Vision-related quality of life (QoL) analyzes the visual function concerning individual well-being based on activity and social participation. Because QoL is a multivariate construct, a multivariate statistical method must be used to analyze this construct. In this paper, we present a methodology based on STATIS multivariate three-way methods to assess the real change in vision-related QoL for myopic patients by comparing their conditions before and after corneal surgery. We conduct a case study in Costa Rica to detect the outcomes of patients referred for myopia that underwent refractive surgery. We consider a descriptive, observational and prospective study. We utilize the NEI VFQ-25 instrument to measure the vision-related QoL in five different stages over three months. After applying this instrument/questionnaire, a statistically significant difference was detected between the perceived QoL levels. In addition, strong correlations were identified with highly similar structures ranging from 0.857 to 0.940. The application of the dual STATIS method found the non-existence of reconceptualization in myopic patients, but a statistically significant recalibration was identified. Furthermore, a real change was observed in all patients after surgery. This finding has not been stated previously due to the limitations of the existing statistical tools. We demonstrated that dual STATIS is a multivariate method capable of evaluating vision-related QoL data and detecting changes in recalibration and reconceptualization.
Citation: Francisco J. Perdomo-Argüello, Estelina Ortega-Gómez, Purificación Galindo-Villardón, Víctor Leiva, Purificación Vicente-Galindo. STATIS multivariate three-way method for evaluating quality of life after corneal surgery: Methodology and case study in Costa Rica[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 6110-6133. doi: 10.3934/mbe.2023264
[1] | Zainab Alsheekhhussain, Ahmed Gamal Ibrahim, Rabie A. Ramadan . Existence of S-asymptotically ω-periodic solutions for non-instantaneous impulsive semilinear differential equations and inclusions of fractional order 1<α<2. AIMS Mathematics, 2023, 8(1): 76-101. doi: 10.3934/math.2023004 |
[2] | Dongdong Gao, Daipeng Kuang, Jianli Li . Some results on the existence and stability of impulsive delayed stochastic differential equations with Poisson jumps. AIMS Mathematics, 2023, 8(7): 15269-15284. doi: 10.3934/math.2023780 |
[3] | Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536 |
[4] | Huanhuan Zhang, Jia Mu . Periodic problem for non-instantaneous impulsive partial differential equations. AIMS Mathematics, 2022, 7(3): 3345-3359. doi: 10.3934/math.2022186 |
[5] | Ahmed Salem, Kholoud N. Alharbi . Fractional infinite time-delay evolution equations with non-instantaneous impulsive. AIMS Mathematics, 2023, 8(6): 12943-12963. doi: 10.3934/math.2023652 |
[6] | Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100 |
[7] | Marimuthu Mohan Raja, Velusamy Vijayakumar, Anurag Shukla, Kottakkaran Sooppy Nisar, Wedad Albalawi, Abdel-Haleem Abdel-Aty . A new discussion concerning to exact controllability for fractional mixed Volterra-Fredholm integrodifferential equations of order r∈(1,2) with impulses. AIMS Mathematics, 2023, 8(5): 10802-10821. doi: 10.3934/math.2023548 |
[8] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861 |
[9] | M. Manjula, K. Kaliraj, Thongchai Botmart, Kottakkaran Sooppy Nisar, C. Ravichandran . Existence, uniqueness and approximation of nonlocal fractional differential equation of sobolev type with impulses. AIMS Mathematics, 2023, 8(2): 4645-4665. doi: 10.3934/math.2023229 |
[10] | Dumitru Baleanu, Rabha W. Ibrahim . Optical applications of a generalized fractional integro-differential equation with periodicity. AIMS Mathematics, 2023, 8(5): 11953-11972. doi: 10.3934/math.2023604 |
Vision-related quality of life (QoL) analyzes the visual function concerning individual well-being based on activity and social participation. Because QoL is a multivariate construct, a multivariate statistical method must be used to analyze this construct. In this paper, we present a methodology based on STATIS multivariate three-way methods to assess the real change in vision-related QoL for myopic patients by comparing their conditions before and after corneal surgery. We conduct a case study in Costa Rica to detect the outcomes of patients referred for myopia that underwent refractive surgery. We consider a descriptive, observational and prospective study. We utilize the NEI VFQ-25 instrument to measure the vision-related QoL in five different stages over three months. After applying this instrument/questionnaire, a statistically significant difference was detected between the perceived QoL levels. In addition, strong correlations were identified with highly similar structures ranging from 0.857 to 0.940. The application of the dual STATIS method found the non-existence of reconceptualization in myopic patients, but a statistically significant recalibration was identified. Furthermore, a real change was observed in all patients after surgery. This finding has not been stated previously due to the limitations of the existing statistical tools. We demonstrated that dual STATIS is a multivariate method capable of evaluating vision-related QoL data and detecting changes in recalibration and reconceptualization.
Fractional differential equations rise in many fields, such as biology, physics and engineering. There are many results about the existence of solutions and control problems (see [1,2,3,4,5,6]).
It is well known that the nonexistence of nonconstant periodic solutions of fractional differential equations was shown in [7,8,11] and the existence of asymptotically periodic solutions was derived in [8,9,10,11]. Thus it gives rise to study the periodic solutions of fractional differential equations with periodic impulses.
Recently, Fečkan and Wang [12] studied the existence of periodic solutions of fractional ordinary differential equations with impulses periodic condition and obtained many existence and asymptotic stability results for the Caputo's fractional derivative with fixed and varying lower limits. In this paper, we study the Caputo's fractional evolution equations with varying lower limits and we prove the existence of periodic mild solutions to this problem with the case of general periodic impulses as well as small equidistant and shifted impulses. We also study the Caputo's fractional evolution equations with fixed lower limits and small nonlinearities and derive the existence of its periodic mild solutions. The current results extend some results in [12].
Set ξq(θ)=1qθ−1−1qϖq(θ−1q)≥0, ϖq(θ)=1π∑∞n=1(−1)n−1θ−nq−1Γ(nq+1)n!sin(nπq), θ∈(0,∞). Note that ξq(θ) is a probability density function defined on (0,∞), namely ξq(θ)≥0, θ∈(0,∞) and ∫∞0ξq(θ)dθ=1.
