In this paper, we derive the asymptotic formulas B∗r,s,t(n) such that
limn→∞{(∞∑k=n1kr(k+t)s)−1−B∗r,s,t(n)}=0,
where Re(r+s)>1 and t∈C. It is evident that the asymptotic formulas for the inverses of the tails of both the Riemann zeta function and the Hurwitz zeta function on the half-plane Re(s)>1 are its corollaries. Subsequently we provide the asymptotic formulas for the Riemann zeta function and the Hurwitz zeta function on the half-plane Re(s)<0. Finally, we study the asymptotic formulas of the inverse of the tails of the Dirichlet L-function for Re(s)>1 and Re(s)<0.
Citation: Zhenjiang Pan, Zhengang Wu. The inverse of tails of Riemann zeta function, Hurwitz zeta function and Dirichlet L-function[J]. AIMS Mathematics, 2024, 9(6): 16564-16585. doi: 10.3934/math.2024803
[1] | Robert Reynolds, Allan Stauffer . Extended Prudnikov sum. AIMS Mathematics, 2022, 7(10): 18576-18586. doi: 10.3934/math.20221021 |
[2] | Robert Reynolds, Allan Stauffer . Definite integral of the logarithm hyperbolic secant function in terms of the Hurwitz zeta function. AIMS Mathematics, 2021, 6(2): 1324-1331. doi: 10.3934/math.2021082 |
[3] | Robert Reynolds . A short note on a extended finite secant series. AIMS Mathematics, 2023, 8(11): 26882-26895. doi: 10.3934/math.20231376 |
[4] | Zhenjiang Pan, Zhengang Wu . The inverses of tails of the generalized Riemann zeta function within the range of integers. AIMS Mathematics, 2023, 8(12): 28558-28568. doi: 10.3934/math.20231461 |
[5] | Mohamed Akel, Muajebah Hidan, Salah Boulaaras, Mohamed Abdalla . On the solutions of certain fractional kinetic matrix equations involving Hadamard fractional integrals. AIMS Mathematics, 2022, 7(8): 15520-15531. doi: 10.3934/math.2022850 |
[6] | Robert Reynolds, Allan Stauffer . Derivation of logarithmic integrals expressed in teams of the Hurwitz zeta function. AIMS Mathematics, 2020, 5(6): 7252-7258. doi: 10.3934/math.2020463 |
[7] | Ilija Tanackov, Željko Stević . Calculation of the value of the critical line using multiple zeta functions. AIMS Mathematics, 2023, 8(6): 13556-13571. doi: 10.3934/math.2023688 |
[8] | Gunduz Caginalp . A renormalization approach to the Riemann zeta function at — 1, 1 + 2 + 3 + …~ — 1/12.. AIMS Mathematics, 2018, 3(2): 316-321. doi: 10.3934/Math.2018.2.316 |
[9] | Huo Tang, Gangadharan Murugusundaramoorthy, Shu-Hai Li, Li-Na Ma . Fekete-Szegö and Hankel inequalities for certain class of analytic functions related to the sine function. AIMS Mathematics, 2022, 7(4): 6365-6380. doi: 10.3934/math.2022354 |
[10] | Robert Reynolds . Extended Moreno-García cosine products. AIMS Mathematics, 2023, 8(2): 3049-3063. doi: 10.3934/math.2023157 |
In this paper, we derive the asymptotic formulas B∗r,s,t(n) such that
limn→∞{(∞∑k=n1kr(k+t)s)−1−B∗r,s,t(n)}=0,
where Re(r+s)>1 and t∈C. It is evident that the asymptotic formulas for the inverses of the tails of both the Riemann zeta function and the Hurwitz zeta function on the half-plane Re(s)>1 are its corollaries. Subsequently we provide the asymptotic formulas for the Riemann zeta function and the Hurwitz zeta function on the half-plane Re(s)<0. Finally, we study the asymptotic formulas of the inverse of the tails of the Dirichlet L-function for Re(s)>1 and Re(s)<0.
The Riemann zeta function ζ(s) and the Hurwitz zeta function ζ(s,a) are two important functions in the analytic number theory. The Riemann zeta function has an intimate connection with the distribution of primes, and the Hurwitz zeta function plays an important role in studying the properties of the Dirichlet L-function. The properties of ζ(s) and ζ(s,a) have attracted considerable attention from mathematicians.
In the past ten years, many mathematicians have been working on the tails of various zeta functions. For example, Xin [1] gives the asymptotic formulas of the Riemann zeta function with s=2 and s=3,
⌊(∞∑k=n1k2)−1⌋=n−1,⌊(∞∑k=n1k3)−1⌋=2n(n−1). | (1.1) |
Kim and Song [2] studied the inverses of the tails of the Riemann zeta function and derived results for s in the critical strip 0<s<1,
⌊(∞∑k=n1ks)−1⌋∼{2(1−21−s)(n−12)s,if n is even;−2(1−21−s)(n−12)s,if n is odd. | (1.2) |
Lee and Park [3] dealt with the inverses of the tails of the Hurwitz zeta function when s≥2, s∈N, and 0≤a<1, and derived
(∞∑k=n1(k+a)s)−1 ∼ s−1∑j=0A∗j(n+a)j, | (1.3) |
where
A∗s−1=s−1,Asl=−s−l−1∑j=1xsjAsl+j,xsj=(s−2+jj)Bj, |
and Bj is the Bernoulli numbers.
Ohtsuka and Nakamura [4] derived the asymptotic formulas for the tails of the Fibonacci zeta function with s = 1 and s = 2,
⌊(∞∑k=n1Fk)−1⌋={Fn−2, if n is even,n≥2;Fn−2−1, if n is odd,n≥1; | (1.4) |
⌊(∞∑k=n1F2k)−1⌋={Fn−1Fn−1, if n is even,n≥2;Fn−1Fn, if n is odd,n≥1. | (1.5) |
More results associated with the asymptotic formulas can be found in [5,6,7,8,9,10,11,12], where Hwang and Song [5] and Xu [6] study the tails related to the Riemann zeta function, Choi and Choo [7], Komatsu [8], Lee and Park [9,10] and Marques and Trojovsky [11] study the tails of the Fibonacci zeta function, and Xu and Wang [12] studied the tails of Pell zeta function.
The above results reveal the relations between zeta functions and polynomials. From other perspectives, these sums are the First Newton's identity of an infinite polynomial with roots k−s or F−sk for k≥n; therefore, they also reflect the importance of Newton's identities, which are elaborately introduced in [13].
In general, the consideration is limited to cases where s∈N+ or s∈(0,1). Due to the application of the estimate of the tails of the Riemann zeta function in various other problems, such as the upper of the Dirthlet L-function, the average of many well-known arithmetical functions, and so on, we hope to generalize the results to the complex plane. For this proposal, in this paper, the generalized Riemann zeta function R(r,s,t) and its n-th tail Rn(r,s,t) are defined for Re(r+s)>1, t∈C by series
R(r,s,t)=∞∑k=11kr(k+t)s and Rn(r,s,t)=∞∑k=n1kr(k+t)s, |
and then we study the asymptotic formulas of Rn(r,s,t) for r,s in the half-plane Re(r+s)>1 and t∈C. In addition, inspired by the expressions of ζ(s) with 0<s<1 in [2], we can similarly estimate the inverses of the tails of ζ(s) for Re(s)<0. Similarly, we can derive the asymptotic formulas for the inverses of the tails of the Hurwitz zeta function and the Dirichlet L-function L(1,χ) for Re(s)>1 and Re(s)<0. It is worth noting that the inverses of the Hurwitz zeta function and the Dirichlet L-function possess new characteristics, and we obtain their dominant terms.
Theorem 1. Let the function R(r,s,t) and the n-th tail Rn(r,s,t) be as above, for any r,s,t∈C. If
Re(r+s)−1>0, |
we have
(Rn(r,s,t))−1=B∗r,s,t(n)+o(1), |
where
B∗r,s,t(n)=b∗r+s−1nr+s−1+b∗r+s−2nr+s−2+⋯+b∗{r+s}n{r+s} |
and the coefficients
b∗j∈C (j=r+s−1,r+s−2,⋯,{r+s}) |
are constants determined by r,s,t as follows:
{b∗r+s−1=r+s−1;b∗r+s−1−k= ∑k1+k2=kk1≥0,k2≥1r+s−1∑i=r+s−1−k1i≥{r+s−1}b∗i(ii−r−s+2+k1)(sk2)tk2−∑k1+k2=kk1,k2≥1r+s−1∑i=r+s−1−k1i≥{r+s−1}b∗i(ii−r−s+1+k1)b∗r+s−1−k2r+s−1+k+r+s−1∑i=r+s−ki≥{r+s−1}b∗i[(ii−r−s+2+k)−(r+s−1)(ii−r−s+1+k)]r+s−1+k, for [r+s−1]≥k≥1; | (2.1) |
where [x] denotes the integer part of the real part of x, and {x}=x−[x].
