

)
a2

, a4 =
432 a1 d0 d2 d4 W8

1 + a3 W2
3

W1 W4
.

Sub-case 2.3:

A1 = b1 = 0, A2 = −2d0W1, b2 = −2d4W1, W2 =
16a1W5

1

(
31d2

2 + 17d0d4

)
a2

,

a4 =
−1920a1d3

2W8
1 − 2496a1d0d2d4W8

1 + a3W2
3

W1W4
.

The outcomes of Sub-case 2.1 will classify the solution to Eq (1.1) as follows:
(2.1, 1) Singular soliton, when d2 < 0, d4 > 0 and d0 =

d2
2

4 d4
:

U2.1.1 = − W1

√
−2 d2

(
(xW1 + yW2 + zW3 + tW4)

√
−

d2

2

− coth

(xW1 + yW2 + zW3 + tW4)

√
−

d2

2

 ). (3.9)
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(2.1, 2) When d2 > 0, d4 > 0 and d0 =
d2

2
4 d4

, a singular periodic-type solution is available, as shown:

U2.1.2 = W1

√
2 d2

(
(xW1 + yW2 + zW3 + tW4)

√
d2

2

+ cot

(xW1 + yW2 + zW3 + tW4)

√
d2

2

 ). (3.10)

(2.1, 3) When d2 < 0, d4 > 0, d0 =
d2

2 m2

d4 (1+m2)2 and 0 ≤ m ≤ 1, a Jacobi elliptic solution (JES) is available,

as shown:

U2.1.3 =

ℏ
√
−

d2

m2 + 1
− cs

ℏ
√
−

d2

m2 + 1

 dn

ℏ
√
−

d2

m2 + 1

 − JacobiEpsilon

ℏ
√
−

d2

m2 + 1


×

−2W1

√
−

d2

m2 + 1

 , (3.11)

where ℏ = xW1 + yW2 + zW3 + tW4.

Setting m = 1 or m = 0 in Eq (3.11 ) leads to the singular soliton-type solution or singular periodic-
type solution, as shown:

U2.1.4 = W1(
√
−2d2 coth

[
(xW1 + yW2 + zW3 + tW4)

√
d2

]
+ d2

[
xW1 + yW2 + zW3 + tW4

]
),

(3.12)

or
U2.1.5 = 2W1

√
−d2 cot

[
(xW1 + yW2 + zW3 + tW4)

√
−d2

]
. (3.13)

The outcomes of Sub-case 2.2 will classify the solution to Eq (1.1) as follows:
(2.2, 1) When d2 > 0, d4 < 0 and d0 =

d2
2m2(1−m2)

d4(2m2−1)2 , a dark soliton-type solution is available, as shown:

U2.2.1 = −W1

√
−2d2

[
(xW1 + yW2 + zW3 + tW4)

√
−

d2

2

− tanh

(xW1 + yW2 + zW3 + tW4)

√
−

d2

2

 ]. (3.14)

(2.2, 2) Singular periodic solution, when d2 > 0, d4 < 0 and d0 =
d2

2 (1−m2)
d4 (2−m2)2 :

U2.2.2 = W1

√
2d2[(xW1 + yW2 + zW3 + tW4)

√
d2

2

− tan

(xW1 + yW2 + zW3 + tW4)

√
d2

2

]. (3.15)

(2.2, 3) When d2 > 0, d4 < 0 and d0 =
m2d2

2(1−m2)
d4(2m2−1)2 a Jacobi elliptic solution is available, as shown:

U2.2.3 = 2m W1

√
d2

2 m2 − 1

(m − 1) ℏ

√
d2

2 m2 − 1
− JacobiEpsilon

ℏ
√

d2

2 m2 − 1

 , (3.16)
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where ℏ = xW1 + yW2 + zW3 + tW4.