Define T:X→X and S:X→X given by
T(t)=∫∞0ξq(θ)S(tqθ)dθ, S(t)=q∫∞0θξq(θ)S(tqθ)dθ. |
Lemma 2.1. ([13,Lemmas 3.2,3.3]) The operators T(t) and S(t),t≥0 have following properties:
(1) Suppose that supt≥0‖S(t)‖≤M. For any fixed t≥0, T(⋅) and S(⋅) are linear and bounded operators, i.e., for any u∈X,
‖T(t)u‖≤M‖u‖ and ‖S(t)u‖≤MΓ(q)‖u‖. |
(2) {T(t),t≥0} and {S(t),t≥0} are strongly continuous.
(3) {T(t),t>0} and {S(t),t>0} are compact, if {S(t),t>0} is compact.
Let N0={0,1,⋯,∞}. We consider the following impulsive fractional equations
{cDqtk,tu(t)=Au(t)+f(t,u(t)), q∈(0,1), t∈(tk,tk+1), k∈N0,u(t+k)=u(t−k)+Δk(u(t−k)), k∈N,u(0)=u0, | (2.1) |
where cDqtk,t denotes the Caputo's fractional time derivative of order q with the lower limit at tk, A:D(A)⊆X→X is the generator of a C0-semigroup {S(t),t≥0} on a Banach space X, f:R×X→X satisfies some assumptions. We suppose the following conditions:
(Ⅰ) f is continuous and T-periodic in t.
(Ⅱ) There exist constants a>0, bk>0 such that
{‖f(t,u)−f(t,v)‖≤a‖u−v‖,∀ t∈R, u,v∈X,‖u−v+Δk(u)−Δk(v)‖≤bk‖u−v‖,∀ k∈N, u,v∈X. |
(Ⅲ) There exists N∈N such that T=tN+1,tk+N+1=tk+T and Δk+N+1=Δk for any k∈N.
It is well known [3] that (2.1) has a unique solution on R+ if the conditions (Ⅰ) and (Ⅱ) hold. So we can consider the Poincaré mapping
P(u0)=u(T−)+ΔN+1(u(T−)). |
By [14,Lemma 2.2] we know that the fixed points of P determine T-periodic mild solutions of (2.1).
Theorem 2.2. Assume that (I)-(III) hold. Let Ξ:=∏Nk=0MbkEq(Ma(tk+1−tk)q), where Eq is the Mittag-Leffler function (see [3, p.40]), then there holds
‖P(u)−P(v)‖≤Ξ‖u−v‖, ∀u,v∈X. | (2.2) |
If Ξ<1, then (2.1) has a unique T-periodic mild solution, which is also asymptotically stable.
Proof. By the mild solution of (2.1), we mean that u∈C((tk,tk+1),X) satisfying
u(t)=T(t−tk)u(t+k)+∫ttkS(t−s)f(s,u(s))ds. | (2.3) |
Let u and v be two solutions of (2.3) with u(0)=u0 and v(0)=v0, respectively. By (2.3) and (II), we can derive
‖u(t)−v(t)‖≤‖T(t−tk)(u(t+k)−v(t+k))‖+∫ttk(t−s)q−1‖S(t−s)(f(s,u(s)−f(s,v(s))‖ds≤M‖u(t+k)−v(t+k)‖+MaΓ(q)∫ttk(t−s)q−1‖f(s,u(s)−f(s,v(s))‖ds. | (2.4) |
Applying Gronwall inequality [15, Corollary 2] to (2.4), we derive
‖u(t)−v(t)‖≤M‖u(t+k)−v(t+k)‖Eq(Ma(t−tk)q), t∈(tk,tk+1), | (2.5) |
which implies
‖u(t−k+1)−v(t−k+1)‖≤MEq(Ma(tk+1−tk)q)‖u(t+k)−v(t+k)‖,k=0,1,⋯,N. | (2.6) |
By (2.6) and (Ⅱ), we derive
‖P(u0)−P(v0)‖=‖u(t−N+1)−v(t−N+1)+ΔN+1(u(t−N+1))−ΔN+1(v(t−N+1))‖≤bN+1‖u(t−N+1)−v(t−N+1)‖≤(N∏k=0MbkEq(Ma(tk+1−tk)q))‖u0−v0‖=Ξ‖u0−v0‖, | (2.7) |
which implies that (2.2) is satisfied. Thus P:X→X is a contraction if Ξ<1. Using Banach fixed point theorem, we obtain that P has a unique fixed point u0 if Ξ<1. In addition, since
‖Pn(u0)−Pn(v0)‖≤Ξn‖u0−v0‖, ∀v0∈X, |
we get that the corresponding periodic mild solution is asymptotically stable.
We study
{cDqkhu(t)=Au(t)+f(u(t)), q∈(0,1), t∈(kh,(k+1)h), k∈N0,u(kh+)=u(kh−)+ˉΔhq, k∈N,u(0)=u0, | (2.8) |
where h>0, ˉΔ∈X, and f:X→X is Lipschitz. We know [3] that under above assumptions, (2.8) has a unique mild solution u(u0,t) on R+, which is continuous in u0∈X, t∈R+∖{kh|k∈N} and left continuous in t ant impulsive points {kh|k∈N}. We can consider the Poincaré mapping
Ph(u0)=u(u0,h+). |
Theorem 2.3. Let w(t) be a solution of following equations
{w′(t)=ˉΔ+1Γ(q+1)f(w(t)), t∈[0,T],w(0)=u0. | (2.9) |
Then there exists a mild solution u(u0,t) of (2.8) on [0,T], satisfying
u(u0,t)=w(tqq−1)+O(hq). |
If w(t) is a stable periodic solution, then there exists a stable invariant curve of Poincaré mapping of (2.8) in a neighborhood of w(t). Note that h is sufficiently small.