Theorem 2. Let
ζn(s)=∞∑k=n1ks |
be the n-th tail of the Riemann zeta function, then for all Re(s)<0, we have
(ζn(s))−1=πs−12Γ(1−s2)Γ(s2)B∗0,1−s,0(n)+o(1), |
where
B∗0,1−s,0(n)=b∗−sn−s+b∗−s−1n−s−1+⋯+b∗{−s}n{−s} |
and the coefficients
b∗j∈C (j=−s,−s−1,⋯,{−s}) |
are constants determined by s as follows:
{b∗−s=−s;b∗−s−k=∑k1+k2=kk1≥0,k2≥1−s∑i=−s−k1i≥{−s}b∗i(ii+s+1+k1)(sk2)tk2−∑k1+k2=kk1,k2≥1−s∑i=−s−k1i≥{−s}b∗i(ii+s+k1)b∗−s−k2−s+k+−s∑i=1−s−ki≥{−s}b∗i[(ii+s+1+k)−(−s)(ii+s+k)]−s+k, for [−s]≥k≥1; | (2.2) |
and [x] denotes the integer part of the real part of x, and {x}=x−[x].
Corollary 1. Let
ζn(s)=∞∑k=n1ks |
be the n-th tail of the Riemann zeta function, then for Re(s)>1, we have
ζn(s)=∞∑k=n1ks=B∗0,s,0(n)+o(1), | (2.3) |
where
B∗0,s,0(n)=b∗s−1ns−1+b∗s−2ns−2+⋯+b∗{s−1}n{s−1} |
and
{b∗s−1=s−1;b∗s−1−k=s−1∑i=s−ki≥{s−1}b∗i[(ii−s+2+k)−(s−1)(ii−s+1+k)]s−1+k−∑k1+k2=kk1,k2≥1s−1∑i=s−1−k1i≥{s−1}b∗i(ii−s+1+k1)b∗s−1−k2s−1+k, for [s−1]≥k≥1. | (2.4) |
Corollary 2. If r=0, 0<t=a≤1, and |s|>1, we have
ζn(s,a)=∞∑k=n1(k+a)s=B∗0,s,a(n)+o(1), | (2.5) |
where
B∗0,s,a(n)=b∗s−1,ans−1+b∗s−2,ans−2+⋯+b∗{s−1},an{s−1} |
and
{b∗s−1=s−1;b∗s−1−k=∑k1+k2=kk1≥0,k2≥1s−1∑i=s−1−k1i≥{s−1}b∗i(ii−s+2+k1)(sk2)ak2−∑k1+k2=kk1,k2≥1s−1∑i=s−1−k1i≥{s−1}b∗i(ii−s+1+k1)b∗s−1−k2s−1+k+s−1∑i=s−ki≥{s−1}b∗i[(ii−s+2+k)−(s−1)(ii−s+1+k)]s−1+k; for [s−1]≥k≥1. | (2.6) |
Now we start considering the asymptotic formulas for inverses of the tails of the Hurwitz zeta function ζ(s,a) for Re(s)<0 and a=pq∈Q,p,q∈N, (p,q)=1.
In combination with the following functional equation related to the Hurwitz zeta function [14]:
ζ(1−s,pq)=2Γ(s)(2πq)sq∑m=1cos(πs2−2πmpq)ζ(s,mq). | (2.7) |
For any positive integer n, write
n=q(l−1)+r |
for some q≥r≥1 and l,r∈N+. The n-th tails of the Hurwitz zeta function for Re(s)<0 are defined by
ζn(s,pq)=2Γ(1−s)(2πq)1−s(r−1∑m=1amζl+1(1−s,mq)+q∑m=ramζl(1−s,mq)), |
where
am=cos(π(1−s)2−2πmpq) |
for m=1,2,⋯,q.
When
n=q(l−1)+1, |
rewrite above n-th tails of the Hurwitz zeta function for Re(s)<0 as
ζn(s,pq)=2Γ(1−s)(2πq)1−sq∑m=1amζl(1−s,mq). |
Theorem 3. Let function ζ(s,pq) and the n-th tail ζn(s,pq) be as above for Re(s)<0 and p,q∈N+,(p,q)=1.
(i) Let n=q(l−1)+1 for some l∈N+, if
q∑m=1mam≠0 |
holds, we have
(ζn(s,pq))−1=−πq2(2qπ)sΓ(1−s)q∑m=1maml1−s+Os,q(l−s), |
where
am=cos(π(1−s)2−2πmpq) |
for m=1,2,⋯,q.
(ii) Let
n=q(l−1)+r |
for some q≥r≥1 and l,r∈N+, if
q∑m=1mam≠0andq∑m=1mam−qq∑m=ram≠0 |
hold, we have
(ζn(s,pq))−1=−πq2(2πq)sΓ(1−s)(q∑m=1mam−qq∑m=ram)l1−s+Os,q(l−s), |
where
am=cos(π(1−s)2−2πmpq) |
for m=1,2,⋯,q.
Remark 1. Since ∑qm=1am=0 (see the proof of Theorem 3 in this paper), we observe that the result (i) of Theorem 3 follows (ii) when r=1.
Similarly, according to the following functional equation related to the Dirichlet L-function [14]:
L(s,χ)=k−sk∑j=1χ(j)ζ(s,jk), | (2.8) |
where χ is a character module k.
The asymptotic formula of the inverse of the Dirichlet L-function L(s,χ) is trivial when χ=χ1 is the principal character module k. Therefore, we only consider the case for χ≠χ1. Similar to the Hurwitz zeta function, the n-th tail of L(s,χ) could be defined for Re(s)>1 by
Ln(s,χ)=k−s(r−1∑j=1χ(j)ζl+1(s,jk)+k∑j=rχ(j)ζl(s,jk)), |
where
n=k(l−1)+r |
for some k≥r≥1 and l,r∈N+.
When r=1, we have
Ln(s,χ)=k−s(k∑j=1χ(j)ζl(s,jk)). |
In combination with (2.7) and (2.8), for Re(s)<0, we have
L(s,χ)=k−sk∑j=1χ(j)ζ(s,jk)=k−sk∑j=1χ(j)2Γ(1−s)(2πk)1−sk∑m=1cos(π(1−s)2−2πmjk)ζ(1−s,mk)=Γ(1−s)2−sπ1−skk∑j=1k∑m=1χ(j)aj,mζ(1−s,mk), | (2.9) |
where
aj,m=cos(π(1−s)2−2πmjk) |
for j=1,2,⋯,k and m=1,2,⋯,k.
The n-th tail of L(s,χ) could be defined for Re(s)<0 by
Ln(s,χ)=Γ(1−s)2−sπ1−sk((u−1∑j=1k∑m=1+r−1∑m=1j=u)χ(j)aj,mζl+1(1−s,mk)+(k∑m=rj=u+k∑j=u+1k∑m=1)χ(j)aj,mζl(1−s,mk)), |
where
n=k2(l−1)+k(u−1)+r |
for some k≥u≥1, k≥r≥1, and l,u,r∈N+.
When r=1, we have
Lk2+1(s,χ)=Γ(1−s)2−sπ1−skk∑j=1k∑m=1χ(j)aj,mζl(1−s,mk). |
Theorem 4. Let the function L(s,χ) and the n-th tail Ln(s,χ) be as above for χ≠χ1 is the nonprincipal character module k.
(i) When Re(s)>1, let n=k(l−1)+1 for some l∈N+, if
k∑j=1jχ(j)≠0 |
holds, we have
(Ln(s,χ))−1=−ks+1k∑j=1jχ(j)ls+Os,k(ls−1). |
(ii) When Re(s)>1, let n=k(l−1)+r for some k≥r≥1, and l,r∈N+, if
k∑j=1jχ(j)−kk∑j=rχ(j)≠0andk∑j=1jχ(j)≠0 |
hold, we have
(Ln(s,χ))−1=−k1+sk∑j=1jχ(j)−kk∑j=rχ(j)ls+Os,k(ls−1). |
(iii) When Re(s)<0, let n=k2(l−1)+1 for some l∈N+, if
k∑j=1k∑m=1mχ(j)aj,m≠0 |
holds, we have
(Ln(s,χ))−1=−πk2(2π)sΓ(1−s)k∑j=1k∑m=1mχ(j)aj,ml1−s+Os,k(l−s), |
where
aj,m=cos(π(1−s)2−2πmjk) |
for j=1,2,⋯,k and m=1,2,⋯,k.