Setting m = 1 in Eq (3.16 ) leads to a dark soliton-type solution that is available, as shown:

U2.2.4 = 2W1

√
d2 tanh

[
(xW1 + yW2 + zW3 + tW4)

√
d2

]
. (3.17)

(2.2, 4) When d2 > 0, d4 < 0 and d0 =
m2d2

2(1−m2)
d4(2−m2)2 a Jacobi elliptic solution is available, as shown:

U2.2.5 =
2 m2 W1√
d2

(
2 − m2) JacobiEpsilon

xW1 + yW2 + zW3 + tW4)

√
d2

2 − m2

 . (3.18)

Setting m = 1 in Eq (3.18 ) leads to a dark soliton-type solution that is available, as shown:

U2.2.6 =
2 W1
√

d2
tanh

[
(xW1 + yW2 + zW3 + tW4)

√
d2

]
. (3.19)

The outcomes of Sub-case 2.3 will classify the solution to Eq (1.1) as follows:
(2.3, 1) When d2 < 0, d4 > 0 and d0 =

d2
2

4 d4
, a singular soliton-type solution is available, as shown:

U2.3.1 = 2 W1

(
(xW1 + yW2 + zW3 + tW4) d2

−
√
−2d2 coth

[
(xW1 + yW2 + zW3 + tW4)

√
−2d2

] )
.

(3.20)

(2.3, 2) When d2 > 0, d4 > 0 and d0 =
d2

2
4 d4

, a singular periodic-type solution is available, as shown:

U2.3.2 = W1 (2 d2 (xW1 + yW2 + zW3 + tW4)

+

√
d2

2
cot

[
(xW1 + yW2 + zW3 + tW4)

√
2 d2

]
).

(3.21)

(2.3, 3) Jacobi elliptic solution (JES), when d2 > 0, d4 < 0, d0 =
d2

2 m2 (1−m2)
d4 (2 m2−1)2 and 0 ≤ m ≤ 1:

U2.3.3 = − 2W1

√
d2

2 m2 − 1

(
(xW1 + yW2 + zW3 + tW4) (m − 1)

+ JacobiEpsilon

(xW1 + yW2 + zW3 + tW4)

√
d2

2 m2 − 1


−

(m + 1) dn[(xW1 + yW2 + zW3 + tW4)
√

d2
2 m2−1 ] sn[(xW1 + yW2 + zW3 + tW4)

√
d2

2 m2−1 ]

cn[(xW1 + yW2 + zW3 + tW4)
√

d2
2 m2−1 ]

)
.

(3.22)
Setting m = 1 or m = 0 in Eq (3.22 ) leads to the dark soliton-type solution or singular periodic solution
are available, as shown:

U2.3.4 = 2 W1

√
d2 tanh

[
(xW1 + yW2 + zW3 + tW4)

√
d2

]
, (3.23)
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or
U2.3.5 = 2 W1

√
−d2 tan

[
(xW1 + yW2 + zW3 + tW4)

√
−d2

]
. (3.24)

(2.3, 4) When d2 > 0, d4 < 0, d0 =
d2

2 (1−m2)
d4 (2−m2)2 and 0 < m ≤ 1, a JES is available, as shown:

U2.3.6 =
2W1

m2
√

d2 (2 − m2)
[(m4+d2

2(m+1)) JacobiEpsilon

(xW1 + yW2 + zW3 + tW4)

√
−

d2

m2 − 2


−

m(m + 1) cn[(xW1 + yW2 + zW3 + tW4)
√

d2
2− m2 ] sn[(xW1 + yW2 + zW3 + tW4)

√
d2

2− m2 ]

dn[(xW1 + yW2 + zW3 + tW4)
√

d2
2− m2 ]

]. (3.25)

Setting m = 1 in Eq (3.25 ) leads to a dark soliton-type solution that’s available, as shown:

U2.3.7 =
2 W1
√

d2
tanh

[
(xW1 + yW2 + zW3 + tW4)

√
d2

]
. (3.26)

Case 3: d3 = d4 = 0.
Sub-case 3.1:

A1 = −d1 W1, b1 = b2 = 0, A2 = −2 d0 W1, W2 =
21a1 d2

2 W5
1

a2
, a4 =

a3 W2
3 − 20 a1 d3

2 W8
1

W1 W4
.