Proof. For any t∈(kh,(k+1)h),k∈N0, the mild solution of (2.8) is equivalent to
u(u0,t)=T(t−kh)u(kh+)+∫tkh(t−s)q−1S(t−s)f(u(u0,s))ds=T(t−kh)u(kh+)+∫t−kh0(t−kh−s)q−1S(t−kh−s)f(u(u(kh+),s))ds. | (2.10) |
So
u((k+1)h+)=T(h)u(kh+)+ˉΔhq+∫h0(h−s)q−1S(h−s)f(u(u(kh+),s))ds=Ph(u(kh+)), | (2.11) |
and
Ph(u0)=u(u0,h+)=T(h)u0+ˉΔhq+∫h0(h−s)q−1S(h−s)f(u(u0,s))ds. | (2.12) |
Inserting
u(u0,t)=T(t)u0+hqv(u0,t), t∈[0,h], |
into (2.10), we obtain
v(u0,t)=1hq∫t0(t−s)q−1S(t−s)f(T(t)u0+hqv(u0,t))ds=1hq∫t0(t−s)q−1S(t−s)f(T(t)u0)ds+1hq∫t0(t−s)q−1S(t−s)(f(T(t)u0+hqv(u0,t))−f(T(t)u0))ds=1hq∫t0(t−s)q−1S(t−s)f(T(t)u0)ds+O(hq), |
since
‖∫t0(t−s)q−1S(t−s)(f(T(t)u0+hqv(u0,t))−f(T(t)u0))ds‖≤∫t0(t−s)q−1‖S(t−s)‖‖f(T(t)u0+hqv(u0,t))−f(T(t)u0)‖ds≤MLlochqtqΓ(q+1)maxt∈[0,h]{‖v(u0,t)‖}≤h2qMLlocΓ(q+1)maxt∈[0,h]{‖v(u0,t)‖}, |
where Lloc is a local Lipschitz constant of f. Thus we get
u(u0,t)=T(t)u0+∫t0(t−s)q−1S(t−s)f(T(t)u0)ds+O(h2q), t∈[0,h], | (2.13) |
and (2.12) gives
Ph(u0)=T(h)u0+ˉΔhq+∫h0(h−s)q−1S(h−s)f(T(h)u0)ds+O(h2q). |
So (2.11) becomes
u((k+1)h+)=T(h)u(kh+)+ˉΔhq+∫(k+1)hkh((k+1)h−s)q−1S((k+1)h−s)f(T(h)u(kh+))ds+O(h2q). | (2.14) |
Since T(t) and S(t) are strongly continuous,
limt→0T(t)=I and limt→0S(t)=1Γ(q)I. | (2.15) |
Thus (2.14) leads to its approximation
w((k+1)h+)=w(kh+)+ˉΔhq+hqΓ(q+1)f(w(kh+)), |
which is the Euler numerical approximation of
w′(t)=ˉΔ+1Γ(q+1)f(w(t)). |
Note that (2.10) implies
‖u(u0,t)−T(t−kh)u(kh+)‖=O(hq), ∀t∈[kh,(k+1)h]. | (2.16) |
Applying (2.15), (2.16) and the already known results about Euler approximation method in [16], we obtain the result of Theorem 2.3.
Corollary 2.4. We can extend (2.8) for periodic impulses of following form
{cDqkhu(t)=Au(t)+f(u(t)), t∈(kh,(k+1)h), k∈N0,u(kh+)=u(kh−)+ˉΔkhq, k∈N,u(0)=u0, | (2.17) |
where ˉΔk∈X satisfy ˉΔk+N+1=ˉΔk for any k∈N. Then Theorem 2.3 can directly extend to (2.17) with
{w′(t)=∑N+1k=1ˉΔkN+1+1Γ(q+1)f(w(t)), t∈[0,T], k∈N,w(0)=u0 | (2.18) |
instead of (2.9).
Proof. We can consider the Poincaré mapping
Ph(u0)=u(u0,(N+1)h+), |
with a form of
Ph=PN+1,h∘⋯∘P1,h |
where
Pk,h(u0)=ˉΔkhq+u(u0,h). |
By (2.13), we can derive
Pk,h(u0)=ˉΔkhq+u(u0,h)=T(h)u0+ˉΔkhq+∫h0(h−s)q−1S(h−s)f(T(h)u0)ds+O(h2q). |
Then we get
Ph(u0)=T(h)u0+N+1∑k=1ˉΔkhq+(N+1)∫h0(h−s)q−1S(h−s)f(T(h)u0)ds+O(h2q). |
By (2.15), we obtain that Ph(u0) leads to its approximation
u0+N+1∑k=1ˉΔkhq+(N+1)hqΓ(q+1)f(u0). | (2.19) |
Moreover, equations
w′(t)=∑N+1k=1ˉΔkN+1+1Γ(q+1)f(w(t)) |
has the Euler numerical approximation
u0+hq(∑N+1k=1ˉΔkN+1+1Γ(q+1)f(u0)) |
with the step size hq, and its approximation of N+1 iteration is (2.19), the approximation of Ph. Thus Theorem 2.3 can directly extend to (2.17) with (2.18).
Now we consider following equations with small nonlinearities of the form
{cDq0u(t)=Au(t)+ϵf(t,u(t)), q∈(0,1), t∈(tk,tk+1), k∈N0,u(t+k)=u(t−k)+ϵΔk(u(t−k)), k∈N,u(0)=u0, | (3.1) |
where ϵ is a small parameter, cDq0 is the generalized Caputo fractional derivative with lower limit at 0. Then (3.1) has a unique mild solution u(ϵ,t). Give the Poincaré mapping
P(ϵ,u0)=u(ϵ,T−)+ϵΔN+1(u(ϵ,T−)). |
Assume that
(H1) f and Δk are C2-smooth.
Then P(ϵ,u0) is also C2-smooth. In addition, we have
u(ϵ,t)=T(t)u0+ϵω(t)+O(ϵ2), |
where ω(t) satisfies
{cDq0ω(t)=Aω(t)+f(t,T(t)u0), t∈(tk,tk+1), k=0,1,⋯,N,ω(t+k)=ω(t−k)+Δk(T(tk)u0), k=1,2,⋯,N+1,ω(0)=0, |
and
ω(T−)=N∑k=1T(T−tk)Δk(T(tk)u0)+∫T0(T−s)q−1S(T−s)f(s,T(s)u0)ds. |
Thus we derive
{P(ϵ,u0)=u0+M(ϵ,u0)+O(ϵ2)M(ϵ,u0)=(T(T)−I)u0+ϵω(T−)+ϵΔN+1(T(T)u0). | (3.2) |
Theorem 3.1. Suppose that (I), (III) and (H1) hold.
1). If (T(T)−I) has a continuous inverse, i.e. (T(T)−I)−1 exists and continuous, then (3.1) has a unique T-periodic mild solution located near 0 for any ϵ≠0 small.
2). If (T(T)−I) is not invertible, we suppose that ker(T(T)−I)=[u1,⋯,uk] and X=im(T(T)−I)⊕X1 for a closed subspace X1 with dimX1=k. If there is v0∈[u1,⋯,uk] such that B(0,v0)=0 (see (3.7)) and the k×k-matrix DB(0,v0) is invertible, then (3.1) has a unique T-periodic mild solution located near T(t)v0 for any ϵ≠0 small.
3). If rσ(Du0M(ϵ,u0))<0, then the T-periodic mild solution is asymptotically stable. If rσ(Du0M(ϵ,u0))∩(0,+∞)≠∅, then the T-periodic mild solution is unstable.