(iv) When Re(s)<0, let
n=k2(l−1)+k(u−1)+r |
for some k≥u≥1, k≥r≥1 and l,u,r∈N+, if
k∑j=1k∑m=1mχ(j)aj,m−k(k∑m=rj=u+k∑j=u+1k∑m=1)χ(j)aj,m≠0andk∑j=1k∑m=1mχ(j)aj,m≠0 |
hold, we have
(Ln(s,χ))−1=−πk2(2π)sΓ(1−s)(k∑j=1k∑m=1mχ(j)aj,m−k(k∑m=rj=u+k∑j=u+1k∑m=1)χ(j)aj,m)l1−s+Os,k(l−s), |
where
aj,m=cos(π(1−s)2−2πmjk) |
for j=1,2,⋯,k and m=1,2,⋯,k.
Before our proof, we first propose several lemmas.
Lemma 1. For all s,t∈C and n∈N, if n>|t|, we have
(n+t)s=∞∑k=0(sk)ns−ktk. |
Proof. Let
f(s)=(n+t)s=ns(1+tn)s=ns∞∑k=0(sk)(tn)k=∞∑k=0(sk)ns−ktk, | (3.1) |
and the third equation holds for |tn|<1.
Lemma 2. For all r,s,t∈C and Re(r+s)>1, there exists a unique generalized complex coefficient polynomial
B∗r,s,t(n)=b∗r+s−1nr+s−1+b∗r+s−2nr+s−2+⋯+b∗{r+s}n{r+s}, |
where
b∗j∈C (j=r+s−1,r+s−2,⋯,{l}) |
is determined by r,s, and t, subject to the real part of its order being greater than 0 and
[B∗r,s,t(n+1)−B∗r,s,t(n)]nr(n+t)s−B∗r,s,t(n+1)B∗r,s,t(n)=O(nr+s+{r+s}−2). |
Proof. First, we assume
B∗r,s,t(n)=b∗lnl+b∗l−1nl−1+⋯+b∗{l}+1n{l}+1+b∗{l}n{l}, Re(l)>0 |
satisfies
[B∗r,s,t(n+1)−B∗r,s,t(n)]nr(n+t)s−B∗r,s,t(n+1)B∗r,s,t(n)=O(nr+s+{r+s}−2). | (3.2) |
Since the absolute value of the order of [B∗r,s,t(n+1)−B∗r,s,t(n)]nr(n+t)s is greater than |r+s+{r+s}−2|, then we have the necessary condition (1): The order of [B∗r,s,t(n+1)−B∗r,s,t(n)]nr(n+t)s is equal to the order of B∗r,s,t(n+1)B∗r,s,t(n).
In other words, we have l−1+r+s=2l, which implies
l=r+s−1. | (3.3) |
Then we rewrite
B∗r,s,t(n)=b∗r+s−1nr+s−1+b∗r+s−2nr+s−2+⋯+b∗{l}+1n+b∗{r+s−1} |
with b∗r+s−1≠0, by Lemma 1, we have
(n+t)s=∞∑k=0(sk)ns−ktk for n>|t|. |
Let n>1, we have
[B∗r,s,t(n+1)−B∗r,s,t(n)]nr(n+t)s=[r+s−1∑i={r+s−1}b∗i(n+1)i−r+s−1∑i={r+s−1}b∗ini]nr∞∑j=0(sj)ns−jtj=r+s−1∑i={r+s−1}b∗i∞∑k=1(ik)ni−knr∞∑j=0(sj)tjns−j=∞∑k=0r+s−1∑i=r+s−1−ki≥{r+s−1}b∗i(ii−(r+s−2−k))nr+s−2−k∞∑j=0(sj)tjns+r−j=∞∑k=0∑k1+k2=kk1,k2≥0r+s−1∑i=r+s−1−k1i≥{r+s−1}b∗i(ii−r−s+2+k1)(sk2)tk2n2r+2s−2−k | (3.4) |
and
B∗r,s,t(n+1)B∗r,s,t(n)=r+s−1∑i={r+s−1}b∗i∞∑k=0(ik)ni−kr+s−1∑j={r+s−1}b∗jnj=∞∑k=0∞∑i=r+s−1−ki≥{r+s−1}b∗i(ii−(r+s−1−k))nr+s−1−k[r+s−1]∑j=0b∗r+s−1−jnr+s−1−j=∞∑k=0(∑k1+k2=kk1,k2≥0r+s−1∑i=r+s−1−k1i≥{r+s−1}b∗i(ii−(r+s−1−k1))b∗r+s−1−k2)n2r+2s−2−k, | (3.5) |
where [x] denotes the integer part of the real part of x.
Now we derive the necessary condition (2): The following system of equations has at least one solution,
∑k1+k2=kk1,k2≥0r+s−1∑i=r+s−1−k1i≥{r+s−1}b∗i(ii−r−s+2+k1)(sk2)tk2=∑k1+k2=kk1,k2≥0r+s−1∑i=r+s−1−k1i≥{r+s−1}b∗i(ii−r−s+1+k1)b∗r+s−1−k2, | (3.6) |
where k=0,1,2,⋯,[r+s−2] and [r+s−1].
By calculation, the system of Eq (3.6) is equivalent with
(r+s−1)b∗r+s−1=[b∗r+s−1]2 for k=0, |
and
(r+s−1−k)b∗r+s−1−k+∑k1+k2=kk1≥0,k2≥1r+s−1∑i=r+s−1−k1i≥{r+s−1}b∗i(ii−r−s+2+k1)(sk2)tk2+r+s−1∑i=r+s−ki≥{r+s−1}b∗i(ii−r−s+2+k)=(2r+2s−2)b∗r+s−1−k+∑k1+k2=kk1,k2≥1r+s−1∑i=r+s−1−k1i≥{r+s−1}b∗i(ii−r−s+1+k1)b∗r+s−1−k2+r+s−1∑i=r+s−ki≥{r+s−1}b∗i(ii−r−s+1+k)b∗r+s−1 | (3.7) |
for k=1,2,⋯,[r+s−1]. Combining with Re(r+s−1)>0, we can then derive the unique solution of the system of Eq (3.6) as follows:
b∗r+s−1=(r+s−1)≠0 |
and
b∗r+s−1−k=∑k1+k2=kk1≥0,k2≥1r+s−1∑i=r+s−1−k1i≥{r+s−1}b∗i(ii−r−s+2+k1)(sk2)tk2−∑k1+k2=kk1,k2≥1r+s−1∑i=r+s−1−k1i≥{r+s−1}b∗i(ii−r−s+1+k1)b∗r+s−1−k2r+s−1+k+r+s−1∑i=r+s−ki≥{r+s−1}b∗i[(ii−r−s+2+k)−(r+s−1)(ii−r−s+1+k)]r+s−1+k, | (3.8) |
where k = 1, 2, \cdots, [r+s-1].
So we derive the necessary condition of (3.2):
\begin{equation} B^*_{r,s,t}(n) = b^*_{r+s-1}n^{r+s-1}+b^*_{r+s-2}n^{r+s-2}+ \cdots + b^*_{\{r+s\}}n^{ \{r+s\} } \end{equation} | (3.9) |
with
\begin{equation} \begin{cases}\;\;\, b^*_{r+s-1} = r+s-1; \\ b^*_{r+s-1-k} = \\ \ \ \frac{\mathop{ \mathop{\sum}\limits_{k_1+k_2 = k} } \limits_{ k_1 \geq0 , k_2 \geq 1 } \mathop{ \mathop{\sum}\limits^{r+s-1}\limits_{i = r+s-1-k_1}}\limits_{i\geq \{ r+s-1 \}} b^*_i\binom{i}{i-r-s+2+k_1} \binom{s}{k_2}t^{k_2} - \mathop{\mathop{\sum}\limits_{k_1+k_2 = k}}\limits_{ k_1,k_2\geq 1 } \mathop{\mathop{\sum}\limits^{r+s-1}\limits_{i = r+s-1-k_1}}\limits_{ i\geq\{ r+s-1\} } b^*_i \binom{i}{i-r-s+1+k_1} b^*_{r+s-1-k_2}} {r+s-1+k} +\frac{\mathop{\mathop{\sum}\limits^{r+s-1}\limits_{i = r+s-k}}\limits_{ i\geq\{ r+s-1\} } b^*_i \left[ \binom{i}{i-r-s+2+k} -(r+s-1) \binom{i}{i-r-s+1+k} \right] } { r+s-1+k }; \\ \quad \text{ for }\; [r+s-1]\geq k\geq 1 , \end{cases} \end{equation} | (3.10) |
where [x] denotes the integer part of the real part of x , \{x\} = x-[x].
Now we show that (3.9) and (3.10) are also sufficient conditions. If Eq (3.10) holds, the functions \left[B^*(n+1, r, s, t)-B^*(n, r, s, t) \right] n^r(n+t)^s and B^*(n+1, r, s, t)B^*(n, r, s, t) are analytic functions of n , which means the series of k in formulas (3.4) and (3.5) are their Taylor expansion.