Sub-case 3.2:

A1 = −2d1W1, b1 = b2 = 0, A2 = −4d0W1, d2 =
d2

1

4d0
, W2 =

21a1d4
1W5

1

16a2d2
0

, a4 =
16a3d3

0W2
3 − 5a1d6

1W8
1

16 d3
0W1W4

.

The outcomes of Sub-case 3.1 will classify the solution to Eq (1.1) as follows:
(3.1, 1) When d2 > 0, d0 =

d2
1

4d2
, d1 , 0 and d1 , 2 d2 e(W1 x+W2 y+W3 z+W4 t+Φ)

√
d2 , the exponential solution

is available, as shown:

U3.1,1 = −
2 d1 W1

√
d2

d1 − 2 d2 e(xW1+yW2+zW3+tW4)
√

d2
. (3.27)

(3.1, 2) When d2 < 0 and d0 = 0, the singular periodic solution is available, as shown:

U3.1,2 =
4 W1

√
−d2

1 − cot
[

(xW1+yW2+zW3+tW4)
√
−d2

2

] . (3.28)

(3.1, 3) When d2 > 0 and d0 = 0, the hyperbolic solution is available, as shown:

U3.1,3 = 2 W1

√
2 d2 tanh−1

1 + tanh
[

1
2 (W1 x +W2 y +W3 z +W4 t)

√
d2

]
√

2

 . (3.29)

(3.1, 4) Singular periodic solution, when d2 < 0, d1 = 0 and d0 > 0:

U3.1,4 = 2 W1

√
−d2 cot

[
(xW1 + yW2 + zW3 + tW4)

√
−d2

]
. (3.30)
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(3.1, 5) Singular soliton, when d2 > 0, d1 = 0 and d0 > 0:

U3.1,4 = −2 W1

√
−d2 coth

[
(xW1 + yW2 + zW3 + tW4)

√
−d2

]
. (3.31)

The outcomes of Sub-case 3.2 will classify the solution to Eq (1.1) as follows:
(3.2) When d2 > 0, d0 =

d2
1

4d2
, d1 , 0 and d1 , 2 d2 e(W1 x+W2 y+W3 z+W4 t+Φ)

√
d2 , the exponential solution

is available, as shown:

U3.2 = −
2 d1 W1

√
d2

d1 − 2 d2 e(xW1+yW2+zW3+tW4)
√

d2
. (3.32)

Case 4: d0 = d1 = 0.
Sub-case 4.1:

A1 = b1 = 0, b2 = −2d4W1, A2 = d3 = 0, a4 =
64 a1 d3

2 W8
1 − 4 a2 d2 W2 W3

1 + a3 W2
3

W1 W4
.

Sub-case 4.2:

A1 = 0, b1 = ±2W1

√
d2d4, b2 = −2d4W1, A2 = 0, d3 = ∓2

√
d2d4, a4 =

a1d3
2W8

1 − a2d2W2W3
1 + a3W2

3

W1W4
.

The outcomes of Sub-case 4.1 will classify the solution to Eq (1.1) as follows:
(4.1, 1) Singular periodic solution, when d2 < 0:

U4.1,1 = 2 W1

√
−d2 cot

[
(xW1 + yW2 + zW3 + tW4)

√
−d2

]
. (3.33)

(4.1, 2) Singular soliton, when d2 > 0, and d4
3 , d2 d4:

U4.1,2 = 2 W1

√
d2 coth

[
(xW1 + yW2 + zW3 + tW4)

√
d2

]
. (3.34)

The outcomes of Sub-case 4.2 will classify the solution to Eq (1.1) as follows:
(4.2) When d2 > 0, and d4

3 = 4 d2 d4, a dark soliton-type solution is available, as shown:

U4.2,1 = W1

√
d2

[
tanh

(
ℏ
√

d2

2

)
+ 4 log

[
1 − tanh

(
ℏ
√

d2

2

)]
, (3.35)

where ℏ = (xW1 + yW2 + zW3 + tW4) .