Proof. The fixed point u0 of P(ϵ,x0) determines the T-periodic mild solution of (3.1), which is equivalent to
M(ϵ,u0)+O(ϵ2)=0. | (3.3) |
Note that M(0,u0)=(T(T)−I)u0. If (T(T)−I) has a continuous inverse, then (3.3) can be solved by the implicit function theorem to get its solution u0(ϵ) with u0(0)=0.
If (T(T)−I) is not invertible, then we take a decomposition u0=v+w, v∈[u1,⋯,uk], take bounded projections Q1:X→im(T(T)−I), Q2:X→X1, I=Q1+Q2 and decompose (3.3) to
Q1M(ϵ,v+w)+Q1O(ϵ2)=0, | (3.4) |
and
Q2M(ϵ,v+w)+Q2O(ϵ2)=0. | (3.5) |
Now Q1M(0,v+w)=(T(T)−I)w, so we can solve by implicit function theorem from (3.4), w=w(ϵ,v) with w(0,v)=0. Inserting this solution into (3.5), we get
B(ϵ,v)=1ϵ(Q2M(ϵ,v+w)+Q2O(ϵ2))=Q2ω(T−)+Q2ΔN+1(T(t)v+w(ϵ,v))+O(ϵ). | (3.6) |
So
B(0,v)=N∑k=1Q2T(T−tk)Δk(T(tk)v)+Q2∫T0(T−s)q−1S(T−s)f(s,T(s)v)ds. | (3.7) |
Consequently we get, if there is v0∈[u1,⋯,uk] such that B(0,v0)=0 and the k×k-matrix DB(0,v0) is invertible, then (3.1) has a unique T-periodic mild solution located near T(t)v0 for any ϵ≠0 small.
In addition, Du0P(ϵ,u0(ϵ))=I+Du0M(ϵ,u0)+O(ϵ2). Thus we can directly derive the stability and instability results by the arguments in [17].
In this section, we give an example to demonstrate Theorem 2.2.
Example 4.1. Consider the following impulsive fractional partial differential equation:
{ cD12tk,tu(t,y)=∂2∂y2u(t,y)+sinu(t,y)+cos2πt, t∈(tk,tk+1), k∈N0, y∈[0,π], Δk(u(t−k,y))=u(t+k,y)−u(t−k,y)=ξu(t−k,y), k∈N, y∈[0,π], u(t,0)=u(t,π)=0, t∈(tk,tk+1), k∈N0, u(0,y)=u0(y), y∈[0,π], | (4.1) |
for ξ∈R, tk=k3. Let X=L2[0,π]. Define the operator A:D(A)⊆X→X by Au=d2udy2 with the domain
D(A)={u∈X∣dudy,d2udy2∈X, u(0)=u(π)=0}. |
Then A is the infinitesimal generator of a C0-semigroup {S(t),t≥0} on X and ‖S(t)‖≤M=1 for any t≥0. Denote u(⋅,y)=u(⋅)(y) and define f:[0,∞)×X→X by
f(t,u)(y)=sinu(y)+cos2πt. |
Set T=t3=1, tk+3=tk+1, Δk+3=Δk, a=1, bk=|1+ξ|. Obviously, conditions (I)-(III) hold. Note that
Ξ=2∏k=0|1+ξ|E12(1√3)=|1+ξ|3(E12(1√3))3. |
Letting Ξ<1, we get −E12(1√3)−1<ξ<E12(1√3)−1. Now all assumptions of Theorem 2.2 hold. Hence, if −E12(1√3)−1<ξ<E12(1√3)−1, (4.1) has a unique 1-periodic mild solution, which is also asymptotically stable.
This paper deals with the existence and stability of periodic solutions of impulsive fractional evolution equations with the case of varying lower limits and fixed lower limits. Although, Fečkan and Wang [12] prove the existence of periodic solutions of impulsive fractional ordinary differential equations in finite dimensional Euclidean space, we extend some results to impulsive fractional evolution equation on Banach space by involving operator semigroup theory. Our results can be applied to some impulsive fractional partial differential equations and the proposed approach can be extended to study the similar problem for periodic impulsive fractional evolution inclusions.
The authors are grateful to the referees for their careful reading of the manuscript and valuable comments. This research is supported by the National Natural Science Foundation of China (11661016), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Major Research Project of Innovative Group in Guizhou Education Department ([2018]012), Foundation of Postgraduate of Guizhou Province (YJSCXJH[2019]031), the Slovak Research and Development Agency under the contract No. APVV-18-0308, and the Slovak Grant Agency VEGA No. 2/0153/16 and No. 1/0078/17.
All authors declare no conflicts of interest in this paper.