Then consider the following function
[B^*_{r,s,t}(n+1)-B^*_{r,s,t}(n)\,]\,n^r(n+t)^s -B^*_{r,s,t}(n+1)B^*_{r,s,t}(n), |
the coefficients of the first [r+s] terms are equal to zero, and the tail term is convergent, which proves the Eq (3.2).
Lemma 3. If for all r, s, t \in \mathbb{C} and Re(r+s) > 1 , there exists a generalized complex coefficient polynomial
B^*_{r,s,t}(n) = b^*_{r+s-1}n^{r+s-1}+b^*_{r+s-2}n^{r+s-2}+ \cdots + b^*_{\{l\}+1}n+b^*_{\{l\}}, |
where
b^*_{j} \ ( j = r+s-1, r+s-2,\cdots, \{l\})\in \mathbb{C} |
subjects to the real part of its order is greater than 0 , and
\begin{align} &[B^*_{r,s,t}(n+1)-B^*_{r,s,t}(n)\,]\,n^r(n+t)^s -B^*_{r,s,t}(n+1)B^*_{r,s,t}(n) = O(n^{r+s+\{r+s\}-2}). \end{align} |
Then, we have
\left( \sum\limits^{\infty}_{k = n} \frac{1}{ k^r(k+t)^s } \right)^{-1} = B^*_{r,s,t}(n) +o(1). |
Proof. Using the equation
\begin{equation} \begin{aligned} &[B^*_{r,s,t}(n+1)-B^*_{r,s,t}(n)\,]\,n^r(n+t)^s -B^*_{r,s,t}(n+1)B^*_{r,s,t}(n) = O(n^{r+s+\{r+s\}-2}). \end{aligned} \end{equation} | (3.11) |
Then, we have
\begin{equation} \begin{aligned} \frac{1}{B^*_{r,s,t}(n)}-\sum\limits^{\infty}_{k = n} \frac{1}{k^r(k+t)^s} = &\sum\limits^{\infty}_{k = n} \left[ \frac{1}{B^*_{r,s,t}(k)} -\frac{1}{B^*_{r,s,t}(k+1)}- \frac{1}{k^r(k+t)^s} \right]\\ = &\sum\limits^{\infty}_{k = n} \frac{ [B^*_{r,s,t}(k+1)-B^*_{r,s,t}(k)]k^r(k+t)^s -B^*_{r,s,t}(k+1)B^*_{r,s,t}(k) } { B^*_{r,s,t}(k)B^*_{r,s,t}(k+1)k^r(k+t)^s }\\ = & \sum\limits^{\infty}_{k = n} \frac{ O(k^{{r+s+\{r+s\}-2}}) }{ k^{3r+3s-2}+ O(k^{3r+3s-3}) } \\ = &O\left( \frac{1}{n^{[r+s]}} \sum\limits^{\infty}_{k = n} \frac{ 1 }{ k^{r+s} } \right) \\ = &O( \frac{1}{n^{[r+s]}} ). \end{aligned} \end{equation} | (3.12) |
Hence, we have
\begin{align*} \frac{1}{B^*_{r,s,t}(n)} = \sum\limits^{\infty}_{k = n} \frac{1}{k^r(k+t)^s} = O( \frac{1}{ n^{r+s-1} } ), \end{align*} |
and then
\begin{equation} \begin{aligned} \lim\limits_{n \rightarrow \infty} \left| \left( \sum\limits^{\infty}_{k = n} \frac{1}{k^r(k+t)^s} \right)^{-1} -B^*_{r,s,t}(n) \right| \notag = &\lim\limits_{n \rightarrow \infty} \left| \frac{1}{ \mathop{ \stackrel{\infty} {\sum} } \limits_{k = n} \frac{1}{k^r(k+t)^s} } - \frac{1}{ \frac{1}{ B^*_{r,s,t}( n ) } } \right| \notag \\ = &\lim\limits_{n \rightarrow \infty} \left| \frac{ \frac{1}{B^*_{r,s,t}(n)}- \mathop{ \stackrel{\infty} {\sum} } \limits_{k = n} \frac{1}{k^r(k+t)^s} }{\frac{1}{B^*_{r,s,t}(n)} \mathop{ \stackrel{\infty} {\sum} } \limits_{k = n} \frac{1}{k^r(k+t)^s} } \right|\\ = & \lim\limits_{n \rightarrow \infty} \left| O \left( \frac{\frac{1}{n^{[r+s]}} }{ \frac{1}{n^{r+s-1} } } \right) \right| \notag \\ = &\lim\limits_{n \rightarrow \infty} \left| O \left( \frac{1 }{ n^{1-\{r+s\} } } \right) \right|\notag\\ = &0,\notag \end{aligned} \end{equation} |
which is equivalent with
\begin{equation} \left( \sum\limits^{\infty}_{k = n} \frac{1}{k^r(k+t)^s}\right)^{-1} = B^*_{r,s,t}(n) +o(1). \end{equation} | (3.13) |
This completes the proof.
Proof of Theorem 1. Since Re(r+s) > 1 and series
\sum\limits^{\infty}_{k = n} \frac{1}{k^r(k+t)^s} |
absolutely converges and is analytic in the half-plane Re(r+s) > 1 . Then we have
\sum\limits^{\infty}_{k = n} \frac{1}{k^r(k+t)^s} \rightarrow 0\ \ \ \text{as}\ \ \ n \rightarrow \infty , |
Let n > |t| , by Lemmas 1 and 2, these are unique generalized complex coefficient polynomials
B^*_{r,s,t}(n) = b^*_{r+s-1}n^{r+s-1}+b^*_{r+s-2}n^{r+s-2}+ \cdots +b^*_{\{r+s\}}n^{ \{r+s\} } , |
where
b^*_{j}\in \mathbb{C}\ ( j = r+s-1, r+s-2,\cdots, \{l\}) |
is determined by r, s, t and
\begin{equation} \begin{aligned} \begin{cases}\;\,\ b^*_{r+s-1} = r+s-1; \\ b^*_{r+s-1-k} = \\ \ \ \frac{\mathop{ \mathop{\sum}\limits_{k_1+k_2 = k} } \limits_{ k_1 \geq0 , k_2 \geq 1 } \mathop{ \mathop{\sum}\limits^{r+s-1}\limits_{i = r+s-1-k_1}}\limits_{i\geq \{ r+s-1 \}} b^*_i\binom{i}{i-r-s+2+k_1} \binom{s}{k_2}t^{k_2} - \mathop{\mathop{\sum}\limits_{k_1+k_2 = k}}\limits_{ k_1,k_2\geq 1 } \mathop{\mathop{\sum}\limits^{r+s-1}\limits_{i = r+s-1-k_1}}\limits_{ i\geq\{ r+s-1\} } b^*_i \binom{i}{i-r-s+1+k_1} b^*_{r+s-1-k_2}} {r+s-1+k} +\frac{\mathop{\mathop{\sum}\limits^{r+s-1}\limits_{i = r+s-k}}\limits_{ i\geq\{ r+s-1\} } b^*_i \left[ \binom{i}{i-r-s+2+k} -(r+s-1) \binom{i}{i-r-s+1+k} \right] } { r+s-1+k }, \\ \quad \mbox{for}\; [r+s-1]\geq k\geq 1; \end{cases}\end{aligned} \end{equation} | (3.14) |
subject to the real part of its order being greater than 0 , and
\begin{align} [B^*_{r,s,t}(n+1)-B^*_{r,s,t}(n)\,]\,n^r(n+t)^s -B^*_{r,s,t}(n+1)B^*_{r,s,t}(n) = O(n^{r+s+\{r+s\}-2}). \end{align} |
Then, in combination with Lemma 3, we have
\left( \sum\limits^{\infty}_{k = n} \frac{1}{k^r(k+t)^s}\right)^{-1} = B^*_{r,s,t}(n) + o(1). |
This completes thhe proof.
Proof of Corollary 1. If r = 0 and t = 0 , we have
R(r, s, t)|_{ r = 0, t = 0} = R(0, s, 0) = \zeta(s)\ \ \ \text{and} \ \ \ R_n(r, s, t)|_{ r = 0, t = 0} = R_n(0, s, 0) = \zeta_n(s). |
By Theorem 1, we have
\zeta_n(s) = \sum\limits^{\infty}_{k = n} \frac{1}{k^s} = B^*_{0,s,0}(n) +o(1), |
where
B^*_{0,s,0}(n) = b^*_{s-1}n^{s-1}+b^*_{s-2}n^{s-2}+ \cdots + b^*_{\{s-1\}}n^{\{s-1\}} |
and
\begin{equation} \begin{cases}\;\,\ b^*_{s-1} = s-1; \\ b^*_{s-1-k} = \frac{\mathop{\mathop{\sum}\limits^{s-1}\limits_{i = s-k}}\limits_{ i\geq\{ s-1\} } b^*_i \left[ \binom{i}{i-s+2+k} -(s-1) \binom{i}{i-s+1+k} \right] } { s-1+k } - \frac{ \mathop{\mathop{\sum}\limits_{k_1+k_2 = k}}\limits_{ k_1,k_2\geq 1 } \mathop{\mathop{\sum}\limits^{s-1}\limits_{i = s-1-k_1}}\limits_{ i\geq\{ s-1\} } b^*_i \binom{i}{i-s+1+k_1} b^*_{s-1-k_2}} {s-1+k} ,\mbox{for}\; \; [s-1]\geq k\geq 1 . \end{cases} \end{equation} | (4.1) |
Proof of Corollary 2. The proof of Corollary 2 follows from Corollary 1.