4. Graphical representation

This section presents graphical representations of some derived solutions in two and three
dimensions. Figure 1 depicts a dark soliton from Eq (3.6) with W1 = 0.47, d2 = 1 and W4 = 0.47.
Dark solitons are localized zones of reduced amplitude within a surrounding medium, often linked to
lower fluid density or pressure in fluid dynamics. Figure 2 depicts a singular periodic solution from
Eq (3.7) with W1 = 0.85, d2 = −1 and W4 = 0.57. A system displaying these periodic solutions
alongside abrupt shifts or severe events is characterized by unique periodic behavior in physical
phenomena. Such singularities or discontinuities may arise from non-linearities, boundary conditions,
or external stimuli.
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(a) 3-Dimension
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Figure 1. Dark soliton.

(a) 3-Dimension
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(b) 2-Dimension

Figure 2. Singular periodic solution.

Figure 3 depicts a singular soliton from Eq (3.9) with W1 = 0.76, d2 = −0.5 and W4 = 0.7. These
solutions are primarily characterized by a narrow region approaching a peak at infinity. Figure 4 depicts
a Jacobi elliptic solution from Eq (3.18) with ρ1 = 0.86, d2 = 0.7, W4 = 0.85 and m = 0.8.

(a) 3-Dimension

-5 5 x

-20

-10

10

20

2.1(x, 0, 0, 0.5)

(b) 2-Dimension

Figure 3. Singular soliton.
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(a) 3-Dimension
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Figure 4. Jacobi elliptic solution.

5. Conclusions

The study significantly opens up numerous avenues for further comprehensive investigation into
various nonlinear phenomena, delving into intricate soliton interactions. This exploration paves
the way for considerable advancements in our understanding of complex wave dynamics,
which is crucial for various scientific applications. Additionally, the research highlights the vital
importance of obtaining exact solutions to nonlinear equations. This is essential for achieving a
deeper and more refined understanding of nonlinear systems, especially within the realms of applied
sciences and the broader field of nonlinear dynamics. The findings not only enhance theoretical
knowledge but also provide practical insights that can lead to innovative applications
and methodologies in related disciplines. The IMETF method has been used to study the eight-order
(3+1)-dimensional Kac-Wakimoto equation, successfully yielding new solutions not previously
reported in [24]. We were successful in achieving the primary purpose of this work, which was
to suggest novel and different solutions for our proposed model that had not before been
presented in the literature, with the anticipation that this research will have a significant impact on
future studies.

This work introduced the improved modified extended tanh function approach for the first time to
derive exact solutions of the proposed model, facilitating the analysis of fluid wave behavior.
The reason behind using this method over the other methods is that it offers more types of
complex solutions, making it suitable for several types of NLPDEs. We presented various solutions,
including dark and singular solitons, as well as Jacobi elliptic, exponential, hyperbolic, and singular
periodic solutions. The obtained solutions are novel ones that haven’t been documented in previous
works. Additionally, these solutions–which come from this model–showcase the efficiency and
resilience of the employed approach in comparison to alternative approaches. We believe this work
will significantly influence future research in the field of solitons. To enhance the physical
representation of the model’s dynamic features, we provided several important solutions displayed
through contour, 2D, and 3D plots.

AIMS Mathematics Volume 9, Issue 12, 33386–33400.



33398

Author contributions

Wafaa B. Rabie: Formal analysis, Software; Hamdy M. Ahmed: Validation, Methodology; Taher
A. Nofal: Resources, Writing–review & editing; E. M. Mohamed: Software, Investigation. All authors
have read and approved the final version of the manuscript for publication.

Acknowledgments

The authors extend their appreciation to Taif University, Saudi Arabia, for supporting this work
through project number (TU-DSPP-2024-46).

Funding

This research was funded by Taif University, Saudi Arabia, Project No. (TU-DSPP-2024-46).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. A. M. Wazwaz, Two forms of (3+1)-dimensional B-type Kadomtsev-Petviashvili equation:
multiple soliton solutions, Phys. Scr., 86 (2012), 035007. https://doi.org/10.1088/0031-
8949/86/03/035007
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