[1] |
X. Zheng, Z. Li, X. Chun, X. Yang, K. Liu, A model-based method with geometric solutions for gaze correction in eye-tracking, Math. Biosci. Eng., 17 (2020), 33–74. https://doi.org/10.3934/mbe.2020071 doi: 10.3934/mbe.2020071
![]() |
[2] |
C. Zhao, C. Cai, Q. Ding, H. Dai, Efficacy and safety of atropine to control myopia progression: A systematic review and meta-analysis, BMC Ophthalmol., 20 (2020), 478. https://doi.org/10.1186/s12886-020-01746-w doi: 10.1186/s12886-020-01746-w
![]() |
[3] |
T. A. Althomali, Relative proportion of different types of refractive errors in subjects seeking laser vision correction, Open Ophthalmol. J., 12 (2018), 53–62. https://doi.org/10.2174/1874364101812010053 doi: 10.2174/1874364101812010053
![]() |
[4] | World Health Organization, The impact of myopia and high myopia: Report of the Joint World Health Organization - Brien Holden Vision Institute Global Scientific Meeting on Myopia. University of New South Wales, Sydney, Australia, 2016. |
[5] |
S. L. Trokel, R. Srinivasan, B. Braren, Excimer laser surgery of the cornea, Am. J. Ophthalmol., 96 (1983), 710–715. https://doi.org/10.1016/S0002-9394(14)71911-7 doi: 10.1016/S0002-9394(14)71911-7
![]() |
[6] |
Y. Song, L. Fang, Q. Zhu, R. Du, B. Guo, J. Gong, et al., Biomechanical responses of the cornea after small incision lenticule extraction (SMILE) refractive surgery based on a finite element model of the human eye, Math. Biosci. Eng., 18 (2021), 4212–4225. https://doi.org/10.3934/mbe.2021211 doi: 10.3934/mbe.2021211
![]() |
[7] | D. T. Azar, Refractive Surgery, Elsevier, USA, 2006. https://doi.org/10.1016/B978-0-323-03599-6.50059-6 |
[8] | World Health Organization, WHOQOL: Measuring quality of life, World Health Organization, Division of Mental Health and Prevention of Substance Abuse, Geneva, Switzerland, 1997. apps.who.int/iris/handle/10665/63482 |
[9] | A. Ahluwalia, L. L. Shen, L. V. Del Priore, Central geographic atrophy vs. neovascular age–related macular degeneration: Differences in longitudinal vision-related quality of life, Graefe's Arc. Clin. Exper. Ophthalmol., 259 (2021),, 259,307–316. https://doi.org/10.1007/s00417-020-04892-5 |
[10] | N. Li, X. J. Peng, Z. J. Fan, Progress of corneal collagen cross-linking combined with refractive surgery, Int. J. Ophthalmol., 7 (2014), 157. |
[11] |
P. J.Banerjee, V. R. Cornelius, Adjunctive intraocular and peri-ocular steroid (triamcinolone acetonide) versus standard treatment in eyes undergoing vitreoretinal surgery for open globe trauma (ASCOT): Study protocol for a phase Ⅲ, multi-centre, double-masked randomised controlled trial, Trials, 17 (2016), 339. https://doi.org/10.1186/s13063-016-1445-7 doi: 10.1186/s13063-016-1445-7
![]() |
[12] |
S. Feeny, A. Posso, L. McDonald, T. T. K. Chuyen, S. T. Tung, Beyond monetary benefits of restoring sight in Vietnam: Evaluating well-being gains from cataract surgery. PLoS One, 13 (2018), e0192774. https://doi.org/10.1371/journal.pone.0192774 doi: 10.1371/journal.pone.0192774
![]() |
[13] |
C. E. Schwartz, M. A. Sprangers, Methodological approaches for assessing response shift in longitudinal health-related quality-of-life research, Soc. Sci. Med., 48 (1999), e0192774. https://doi.org/10.1016/S0277-9536(99)00047-7 doi: 10.1016/S0277-9536(99)00047-7
![]() |
[14] |
M. Salmon, M. Blanchin, C. Rotonda, F. Guillemin, V. Sébille, Identifying patterns of adaptation in breast cancer patients with cancer‐related fatigue using response shift analyses at subgroup level. Cancer Med., 6 (2017), 2562–2575. https://doi.org/10.1002/cam4.1219 doi: 10.1002/cam4.1219
![]() |
[15] |
M. Friedrich, M. Zenger, A. Hinz, Response shift effects of quality of life assessments in breast cancer survivors, European J. Cancer Care, 28 (2019), e12979. https://doi.org/10.1111/ecc.12979 doi: 10.1111/ecc.12979
![]() |
[16] |
M. G.Verdam, F. J. Oort, M. A. Sprangers, Structural equation modeling–based effect-size indices were used to evaluate and interpret the impact of response shift effects, J. Clin. Epidemiol., 85 (2017), 37–44. https://doi.org/10.1016/j.jclinepi.2017.02.012 doi: 10.1016/j.jclinepi.2017.02.012
![]() |
[17] |
M. Preiß, M. Friedrich, J. U. Stolzenburg, M. Zenger, A. Hinz, Response shift effects in the assessment of urologic cancer patients' quality of life, European J. Cancer Care, 28 (2019), e13027. https://doi.org/10.1111/ecc.13027 doi: 10.1111/ecc.13027
![]() |
[18] |
T. Murata, Y. Suzukamo, T. Shiroiwa, N. Taira, K. Shimozuma, Y. Ohashi, et al., Response shift–adjusted treatment effect on health-related quality of life in a randomized controlled trial of taxane versus S-1 for metastatic breast cancer: Structural equation modeling, Value Health, 23 (2020), 768–774. https://doi.org/10.1016/j.jval.2020.02.003 doi: 10.1016/j.jval.2020.02.003
![]() |
[19] |
I. Wilson, Clinical understanding and clinical implications of response shift, Soc. Sci. Med., 48 (1999), 1577–1558. https://doi.org/10.1016/S0277-9536(99)00050-7 doi: 10.1016/S0277-9536(99)00050-7
![]() |
[20] |
S. Jansen, A. Sttgelbout, M. Nooij, E. Noordijk, J. Kievit, Response shift in quality of life measurement in early-stage breast cancer patients undergoing radiotherapy, Quality Life Res., 9 (2000), 603–615. https://doi.org/10.1023/A:1008928617014 doi: 10.1023/A:1008928617014
![]() |
[21] |
R. Golembiewski, K. Billingsley, S. Yeager, Measuring change and persistence in human affairs: Types of change generated by OD designs, J. Appl. Behav. Sci., 12 (1976), 133–157. https://doi.org/10.1177/002188637601200201 doi: 10.1177/002188637601200201
![]() |
[22] |