Before the proof of Theorem 2, we introduce some basic preliminary properties that could be found in [15].
Proposition 5. The Riemann zeta function \zeta(s) satisfies
\begin{equation} \pi^{-\frac{s}{2}}\Gamma(\frac{s}{2})\zeta(s) = \pi^{-\frac{1-s}{2}} \Gamma(\frac{1-s}{2})\zeta(1-s). \end{equation} | (4.2) |
Proposition 6. (1) The function \frac{1}{\Gamma(s)} is entire and only possesses zeros at s = 0, -1, -2, \cdots .
(2) The function \Gamma(s) is holomorphic for s \in \mathbb{C} except poles at s = 0, -1, -2, \cdots and \Gamma(s) possesses no zero.
Proof of Theorem 2. By Proposition 5, we have
\begin{align*} \zeta(s) & = \pi^{s-\frac{1}{2}} \Gamma(\frac{1-s}{2})\frac{1}{\Gamma( \frac{s}{2} )}\zeta(1-s)\\& = \pi^{s-\frac{1}{2}} \Gamma(\frac{1-s}{2})\frac{1}{\Gamma( \frac{s}{2} )}\sum\limits^{\infty}_{k = 1} \frac{1}{k^{1-s}}. \end{align*} |
By Proposition 6, we have \zeta(s) is entire in half-plane Re(s) < 0 . Hence, for Re(s) < 0, we have
\begin{align*} \zeta_n(s) & = \pi^{s-\frac{1}{2}} \Gamma(\frac{1-s}{2})\frac{1}{\Gamma( \frac{s}{2} )}\zeta_n(1-s)\\& = \pi^{s-\frac{1}{2}} \Gamma(\frac{1-s}{2})\frac{1}{\Gamma( \frac{s}{2} )}\sum\limits^{\infty}_{k = n} \frac{1}{k^{1-s}}. \end{align*} |
By Theorem 1, we derive
\zeta_n(s) = \pi^{s-\frac{1}{2} } \frac{\Gamma(\frac{1-s}{2})}{\Gamma( \frac{s}{2} )} B^*_{0,1-s,0}(n) +o(1), |
which completes the proof.
Proof of Theorem 3. (i) We first prove
\begin{equation} a_1+ a_2+\cdots +a_q = 0, \end{equation} | (5.1) |
where
a_m = \cos \left( \frac{\pi (1-s)}{2}- \frac{2\pi mp}{q} \right) |
for m = 1, 2, \cdots, q. For any complex variable s = \sigma +it , we have
\cos s = \frac{ e^{is}+ e^{-is}}{2} , |
and then
\begin{equation} \begin{aligned} a_1+ a_2+\cdots +a_q& = \sum\limits^{q}_{m = 1}\cos \left( \frac{\pi (1-s)}{2}- \frac{2\pi mp}{q} \right)\\ & = \frac{1}{2}\sum\limits^{q}_{m = 1}\left( e^{\frac{\pi}{2}( t+i(1-\sigma) ) - \frac{2\pi mpi}{q} } + e^{ -\frac{\pi}{2}( t+i(1-\sigma) ) + \frac{2\pi mpi}{q}} \right)\\ & = \frac{1}{2} e^{\frac{\pi}{2}( t+i(1-\sigma) ) }\sum\limits^{q}_{m = 1} e^{ - \frac{2\pi mpi}{q} }+ \frac{1}{2} e^{-\frac{\pi}{2}( t+i(1-\sigma) ) }\sum\limits^{q}_{m = 1} e^{ \frac{2\pi mpi}{q} }\\ & = 0. \end{aligned} \end{equation} | (5.2) |
Since
\frac{1}{1\pm O(\varepsilon) } = 1\pm O( \varepsilon), |
Lemma 1 and Theorem 1, let n = q(l-1) +1, then for any sufficiently large positive integer l \geq 1 and Re(s) < 0 , if
\mathop{\sum}\limits^{q}\limits_{ m = 1 } m a_m\neq 0 |
holds, we have
\begin{align} \begin{aligned} \left( \zeta_{n}\left( s, \frac{p}{q} \right)\,\right)^{-1} & = \frac{(2\pi q)^{1-s}}{2\Gamma(1-s)} \left( \sum\limits^{q}_{m = 1} a_m \zeta_l \left( 1-s, \frac{m}{q} \right) \right) ^{-1} \\ & = \frac{(2\pi q)^{1-s}}{2\Gamma(1-s)} \left( \sum\limits^{q}_{m = 1}a_m \sum\limits^{\infty}_{k = l} \frac{ 1 } { ( k+\frac{m}{q} )^{1-s} } \right)^{-1} \\ & = \frac{(2\pi q)^{1-s}}{2\Gamma(1-s)} \left[\ \sum\limits^{\infty}_{k = l} \left( \frac{ a_1 } { ( k+\frac{1}{q} )^{1-s} } + \frac{ a_2 } { ( k+\frac{2}{q} )^{1-s}} +\cdots + \frac{ a_q } { ( k+1 )^{1-s} } \right)\ \right]^{-1} \\ & = \frac{(2\pi q)^{1-s}}{2\Gamma(1-s)} \left[ \ \sum\limits^{\infty}_{k = l} \frac{1}{k^{1-s}} \left( \frac{a_1}{ (1+\frac{1}{qk} )^{1-s}} +\frac{a_2}{ (1+\frac{2}{qk} )^{1-s} } +\cdots + \frac{a_q}{ (1+\frac{1}{k} )^{1-s} } \right)\ \right]^{-1} \\ & = \frac{(2\pi q)^{1-s}}{2\Gamma(1-s)} \left[ \sum\limits^{\infty}_{k = l} \frac{1}{k^{1-s}} \left( \mathop{\sum}\limits^{q}_{m = 1} a_m \mathop{\sum}\limits^{\infty}\limits_{l_1 = 0} \binom{s-1}{l_1}\left( \frac{m}{qk} \right)^{l_1} \right) \ \right]^{-1} \\ & = \frac{(2\pi q)^{1-s}}{2\Gamma(1-s)} \left[ \sum\limits^{\infty}_{k = l} \frac{1}{k^{1-s}} \left(a_1 +a_2 +\cdots+ a_q +\frac{s-1}{qk}\mathop{\sum}\limits^{q}\limits_{ m = 1 }ma_m + O_{q, s}\left( \frac{1}{k^2}\right)\ \right)\ \right]^{-1} \\ & = \frac{(2\pi q)^{1-s}}{2\Gamma(1-s)} \left[ \sum\limits^{\infty}_{k = l} \frac{1}{k^{2-s}} \left( \frac{s-1}{q}\mathop{\sum}\limits^{q}\limits_{ m = 1 }ma_m+ O_{q, s}\left( \frac{1}{k}\right)\ \right)\ \right]^{-1} \\ & = \frac{(2\pi q)^{1-s}}{2\Gamma(1-s)} \times \left( \sum\limits^{\infty}_{k = l} \frac{1}{k^{2-s}} \right)^{-1} \left( \frac{s-1}{q}\mathop{\sum}\limits^{q}\limits_{ m = 1 }ma_m \right)^{-1} \left( 1 + O_{s, q}\left( \frac{1}{n} \right) \right) \\ & = \frac{(2\pi q)^{1-s}}{2\Gamma(1-s)} \frac{ q }{ (s-1)\mathop{\sum}\limits^{q}\limits_{ m = 1 } m a_m } \times (1-s) l^{1-s} + O( l^{-s} ) \\ & = \frac{ - \pi q^{2}} { (2q\pi)^s \,\Gamma(1-s)\mathop{\sum}\limits^{q}\limits_{ m = 1 } m a_m }l^{1-s} + O_{s,q} \left( l^{-s} \right) .\end{aligned} \end{align} | (5.3) |
(ii) Let n = q(l-1)+r for some q \geq r\geq 1 and l, r \in \mathbb{N_+}, if
\mathop{\sum}\limits^{q}\limits_{ m = 1 } m a_m\neq 0 |
and
\mathop{\sum}\limits^{q}\limits_{ m = 1 } m a_m -q \mathop{\sum}\limits^{q} \limits_{ m = r }a_m \neq 0 |
hold, we have
