Research article Special Issues

On the analysis of the fractional model of COVID-19 under the piecewise global operators


  • Received: 17 November 2022 Revised: 25 December 2022 Accepted: 05 January 2023 Published: 31 January 2023
  • An expanding field of study that offers fresh and intriguing approaches to both mathematicians and biologists is the symbolic representation of mathematics. In relation to COVID-19, such a method might provide information to humanity for halting the spread of this epidemic, which has severely impacted people's quality of life. In this study, we examine a crucial COVID-19 model under a globalized piecewise fractional derivative in the context of Caputo and Atangana Baleanu fractional operators. The said model has been constructed in the format of two fractional operators, having a non-linear time-varying spreading rate, and composed of ten compartmental individuals: Susceptible, Infectious, Diagnosed, Ailing, Recognized, Infectious Real, Threatened, Recovered Diagnosed, Healed and Extinct populations. The qualitative analysis is developed for the proposed model along with the discussion of their dynamical behaviors. The stability of the approximate solution is tested by using the Ulam-Hyers stability approach. For the implementation of the given model in the sense of an approximate piecewise solution, the Newton Polynomial approximate solution technique is applied. The graphing results are with different additional fractional orders connected to COVID-19 disease, and the graphical representation is established for other piecewise fractional orders. By using comparisons of this nature between the graphed and analytical data, we are able to calculate the best-fit parameters for any arbitrary orders with a very low error rate. Additionally, many parameters' effects on the transmission of viral infections are examined and analyzed. Such a discussion will be more informative as it demonstrates the dynamics on various piecewise intervals.

    Citation: M. A. El-Shorbagy, Mati ur Rahman, Maryam Ahmed Alyami. On the analysis of the fractional model of COVID-19 under the piecewise global operators[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 6134-6173. doi: 10.3934/mbe.2023265

    Related Papers:

  • An expanding field of study that offers fresh and intriguing approaches to both mathematicians and biologists is the symbolic representation of mathematics. In relation to COVID-19, such a method might provide information to humanity for halting the spread of this epidemic, which has severely impacted people's quality of life. In this study, we examine a crucial COVID-19 model under a globalized piecewise fractional derivative in the context of Caputo and Atangana Baleanu fractional operators. The said model has been constructed in the format of two fractional operators, having a non-linear time-varying spreading rate, and composed of ten compartmental individuals: Susceptible, Infectious, Diagnosed, Ailing, Recognized, Infectious Real, Threatened, Recovered Diagnosed, Healed and Extinct populations. The qualitative analysis is developed for the proposed model along with the discussion of their dynamical behaviors. The stability of the approximate solution is tested by using the Ulam-Hyers stability approach. For the implementation of the given model in the sense of an approximate piecewise solution, the Newton Polynomial approximate solution technique is applied. The graphing results are with different additional fractional orders connected to COVID-19 disease, and the graphical representation is established for other piecewise fractional orders. By using comparisons of this nature between the graphed and analytical data, we are able to calculate the best-fit parameters for any arbitrary orders with a very low error rate. Additionally, many parameters' effects on the transmission of viral infections are examined and analyzed. Such a discussion will be more informative as it demonstrates the dynamics on various piecewise intervals.