G. S. Howard, P. R. Dailey, Response-shift bias: A source of contamination of self-report measures, J. Appl. Psychol., 64 (1979), 144–150. https://doi.org/10.1037/0021-9010.64.2.144 doi: 10.1037/0021-9010.64.2.144
![]() |
[23] |
P. Norman, S. Parker, The interpretation of change in verbal reports: Implications for health psychology, Psychol. Health, 11 (1996), 301–314. https://doi.org/10.1080/08870449608400259 doi: 10.1080/08870449608400259
![]() |
[24] |
I. Wilson, P. Cleary, Linking clinical variables with related quality of life: A conceptual model of patients outcomes, J. Am. Med. Assoc., 273 (1995), 50–65. https://doi.org/10.1001/jama.273.1.59 doi: 10.1001/jama.273.1.59
![]() |
[25] | C. C. Rodríguez-Martínez, Contribuciones a los Métodos STATIS Basados en Técnicas de Aprendizaje no Supervisado, Universidad de Salamanca. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 2020. |
[26] |
N. B. Erichson, P. Zheng, K. Manohar, S. L. Brunton, J. N. Kutz, A. Y. Aravkin, Sparse principal component analysis via variable projection, J. Am. Med. Assoc., 80 (2020), 977–1002. https://doi.org/10.1137/18M1211350 doi: 10.1137/18M1211350
![]() |
[27] |
M. Cubilla-Montilla, A. B. Nieto-Librero, P. Galindo-Villardón, C. A. Torres-Cubilla, Sparse HJ biplot: A new methodology via elastic net, Mathematics, 9 (2021), 1298. https://doi.org/10.3390/math9111298 doi: 10.3390/math9111298
![]() |
[28] | C. C.Rodríguez-Martínez, M. Cubilla-Montilla, SparseSTATISdual: R package for penalized STATIS-dual analysis, github.com/CCRM07/SparseSTATISdual (accessed on 15 June 2021) |
[29] | S. Ambapour, Statis: Une méthode d'analyse conjointe de plusieurs tableaux de données, Document de travail (DT 01/2001).Bureau d'Application des Methodes Statistiques et Informatiques, pp. 1–20. www.yumpu.com/fr/document/read/37543574 (accessed on 15 June 2021). |
[30] |
J. C.Laria, M. C. Aguilera-Morillo, E. Álvarez, R. E. Lillo, S. López-Taruella, M. del Monte-Millán, et al., Iterative variable selection for high-dimensional data: Prediction of pathological response in triple-negative breast cancer, Mathematics, 9 (2021), 222. https://doi.org/10.3390/math9030222 doi: 10.3390/math9030222
![]() |
[31] |
E. Ortega-Gómez, P. Vicente-Galindo, H. Martín-Rodero, P. Galindo-Villardon, Detection of response shift in health-related quality of life studies: A systematic review, Health Qual. Life Outcomes, 20 (2022), 20. https://doi.org/10.1186/s12955-022-01926-w doi: 10.1186/s12955-022-01926-w
![]() |
[32] |
T. T.Sajobi, R. Brahmbatt, L. M. Lix, B. D. Zumbo, R. Sawatzky, Scoping review of response shift methods: Current reporting practices and recommendations, Qual. Life Res., 27 (2018), 1133–1146. https://doi.org/10.1007/s11136-017-1751-x doi: 10.1007/s11136-017-1751-x
![]() |
[33] | H. L'Hermier des Plantes, Structuration des tableaux à trois indices de la statistique, théorie et application d'une méthode d'analyse conjointe, Master's thesis, Université Des Sciences et Techniques Du Languedoc, Montpellier, France, 1976. |
[34] | C. Lavit, M. C. Bernard, C. P. Hugalde, M. O. Pernin, Analyse conjointe de tableaux quantitifs, Masson, Paris, France, 1988. |
[35] |
C. Lavit, Y. Escoufier, R. Sabatier, P. Traissac, The act (STATIS method), Comput. Stat. Data Anal., 18 (1994), 97–119. https://doi.org/10.1016/0167-9473(94)90134-1 doi: 10.1016/0167-9473(94)90134-1
![]() |
[36] | Y. Escoufier, Opérateur associé à un tableau de données, Annales de Institut National de la Statistique et Des études Économiques, pp. 165–179. https://doi.org/10.2307/20075217 |
[37] |
C. Martin-Barreiro, J. A. Ramirez-Figueroa, X. Cabezas, V. Leiva, M. P. Galindo-Villardón, Disjoint and functional principal component analysis for infected cases and deaths due to COVID-19 in South American countries with sensor-related data. Sensors, 21 (2021), 4094. https://doi.org/10.3390/s21124094 doi: 10.3390/s21124094
![]() |
[38] |
P. Sharma, A. K. Singh, V. Leiva, C. Martin-Barreiro, X. Cabezas, Modern multivariate statistical methods for evaluating the impact of WhatsApp on academic performance: Methodology and case study in India. Appl. Sci., 12 (2020), 6141. https://doi.org/10.3390/app12126141 doi: 10.3390/app12126141
![]() |
[39] |
C. Martin-Barreiro, J. A. Ramirez-Figueroa, A. B. Nieto-Librero, V. Leiva, A. Martin-Casado, M. P. Galindo-Villardón, A new algorithm for computing disjoint orthogonal components in the three-way Tucker model, Mathematics, 9 (2021), 203. https://doi.org/10.3390/math9030203 doi: 10.3390/math9030203
![]() |
[40] |
C. Martin-Barreiro, J. A. Ramirez-Figueroa, X. Cabezas, V. Leiva, A. Martin-Casado, M.P. Galindo-Villardón, A new algorithm for computing disjoint orthogonal components in the parallel factor analysis model with simulations and applications to real-world data, Mathematics, 9 (2021), 2058. https://doi.org/10.3390/math9172058 doi: 10.3390/math9172058
![]() |
[41] | H. Abdi, D. Valentin, D. In, D. Z. Valentin, L. Nguyen, New trends in sensory evaluation of food and non-food products, Vietnam National University, Ho Chi Minh City Publishing House, 2007, pp. 5–18. |
[42] |
K. Tarczy-Hornoch, M. Ying-Lai, R. Varma, Los Angeles Latino Eye Study Group, Myopic refractive error in adult Latinos: The Los Angeles Latino eye study. Invest. Ophthalmol. Visual Sci., 47 (2006), 1845–1852. https://doi.org/10.1167/iovs.05-1153 doi: 10.1167/iovs.05-1153
![]() |
[43] |
S. Kay, A. Ferreira, Mapping the 25-item national eye institute visual functioning questionnaire (NEI VFQ-25) to EQ-5D utility scores, Ophth. Epidemiol., 21 (2014), 66–78. https://doi.org/10.1007/s12325-016-0333-6 doi: 10.1007/s12325-016-0333-6
![]() |
[44] |