\begin{align} \begin{aligned}\begin{aligned} \left( \zeta_{n}\left( s, \frac{p}{q} \right)\,\right)^{-1} & = \frac{ (2\pi q)^{1-s}}{ 2\Gamma(1-s) }\left(\, \sum\limits^{r-1}_{m = 1} a_m \zeta_{l+1} \left( 1-s, \frac{m}{q}\right) + \sum\limits^{q}_{m = r} a_m \zeta_{l} \left( 1-s, \frac{m}{q}\right)\, \right)^{-1} \\ & = \frac{ (2\pi q)^{1-s}}{ 2\Gamma(1-s) } \left(\ \sum\limits^{q}_{m = 1} a_m \zeta_{l+1} \left( 1-s, \frac{m}{q}\right) + \frac{a_r} { \left( l+ \frac{ r }{q} \right)^{1-s} } + \frac{a_{r+1}} { \left( l+ \frac{ r+1 }{q} \right)^{1-s} } + \cdots +\frac{a_q} { \left( l+ 1 \right)^{1-s} } \right)^{-1} \\ & = \frac{ (2\pi q)^{1-s}}{ 2\Gamma(1-s) } \left(\ \sum\limits^{\infty}_{k = l+1} \sum\limits^{q}_{m = 1}\frac{ a_m } { ( k+\frac{m}{q} )^{1-s} } + \frac{a_r} { \left( l+ \frac{ r }{q} \right)^{1-s} } + \frac{a_{r+1}} { \left( l+ \frac{ r+1 }{q} \right)^{1-s} } + \cdots +\frac{a_q} { \left( l+ 1 \right)^{1-s} } \right)^{-1} \\ & = \frac{ (2\pi q)^{1-s}}{ 2\Gamma(1-s) } \left(\ \sum\limits^{\infty}_{k = l+1} \sum\limits^{q}_{m = 1}\frac{ a_m } { ( k+\frac{m}{q} )^{1-s} }\right)^{-1} \left(1 + \frac{ \mathop{\sum}\limits^{ q } \limits_{m = r} \frac{a_m} { \left( l+ \frac{ m }{q} \right)^{1-s} } }{ \mathop{\sum}\limits^{\infty}\limits_{k = l+1} \mathop{\sum}\limits^{q}\limits_{m = 1}\frac{ a_m } { ( k+\frac{m}{q} )^{1-s} } } \right)^{-1} \\ & = \frac{ (2\pi q)^{1-s}}{ 2\Gamma(1-s) } \left( \frac{ -q }{ \mathop{\sum}\limits^{q}\limits_{ m = 1 } m a_m } l^{1-s} + O_{s,q}( l^{-s} ) \right) \left(1 + \left( \frac{- q }{ \mathop{\sum}\limits^{q}\limits_{ m = 1 } m a_m } l^{1-s} + O_{s,q}( l^{-s} ) \right) l^{s-1} \mathop{\sum}\limits^{ q } \limits_{m = r} \frac{a_m} { \left( 1+ \frac{ m }{ql} \right)^{1-s} } \right)^{-1} \\ & = \frac{ (2\pi q)^{1-s}}{ 2\Gamma(1-s) } \left( \frac{ -q }{ \mathop{\sum}\limits^{q}\limits_{ m = 1 } m a_m } l^{1-s} + O_{s,q}( l^{-s} ) \right) \left( 1+ \left( \frac{ -q }{ \mathop{\sum}\limits^{q}\limits_{ m = 1 } m a_m } + O_{s,q}( l^{-1} ) \right) \left( \mathop{\sum}\limits^{q}\limits_{ m = r }a_m + O_{q, s}\left( l^{-1}\right) \right) \right)^{-1} \\ & = \frac{ (2\pi q)^{1-s}}{ 2\Gamma(1-s) } \left( \frac{ -q }{ \mathop{\sum}\limits^{q}\limits_{ m = 1 } m a_m } l^{1-s} + O_{s,q}( l^{-s} ) \right) \left( 1-\frac{ q \mathop{\sum}\limits^{q}\limits_{ m = r }a_m }{ \mathop{\sum}\limits^{q}\limits_{ m = 1 } m a_m } +O(l^{-1}) \right)^{-1} \\ & = \frac{ (2\pi q)^{1-s}}{ 2\Gamma(1-s) } \left( \frac{ -q }{ \mathop{\sum}\limits^{q}\limits_{ m = 1 } m a_m } l^{1-s} + O_{s,q}( l^{-s} ) \right) \frac{ \mathop{\sum}\limits^{q}\limits_{ m = 1 } m a_m }{\mathop{\sum}\limits^{q}\limits_{ m = 1 } m a_m -q \mathop{\sum}\limits^{q}\limits_{ m = r }a_m } \left( 1+O(l^{-1})\right) \\ & = \frac{ (2\pi q)^{1-s}}{ 2\Gamma(1-s) } \frac{-q}{ \mathop{\sum}\limits^{q}\limits_{ m = 1 } m a_m -q \mathop{\sum}\limits^{q} \limits_{ m = r }a_m } l^{1-s} +O(l^{-s}) \\ & = \frac{ -\pi q^2 } {(2\pi q)^{s} \Gamma(1-s) \left(\mathop{\sum}\limits^{q}\limits_{ m = 1 } m a_m -q \mathop{\sum}\limits^{q} \limits_{ m = r }a_m \right) } l^{1-s} +O(l^{-s}) . \end{aligned}\end{aligned} \end{align} | (5.4) |
Proof of Theorem 4. (i) First of all, since \chi is a nonprincipal character mod k, we have
\chi(1) +\chi(2)+\cdots +\chi(k) = 0. |
Let
n = k(l-1)+1 , |
if
\mathop{\sum}\limits^{k}\limits_{ j = 1 } j \chi(j)\neq 0 |
holds, and the asymptotic formula of the inverse of the n -th tail of the L-function L(s, \chi) for Re(s) > 1 is as follows:
\begin{align} \left( \,L_{n}( s, \chi)\,\right)^{-1} & = k^s \left( \sum\limits^k_{j = 1}\chi(j) \zeta_n \left( s,\frac{j}{k} \right) \right) ^{-1} \\ & = \ k^s \left( \sum\limits^{k}_{j = 1}\chi(j) \sum\limits^{\infty}_{i = l} \frac{ 1 } { ( i+\frac{j}{k} )^{s} } \right)^{-1} \\ & = k^s \left[\ \sum\limits^{\infty}_{i = l} \left( \frac{ \chi(1) } { ( i +\frac{1}{k} )^{s} } + \frac{ \chi(2) } { ( i+\frac{2}{k} )^{s}} +\cdots + \frac{ \chi(k) } { ( i+1 )^{s} } \right)\ \right]^{-1} \\ & = k^s \left[ \ \sum\limits^{\infty}_{i = l} \frac{1}{i^{s}} \left( \frac{\chi(1)}{ (1+\frac{1}{ki} )^{s}} +\frac{\chi(2)}{ (1+\frac{2}{ki} )^{s} } +\cdots + \frac{\chi(k)}{ (1+\frac{1}{i} )^{s} } \right)\ \right]^{-1} \\ & = k^s \left( \sum\limits^{\infty}_{i = l} \frac{1}{i^{s}} \left( \chi(1) +\chi(2) +\cdots+ \chi(k) -\frac{s} {ki} \sum\limits^{k}_{j = 1} j \chi(j) + O_{s, k}\left( \frac{1}{i^2} \right) \,\right)\,\right)^{-1} \\ & = k^s \left( \sum\limits^{\infty}_{i = l} \frac{1}{i^{s+1}} \right)^{-1} \left( - \frac{s}{k}\sum\limits^{k}_{j = 1} j \chi(j) + O_{s, k}\left( \frac{1}{l} \right) \right)^{-1} \\ & = k^s \times \frac{ k\left( s l^{s} + O\left( l^{s-1} \right) \right) } { - s \mathop{\sum}\limits^{k}\limits_{j = 1}j \chi(j) } \left( 1 + O_{s, k}\left( \frac{1}{l} \right) \right) \\ & = \frac{ - k^{s+1} } { \mathop{\sum}\limits^{ k }\limits_{j = 1} j\chi(j) }l^{s} + O_{s,k}\left( l^{s-1} \right) . \end{align} | (5.5) |
(ii) Let
n = k(l-1)+r |
for some k \geq r\geq 1 and l, r \in \mathbb{N_+}, if
\mathop{\sum}\limits^{ k }\limits_{j = 1} j\chi(j)- k \mathop{\sum}\limits^k\limits_{j = r} \chi(j) \neq 0 |
and
\mathop{\sum}\limits^{k}\limits_{ j = 1 } j \chi(j)\neq 0 |
hold, we have