J. R.Grubbs, S. Tolleson-Rinehart, K. Huynh, R. M. Davis, A review of quality of life measures in dry eye questionnaires, Cornea, 33 (2014), 215–218. https://doi.org/10.1007/s12325-016-0333-6 doi: 10.1007/s12325-016-0333-6
![]() |
[45] |
L. Quaranta, I. Riva, C. Gerardi, F. Oddone, I. Floriano, A. G. Konstas, Quality of life in glaucoma: A review of the literature, Adv. Therapy, 33 (2016), 959–981. https://doi.org/10.1007/s12325-016-0333-6 doi: 10.1007/s12325-016-0333-6
![]() |
[46] |
F. Kuhn, R. Morris, C. D. Witherspoon, K. Heimann, J. B. Jeffers, G. Treister, A standardized classification of ocular trauma, Ophthalmology, 103 (1996), 240–243. https://doi.org/10.1016/S0161-6420(96)30710-0 doi: 10.1016/S0161-6420(96)30710-0
![]() |
[47] | R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2021. |
[48] |
C. C. Rodríguez-Martínez, M. Cubilla-Montilla, P. Vicente-Galindo, P. Galindo-Villardón, Sparse STATIS-dual via elastic net, Mathematics, 9 (2021), 2094. https://doi.org/10.1016/j.msard.2016.11.008 doi: 10.1016/j.msard.2016.11.008
![]() |
[49] |
F. Schmidt, H. Zimmermann, J. Mikolajczak, F. C. Oertela, F. Pache, M. Weinhold, et al., Severe structural and functional visual system damage leads to profound loss of vision-related quality of life in patients with neuromyelitis optica spectrum disorders, Multi. Scler. Related Disord., 11 (2017), 45–50. https://doi.org/10.1016/j.msard.2016.11.008 doi: 10.1016/j.msard.2016.11.008
![]() |
[50] |
L. Bradnam, C. Chen, L. Graetz, T. Loetscher, Reduced vision-related quality of life in people living with dystonia, Disab. Rehabil., 42 (2020), 1556–1560. https://doi.org/10.1080/09638288.2018.1528636 doi: 10.1080/09638288.2018.1528636
![]() |
[51] |
D. Yuan, W. Zhang, S. Yuan, P. Xie, Q. Liu, Evaluation of vision-related quality of life after autologous internal limiting–membrane transplantation for refractory macular holes, Clin. Ophthalmol., 14 (2020), 2079–2085. https://doi.org/10.2147/OPTH.S259642 doi: 10.2147/OPTH.S259642
![]() |
[52] |
M. Li, L. Gong, W.J. Chapin, M. Zhu, Assessment of vision-related quality of life in dry eye patients, Invest. Ophthalmol. Visual Sci., 53 (2012), 5722–5727. https://doi.org/10.1167/iovs.11-9094 doi: 10.1167/iovs.11-9094
![]() |
[53] |
G. Ilie, J. Bradfield, L. Moodie, T. Lawen, A. Ilie, Z. Lawen, et al., The role of response-shift in studies assessing quality of life outcomes among cancer patients: A systematic review. Front. Oncol., 9 (2019), 783. https://doi.org/10.3389/fonc.2019.00783 doi: 10.3389/fonc.2019.00783
![]() |
[54] |
A. Ousmen, T. Conroy, F. Guillemin, M. Velten, D. Jolly, M. Mercier, et al., Impact of the occurrence of a response shift on the determination of the minimal important difference in a health-related quality of life score over time, Health Qual. Life Outcomes, 14 (2016), 167. https://doi.org/10.1186/s12955-016-0569-5 doi: 10.1186/s12955-016-0569-5
![]() |
[55] |
J. A.Haagsma, I. Spronk, M. A. de Jongh, G. J. Bonsel, S. Polinder, Conventional and retrospective change in health-related quality of life of trauma patients: An explorative observational follow-up study, Health Qual. Life Outcomes, 18 (2020), 157. https://doi.org/10.1186/s12955-020-01404-1 doi: 10.1186/s12955-020-01404-1
![]() |
[56] |
B. Hosseini, S. Nedjat, K. Zendehdel, R. Majdzadeh, A. Nourmohammadi, A. Montazeri, Response shift in quality of life assessment among cancer patients: A study from Iran, Med. J. Islamic Republic Iran, 31 (2017), 120. https://doi.org/10.2106/JBJS.I.00990 doi: 10.2106/JBJS.I.00990
![]() |
[57] |
H. Razmjou, C. E. Schwartz, R. Holtby, The impact of response shift on perceived disability two years following rotator cuff surgery, J. Bone Joint Surgery, 92 (2010), 2178–2186. https://doi.org/10.2106/JBJS.I.00990 doi: 10.2106/JBJS.I.00990
![]() |
[58] |
X. H. Zhang, S. C. Li, F. Xie, N. N. Lo, K. Y. Yang, S. J. Yeo, et al., An exploratory study of response shift in health-related quality of life and utility assessment among patients with osteoarthritis undergoing total knee replacement surgery in a tertiary hospital in Singapore, Value Health, 15 (2012), S72–S78. https://doi.org/10.1016/j.jval.2011.11.011 doi: 10.1016/j.jval.2011.11.011
![]() |
[59] |
M. Rutgers, L. B. Creemers, K. G. A. Yang, N. J. Raijmakers, W. J. Dhert, D. B. Saris, Osteoarthritis treatment using autologous conditioned serum after placebo: Patient considerations and clinical response in a non-randomized case series, Acta Orthopaed., 86 (2015), 114–118. https://doi.org/10.3109/17453674.2014.950467 doi: 10.3109/17453674.2014.950467
![]() |
[60] |
C. Machuca, M. V. Vettore, P. G. Robinson, How peoples' ratings of dental implant treatment change over time? Qual. Life Res., 29 (2020), 1323–1334. https://doi.org/10.1007/s11136-019-02408-1 doi: 10.1007/s11136-019-02408-1
![]() |
[61] |
H. Y. Shi, K. T. Lee, H. H. Lee, Y. H. Uen, C. C. Chiu, Response shift effect on gastrointestinal quality of life index after laparoscopic cholecystectomy, Qual. Life Res., 20 (2011), 335–341. https://doi.org/10.1007/s11136-010-9760-z doi: 10.1007/s11136-010-9760-z
![]() |
[62] |
Y. Edelaar-Peeters, A. M. Stiggelbout, Anticipated adaptation or scale recalibration?, Health Qual. Life Outcomes, 11 (2013), 171. https://doi.org/10.1186/1477-7525-11-171 doi: 10.1186/1477-7525-11-171
![]() |
[63] |
M. Ramos-Barberán, M. V. Hinojosa-Ramos, J. Ascencio-Moreno, F. Vera, O. Ruiz-Barzola, M. P. Galindo-Villardón, Batch process control and monitoring: A dual STATIS and parallel coordinates (DS-PC) approach, Product. Manuf. Res., 6 (2018), 470–493. https://doi.org/10.1080/21693277.2018.1547228 doi: 10.1080/21693277.2018.1547228
![]() |
[64] | J. L. da Silva, L. P. Ramos, Uniform approximations for distributions of continuous random variables with application in dual STATIS method, REVSTAT Stat. J., 12 (2014), 101–118. |