\begin{align} \begin{aligned} \left( L_{n}( s, \chi) \right)^{-1} & = \left[ k^{-s} \left(\, \sum\limits^{r-1}_{j = 1} \chi(j) \zeta_{l+1} \left( s, \frac{j}{k}\right) + \sum\limits^{k}_{j = r} \chi(j) \zeta_{l} \left( s, \frac{j}{k}\right)\, \right)\ \right]^{-1} \\ & = \ k^s \left( \sum\limits^{r-1}_{j = 1}\chi(j) \sum\limits^{\infty}_{i = l+1} \frac{ 1 } { ( i+\frac{j}{k} )^{s} } + \sum\limits^{k}_{j = r}\chi(j) \sum\limits^{\infty}_{i = l} \frac{ 1 } { ( i+\frac{j}{k} )^{s} } \right)^{-1} \\ & = k^s \left(\ \sum\limits^{\infty}_{i = l+1} \sum\limits^{ k }_{j = 1} \frac{ \chi{(j)} } { ( i +\frac{j}{k} )^{s} } + \left( \frac{\chi(r)}{ (l+\frac{r}{k} )^{s}} + \frac{\chi(r+1)}{ (l+\frac{r+1}{k} )^{s} } +\cdots + \frac{\chi(k)}{ (l+ 1 )^{s} } \right)\ \right)^{-1} \\ & = k^s \left[ \ \sum\limits^{\infty}_{i = l+1} \sum\limits^{ k }_{j = 1} \frac{ \chi(j) } { ( i +\frac{j}{k} )^{s} } \left( 1+ \frac{ \mathop{\sum}\limits^{ k }\limits_{j = r } \frac{\chi(j) }{ \left(l+\frac{j}{k} \right)^{s} } }{ \mathop{\sum}\limits^{\infty}\limits_{i = l+1} \mathop{\sum}\limits^{ k }\limits_{j = 1} \frac{ \chi(j) } { ( i +\frac{j}{k} )^{s} } }\right)\ \right]^{-1} \\ & = k^s \left( \frac{ - k } { \mathop{\sum}\limits^{ k }\limits_{j = 1} j\chi(j) }l^{s} + O_{s,k}\left( l^{s-1} \right) \right) \left( 1+ \left( \frac{ - k } { \mathop{\sum}\limits^{ k }\limits_{j = 1} j\chi(j) }l^{s} + O_{s,k}\left( l^{s-1} \right) \right)\ \left( \mathop{\sum}\limits^{ k }\limits_{j = r } \frac{\chi(j) }{ \left(1+\frac{j}{kl} \right)^{s} } \right) \right)^{-1} \\ & = k^s \left( \frac{ - k } { \mathop{\sum}\limits^{ k }\limits_{j = 1} j\chi(j) }l^{s} + O_{s,k}\left( l^{s-1} \right) \right) \left( 1- \frac{ k \mathop{\sum}\limits^k\limits_{j = r} \chi(j) } { \mathop{\sum}\limits^{ k }\limits_{j = 1} j\chi(j) } + O_{s,k}\left( l^{-1} \right) \right)^{-1} \\ & = k^s \times \frac{ -k } { \mathop{\sum}\limits^{ k }\limits_{j = 1} j\chi(j) - k \mathop{\sum}\limits^k\limits_{j = r} \chi(j) } l^{s} +O_{s,k}( l^{s-1} ) \\ & = \frac{ -k^{1+s} } { \mathop{\sum}\limits^{ k }\limits_{j = 1} j\chi(j) - k \mathop{\sum}\limits^k\limits_{j = r} \chi(j) } l^{s} +O_{s,k}( l^{s-1} ) .\end{aligned} \end{align} | (5.6) |
(iii) Let
n = k^2(l-1)+1 |
for some l \in \mathbb{N_+} , if
\mathop{\sum}\limits^k\limits_{j = 1} \mathop{\sum}\limits^{k}\limits_{m = 1}m \chi(j) a_{j,m}\neq 0 |
holds, in combination with
a_{j,m} = \cos \left( \frac{\pi (1-s)}{2}- \frac{2\pi mj}{k} \right), |
we obtain
\begin{aligned} \sum\limits^{k}_{j = 1} \sum\limits^{k}_{m = 1} \chi(j) a_{j,m} = \sum\limits^{k-1}_{j = 1} \sum\limits^{k}_{m = 1} \chi(j) a_{j,m} = 0. \end{aligned} |
Then, we have
\begin{align} \begin{aligned} \left( L_{n}( s, \chi) \right)^{-1} & = \left( \frac{ \Gamma(1-s) }{ 2^{-s} \pi^{1-s} k } \sum\limits^k_{j = 1} \sum\limits^{k}_{m = 1} \chi(j) a_{j,m} \zeta_{l} \left( 1-s, \frac{m}{k}\right) \right)^{-1} \\ & = \frac{ 2^{-s} \pi^{1-s} k } { \Gamma(1-s) }\left[ \sum\limits^{ \infty } _{i = l} \left(\sum\limits^k_{j = 1} \sum\limits^{k}_{m = 1} \chi(j) a_{j,m} \right) \frac{ 1 }{ \left( i+ \frac{m}{k} \right)^{1-s} } \right]^{-1} \\ & = \frac{ 2^{-s} \pi^{1-s} k } { \Gamma(1-s) }\left[ \sum\limits^{ \infty } _{i = l} \frac{ 1 }{ i^{1-s} } \left(\sum\limits^k_{j = 1} \sum\limits^{k}_{m = 1} \frac{ \chi(j) a_{j,m}} { \left( 1+ \frac{m}{ki} \right)^{1-s} } \right) \ \right]^{-1} \\ & = \frac{ 2^{-s} \pi^{1-s} k } { \Gamma(1-s) }\left[ \sum\limits^{ \infty } _{i = l} \frac{ 1 }{ i^{1-s} } \left( \sum\limits^k_{j = 1} \sum\limits^{k}_{m = 1} \chi(j) a_{j,m} + \frac{(s-1)} { ki } \sum\limits^k_{j = 1} \sum\limits^{k}_{m = 1}m \chi(j) a_{j,m} +O_{s, k} \left( \frac{1}{i^2} \right) \right)\ \right]^{-1} \\ & = \frac{ 2^{-s} \pi^{1-s} k } { \Gamma(1-s) }\left[ \sum\limits^{ \infty } _{i = l} \frac{ 1 }{ i^{2-s} } \left( \frac{(s-1)} { k } \sum\limits^k_{j = 1} \sum\limits^{k}_{m = 1}m \chi(j) a_{j,m} +O_{s, k} \left( \frac{1}{i} \right) \right)\ \right]^{-1} \\ & = \frac{ 2^{-s} \pi^{1-s} k } { \Gamma(1-s) }\left( \sum\limits^{ \infty } _{i = l} \frac{ 1 }{ i^{2-s} } \right)^{-1} \left( \frac{(s-1)} { k } \sum\limits^k_{j = 1} \sum\limits^{k}_{m = 1}m \chi(j) a_{j,m} \right) ^{-1} \left( 1+O_{s,k}( l^{-1} ) \right) \\ & = \frac{ 2^{-s} \pi^{1-s} k } { \Gamma(1-s) }\times \left( (1-s) l^{1-s}+ O( l^{-s} ) \right) \frac{k}{(s-1) \mathop{\sum}\limits^k\limits_{j = 1} \mathop{\sum}\limits^{k}\limits_{m = 1}m \chi(j) a_{j,m} } \left( 1+O_{s,k}( l^{-1} ) \right) \\ & = \frac{ -\pi k^2 }{ (2\pi)^s \Gamma(1-s)\mathop{\sum}\limits^k\limits_{j = 1} \mathop{\sum}\limits^{k}\limits_{m = 1}m \chi(j) a_{j,m} } l^{1-s} + O_{ s,k}( l^{-s} ) . \end{aligned} \end{align} | (5.7) |
(iv) Let
n = k^2(l-1)+ k (u-1) + r |
for some k \geq u \geq1 , k \geq r\geq 1 , and l, u, r \in \mathbb{N_+} , if
\mathop{\sum}\limits^k\limits_{j = 1} \mathop{\sum}\limits^{k}\limits_{m = 1}m \chi(j) a_{j,m}\neq 0 |
and
\mathop{\sum}\limits^k\limits_{j = 1} \mathop{\sum}\limits^{k} \limits_{m = 1}m \chi(j) a_{j,m} -k \left( \mathop{\mathop{\sum}\limits^{ k }\limits_{m = r} }\limits_{j = u} +\mathop{\sum}\limits^k\limits_{j = u+1} \mathop{\sum}\limits^{k}\limits_{m = 1} \right) \chi(j) a_{j,m} \neq 0 |
hold, we have
\begin{align} \begin{aligned} \left( L_{n}( s, \chi)\right)^{-1} & = \left[ \frac{ \Gamma(1-s) }{ 2^{-s} \pi^{1-s} k } \left( \left( \sum\limits^{u-1}_{j = 1} \sum\limits^{{ k }}_{m = 1} + \mathop{\mathop{\sum}\limits^{ r-1 }\limits_{m = 1} }\limits_{j = u} \right) \chi(j) a_{j,m} \zeta_{l+1} \left( 1-s, \frac{m}{k}\right) + \left( \mathop{\mathop{\sum}\limits^{ k }\limits_{m = r} }\limits_{j = u} +\sum\limits^k_{j = u+1} \sum\limits^{k}_{m = 1} \right) \chi(j) a_{j,m} \zeta_l \left( 1-s, \frac{m}{k}\right) \right)\ \right]^{-1} \\ & = \frac{ 2^{-s} \pi^{1-s} k } { \Gamma(1-s)} \left( \sum\limits^{k}_{j = 1} \sum\limits^{{k}}_{m = 1} \chi(j) a_{j,m} \zeta_{l+1} \left( 1-s, \frac{m}{k}\right)+ \left( \mathop{\mathop{\sum}\limits^{ k }\limits_{m = r} }\limits_{j = u} +\sum\limits^k_{j = u+1} \sum\limits^{k}_{m = 1} \right) \frac{ \chi(j) a_{j,m} }{ \left(l+ \frac{m}{k} \right)^{1-s} } \right)^{-1} \\ & = \frac{ 2^{-s} \pi^{1-s} k } { \Gamma(1-s)} \left( \sum\limits^{k}_{j = 1} \sum\limits^{{k}}_{m = 1} \chi(j) a_{j,m} \zeta_{l+1} \left( 1-s, \frac{m}{k}\right) \right) ^{-1} \left( 1+ \frac { \left( \mathop{\mathop{\sum}\limits^{ k }\limits_{m = r} }\limits_{j = u} +\mathop{\sum}\limits^k\limits_{j = u+1} \mathop{\sum}\limits^{k}\limits_{m = 1} \right) \frac{ \chi(j) a_{j,m} } { \left(l+ \frac{m}{k} \right)^{1-s} } }{ \mathop{\sum}\limits^{k}\limits_{j = 1} \mathop{\sum}\limits^{{k}}\limits_{m = 1} \chi(j) a_{j,m} \zeta_{l+1} \left( 1-s, \frac{m}{k}\right) } \right)^{-1} \\ & = \frac{ 2^{-s} \pi^{1-s} k } { \Gamma(1-s)} \left( \frac{-k}{ \mathop{\sum}\limits^k\limits_{j = 1} \mathop{\sum}\limits^{k} \limits_{m = 1}m \chi(j) a_{j,m} } l^{1-s} +O_{s,k}( l^{-s} ) \right) \left( 1- \frac{ k \left( \mathop{\mathop{\sum}\limits^{ k }\limits_{m = r} }\limits_{j = u} +\mathop{\sum}\limits^k\limits_{j = u+1} \mathop{\sum}\limits^{k}\limits_{m = 1} \right) \chi(j) a_{j,m} } { \mathop{\sum}\limits^k\limits_{j = 1} \mathop{\sum}\limits^{k} \limits_{m = 1}m \chi(j) a_{j,m} } +O_{s,k}\left( \frac{1}{l}\right) \right)^{-1} \\ & = \frac{ 2^{-s} \pi^{1-s} k } { \Gamma(1-s)} \times \frac{ -k }{ \mathop{\sum}\limits^k\limits_{j = 1} \mathop{\sum}\limits^{k} \limits_{m = 1}m \chi(j) a_{j,m} -k \left( \mathop{\mathop{\sum}\limits^{ k }\limits_{m = r} }\limits_{j = u} +\mathop{\sum}\limits^k\limits_{j = u+1} \mathop{\sum}\limits^{k}\limits_{m = 1} \right) \chi(j) a_{j,m} }l^{1-s} +O_{s,k}(l^{-s} ) \\ & = \frac{ -\pi k^2 }{ (2 \pi)^s \Gamma(1-s) \left( \mathop{\sum}\limits^k\limits_{j = 1} \mathop{\sum}\limits^{k} \limits_{m = 1}m \chi(j) a_{j,m} -k \left( \mathop{\mathop{\sum}\limits^{ k }\limits_{m = r} }\limits_{j = u} +\mathop{\sum}\limits^k\limits_{j = u+1} \mathop{\sum}\limits^{k}\limits_{m = 1} \right) \chi(j) a_{j,m} \right) } l^{1-s} +O_{s,k} ( l^{-s}) . \end{aligned} \end{align} | (5.8) |
In this paper, we derive the asymptotic formulas for the reciprocal sums of the Riemann zeta function, the Hurwitz zeta function, and the Dirchlet L-function for Re(s) > 1 and Re(s) < 0 .
Zhenjiang Pan: writing-review and editing, writing-original draft, validation, resources, methodology, formal analysis, conceptualization.
Zhengang Wu: writing-review and editing, resources, methodology, supervision, validation, formal analysis, funding acquisition.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors express their gratitude to the referee for very helpful and detailed comments. Supported by the National Natural Science Foundation of China (Grant No. 11701448).
The authors declare no conflicts of interest.
[1] |
L. Xin, Some identities related to Riemann zeta-function, J. Inequal. Appl., 2016 (2016), 32. https://doi.org/10.1186/s13660-016-0980-9 doi: 10.1186/s13660-016-0980-9
![]() |
[2] |
D. Kim, K. Song, The inverses of tails of the Riemann zeta function, J. Inequal. Appl., 2018 (2018), 157. https://doi.org/10.1186/s13660-018-1743-6 doi: 10.1186/s13660-018-1743-6
![]() |
[3] |
H. Lee, J. Park, Asymptotic behavior of the inverse of tails of Hurwitz zeta function, J. Korean Math. Soc., 57 (2020), 1535–1549. https://doi.org/10.4134/JKMS.j190789 doi: 10.4134/JKMS.j190789
![]() |
[4] | H. Ohtsuka, S Nakamura, On the sum of reciprocal Fibonacci number, Fibonacci Quart., 46/47 (2008), 153–159. |
[5] | W. Hwang, K. Song, A reciprocal sum related to the Riemann zeta function at s = 6, arXiv, 2017. https://doi.org/10.48550/arXiv.1709.07994 |
[6] |
H. Xu, Some computational formulas related the Riemann zeta-function tails, J. Inequal. Appl., 2016 (2016), 132. https://doi.org/10.1186/s13660-016-1068-2 doi: 10.1186/s13660-016-1068-2
![]() |
[7] |
G. Choi, Y. Choo, On the reciprocal sums of products of Fibonacci and Lucas number, Filomat, 8 (2018), 2911–2920. https://doi.org/10.2298/FIL1808911C doi: 10.2298/FIL1808911C
![]() |
[8] | T. Komatsu, On the nearest integer of the sum of reciprocal Fibonacci numbers, Aport. Mate. Inv., 20 (2011), 171–184. |
[9] |
H. Lee, J. Park, Asymptotic behavior of reciprocal sum of two products of Fibonacci numbers, J. Inequal. Appl., 2020 (2020), 91. https://doi.org/10.1186/s13660-020-02359-z doi: 10.1186/s13660-020-02359-z
![]() |
[10] |
H. Lee, J. Park, The limit of reciprocal sum on some subsequential Fibonacci number, AIMS Math., 6 (2021), 12379–12394. https://doi.org/10.3934/math.2021716 doi: 10.3934/math.2021716
![]() |
[11] |
D. Marques, P. Trojovsky, The proof of a formula concerning the asymptotic behavior of the reciprocal sum of the square of multiple-angle Fibonacci numbers, J. Inequal. Appl., 2022 (2022), 21. https://doi.org/10.1186/s13660-022-02755-7 doi: 10.1186/s13660-022-02755-7
![]() |
[12] |
Z. Xu, W. Wang, The infinite sum of the cubes of reciprocal Pell numbers, Adv. Differ. Equations, 2013 (2013), 184. https://doi.org/10.1186/1687-1847-2013-184 doi: 10.1186/1687-1847-2013-184
![]() |
[13] |
I. Tanackov, Ž. Stević, Calculation of the value of the critical line using multiple zeta functions, AIMS. Math., 8 (2023), 13556–13571. https://doi.org/10.3934/math.2023688 doi: 10.3934/math.2023688
![]() |
[14] | T. M. Apostol, Introduction to analytic number theory, Springer, 1976. https://doi.org/10.1007/978-1-4757-5579-4 |
[15] | E. M. Stein, R. Shakarchi, Complex analysis, Princeton University Press, 2003. |
1. | Youngjin Hwang, Soobin Kwak, Hyundong Kim, Junseok Kim, An explicit numerical method for the conservative Allen–Cahn equation on a cubic surface, 2024, 9, 2473-6988, 34447, 10.3934/math.20241641 |