[65] |
R. Boumaza, S. Yousfi, S. Demotes-Mainard, Interpreting the principal component analysis of multivariate density functions. Commun. Stat. Theory Methods, 44 (2015), 3321–3339. https://doi.org/10.1080/03610926.2013.824103 doi: 10.1080/03610926.2013.824103
![]() |
[66] |
S. Klie, C. Caldana, Z. Nikoloski, Compromise of multiple time-resolved transcriptomics experiments identifies tightly regulated functions, Front. Plant Sci., 3 (2012), 249. https://doi.org/10.3389/fpls.2012.00249 doi: 10.3389/fpls.2012.00249
![]() |
[67] |
K. Haraldstad, A. Wahl, R. Andenæs, J. R. Andersen, M. H. Andersen, E. Beisland, et al., A systematic review of quality of life research in medicine and health sciences, Qual. Life Res., 28 (2019), 2641–2650. https://doi.org/10.1007/s11136-019-02214-9 doi: 10.1007/s11136-019-02214-9
![]() |
[68] | H. L'Hermier des Plantes, Structuration des tableaux à trois indices de la statistique. Université de Montpellier Ⅱ, Montpellier, France, 1976. |
[69] | P. A.Jaffrenou, Sur L'Analyse des familles finies des variables vectorielles: Bases algébrique et application à la description statistique, University of Sainte-Etiene, Sainte-Etiene, France, 1978. |
[70] | Y. Escoufier, L'analyse conjointe de plusieurs matrices de données, In Jolivet, M. (ed.), Biométrie et Temps. Société Française de Biométrie, Paris, France, pp. 59–76. |
[71] |
J. Martín-Rodríguez, M. P. Galindo-Villardón, J. L. Vicente-Villardón, Comparison and integration of subspaces from a biplot perspective, J. Stat. Plan Infer., 102 (2002), 411–423. https://doi.org/10.1016/S0378-3758(01)00101-X doi: 10.1016/S0378-3758(01)00101-X
![]() |
[72] |
A. Vallejo-Arboleda, J. L. Vicente-Villardón, M. P. Galindo-Villardón, Canonical STATIS: Biplot analysis of multi-table group structured data based on STATIS-ACT methodology, Comput. Stat. Data Anal., 51 (2007), 4193–4205. https://doi.org/10.1016/j.csda.2006.04.032 doi: 10.1016/j.csda.2006.04.032
![]() |
[73] |
J. Bénasséni, M. Bennani-Dosse, Analyzing multiset data by the power STATIS-ACT method, Adv. Data Anal. Classif., 6 (2012), 49–65. https://doi.org/10.1007/s11634-011-0085-8 doi: 10.1007/s11634-011-0085-8
![]() |
[74] |
H. Abdi, L. J. Williams, D. Valentin, M. Bennani-Dosse, STATIS and DISTATIS: Optimum multitable principal component analysis and three way metric multidimensional scaling, Comput. Stat., 4 (2012), 124–167. https://doi.org/10.1002/wics.198 doi: 10.1002/wics.198
![]() |
[75] |
F. Llobell, V. Cariou, E. Vigneau, A. Labenne, E. M. Qannari, A new approach for the analysis of data and the clustering of subjects in a CATA experiment, Food Qual. Prefer., 72 (2019), 31–39. https://doi.org/10.1016/j.foodqual.2018.09.006 doi: 10.1016/j.foodqual.2018.09.006
![]() |
[76] |
F. Llobell, V. Cariou, E. Vigneau, A. Labenne, E. M.Qannari, Analysis and clustering of multiblock datasets by means of the STATIS and CLUSTATIS methods. Application to sensometrics, Food Qual. Prefer., 79 (2020), 103520. https://doi.org/10.1016/j.foodqual.2018.05.013 doi: 10.1016/j.foodqual.2018.05.013
![]() |
[77] |
B. R. Lapin, Considerations for reporting and reviewing studies including health-related quality of life, Chest, 158 (2020), S49–S56. https://doi.org/10.1016/j.chest.2020.03.007 doi: 10.1016/j.chest.2020.03.007
![]() |
[78] |
S. Wang, X. Liang, J. Wang, Parameter assignment for InVEST habitat quality module based on principal component analysis and grey coefficient analysis, Math. Biosci. Eng., 19 (2022), 13928–13948. https://doi.org/10.3934/mbe.2022649 doi: 10.3934/mbe.2022649
![]() |
[79] |
M. R. M. Visser, E. M. A. Smets, M. A. G. Sprangers, H. J. C. J. M. De Haes, How response shift may affect the measurement of change in fatigue, J. Pain Sympt. Manag., 20 (2000), 12–18. https://doi.org/10.1016/S0885-3924(00)00148-2 doi: 10.1016/S0885-3924(00)00148-2
![]() |
[80] |
L. G.Hill, D. L. Betz, Revisiting the retrospective pretest, Am. J. Evalu., 26 (2005), 501–517. https://doi.org/10.1177/1098214005281356 doi: 10.1177/1098214005281356
![]() |
[81] |
J. A. Ramirez-Figueroa, C. Martin-Barreiro, A. B. Nieto-Librero, V. Leiva, M. P. Galindo-Villardón, A new principal component analysis by particle swarm optimization with an environmental application for data science, Stoch. Environ. Res. Risk Assess., 35 (2021), 1969–1984. https://doi.org/10.1007/s00477-020-01961-3 doi: 10.1007/s00477-020-01961-3
![]() |
1. | Xinguang Zhang, Lixin Yu, Jiqiang Jiang, Yonghong Wu, Yujun Cui, Gisele Mophou, Solutions for a Singular Hadamard-Type Fractional Differential Equation by the Spectral Construct Analysis, 2020, 2020, 2314-8888, 1, 10.1155/2020/8392397 | |
2. | Xinguang Zhang, Jiqiang Jiang, Lishan Liu, Yonghong Wu, Extremal Solutions for a Class of Tempered Fractional Turbulent Flow Equations in a Porous Medium, 2020, 2020, 1024-123X, 1, 10.1155/2020/2492193 | |
3. | Jingjing Tan, Xinguang Zhang, Lishan Liu, Yonghong Wu, Mostafa M. A. Khater, An Iterative Algorithm for Solving n -Order Fractional Differential Equation with Mixed Integral and Multipoint Boundary Conditions, 2021, 2021, 1099-0526, 1, 10.1155/2021/8898859 | |
4. | Ahmed Alsaedi, Fawziah M. Alotaibi, Bashir Ahmad, Analysis of nonlinear coupled Caputo fractional differential equations with boundary conditions in terms of sum and difference of the governing functions, 2022, 7, 2473-6988, 8314, 10.3934/math.2022463 | |
5. | Lianjing Ni, Liping Wang, Farooq Haq, Islam Nassar, Sarp Erkir, The Effect of Children’s Innovative Education Courses Based on Fractional Differential Equations, 2022, 0, 2444-8656, 10.2478/amns.2022.2.0039 |