    加载中


    [1] T. H. Zhao, O. Castillo, H. Jahanshahi, A. Yusuf, M. O. Alassafi, F. E. Alsaadi, et al., A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak, Appl. Comput. Math., 20 (2021), 160–76.
    [2] T. S. Hassan, E. M. Elabbasy, A. E. Matouk, R. A. Ramadan, A. T. Abdulrahman, I. Odinaev, Routh-Hurwitz stability and quasiperiodic attractors in a fractional-order model for awareness programs: applications to COVID-19 pandemic, Discrete Dynam. Nat. Soc., 2022 (2022), 1939260. https://doi.org/10.1155/2022/1939260 doi: 10.1155/2022/1939260
    [3] D. Baleanu, M. A. Hassan, A. Jajarmi, K. V. Zarghami, J. J. Nieto, A new comparative study on the general fractional model of COVID-19 with isolation and quarantine effects, Alexandria Eng. J., 6 (2022), 4779–4791. https://doi.org/10.1016/j.aej.2021.10.030 doi: 10.1016/j.aej.2021.10.030
    [4] Q. Guo, M. Li, C. Wang, P. Wang, Z. Fang, S. Wu, et al., Host and infectivity prediction of Wuhan 2019 novel coronavirus using deep learning algorithm, preprint, 2020. https://doi.org/10.1101/2020.01.21.914044
    [5] Q. Cui, Z. Hu, Y. Li, J. Han, Z. Teng, J. Qian, Dynamic variations of the COVID-19 disease at different quarantine strategies in Wuhan and mainland China, J. Infect. Public Health, 13 (2020), 849–855. https://doi.org/10.1016/j.jiph.2020.05.014 doi: 10.1016/j.jiph.2020.05.014
    [6] A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect. Dis., 20 (2020), 553–558. https://doi.org/10.1016/S1473-3099(20)30144-4 doi: 10.1016/S1473-3099(20)30144-4
    [7] P. Liu, M. ur Rahman, A. Din, Fractal fractional based transmission dynamics of COVID-19 epidemic model, Comput. Methods Biomech. Biomed. Eng., 25 (2022), 1–18. https://doi.org/10.1080/10255842.2022.2040489 doi: 10.1080/10255842.2022.2040489
    [8] K. Wang, Z. Lu, X. Wang, H. Li, H. Li, D. Lin, Y. Cai, et al., Current trends and future prediction of novel coronavirus disease (COVID-19) epidemic in China: a dynamical modeling analysis, Math. Biosci. Eng., 17 (2020), 3052–3061.
    [9] B. F. Maier, D. Brockmann, Effective containment explains subexponential growth in recent confirmed COVID-19 cases in China, Science, 368 (2020), 742–746. https://doi.org/10.1126/science.abb4557 doi: 10.1126/science.abb4557
    [10] R.ud Din, K. Shah, I. Ahmad, T. Abdeljawad, Study of transmission dynamics of novel COVID-19 by using mathematical model, Adv. Differ. Equations, 2020 (2020), 1–13. https://doi.org/10.1186/s13662-020-02783-x doi: 10.1186/s13662-020-02783-x
    [11] W. Ma, Y. Zhao, L. Guo, Y. Chen, Qualitative and quantitative analysis of the COVID-19 pandemic by a two-side fractional-order compartmental model, ISA Trans., 124 (2022), 144–156. https://doi.org/10.1016/j.isatra.2022.01.008 doi: 10.1016/j.isatra.2022.01.008
    [12] N. Ma, Nuri, W. Ma, Z. Li, Multi-model selection and analysis for COVID-19, Fractal and Fractional, 5 (2021), 120. https://doi.org/10.3390/fractalfract5030120 doi: 10.3390/fractalfract5030120
    [13] C. Xu, W. Zhang, Z. Liu, L. Yao, Delay-induced periodic oscillation for fractional-order neural networks with mixed delays, Neurocomputing, 488 (2022), 681–693. https://doi.org/10.1016/j.neucom.2021.11.079 doi: 10.1016/j.neucom.2021.11.079
    [14] C. Xu, Z. Liu, C. Aouiti, P. Li, L. Yao, J. Yan, New exploration on bifurcation for fractional-order quaternion-valued neural networks involving leakage delays, Cognit. Neurodynamics, 2022 (2022), 1–16. https://doi.org/10.1007/s11571-021-09763-1 doi: 10.1007/s11571-021-09763-1
    [15] M. Yavuz, F. Ö. Coşar, F. Günay, F. N. Özdemir, A new mathematical modeling of the COVID-19 pandemic including the vaccination campaign, Open J. Model. Simul., 9 (2021), 299–321. https://doi.org/10.4236/ojmsi.2021.93020 doi: 10.4236/ojmsi.2021.93020
    [16] Z. Ahmad, M. Arif, F. Ali, I. Khan, K. S. Nisar, A report on COVID-19 epidemic in Pakistan using SEIR fractional model, Sci. Rep., 10 (2020), 1–14. https://doi.org/10.1038/s41598-020-79405-9 doi: 10.1038/s41598-020-79405-9
    [17] A. Malik, M. Alkholief, F. M. Aldakheel, A. A. Khan, Z. Ahmad, W. Kamal, et al., Sensitivity analysis of COVID-19 with quarantine and vaccination: A fractal-fractional model, Alexandria Eng. J., 61 (2022), 8859–8874. https://doi.org/10.1016/j.aej.2022.02.024 doi: 10.1016/j.aej.2022.02.024
    [18] Z. Ahmad, S. A. El-Kafrawy, T. A. Alandijany, F. Giannino, A. A. Mirza, M. M. El-Daly, et al., A global report on the dynamics of COVID-19 with quarantine and hospitalization: A fractional order model with non-local kernel, Comput. Biol. Chem., 98 (2022), 107645. https://doi.org/10.1016/j.compbiolchem.2022.107645 doi: 10.1016/j.compbiolchem.2022.107645
    [19] D. Baleanu, S. Arshad, A. Jajarmi, W. Shokat, F. A. Ghassabzade, M. Wali, Dynamical behaviours and stability analysis of a generalized fractional model with a real case study, J. Adv. Res., 2022 (2022), forthcoming. https://doi.org/10.1016/j.jare.2022.08.010 doi: 10.1016/j.jare.2022.08.010
    [20] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic press, New York, 1999.
    [21] E. Y. Sar, I. B. Giresunlu, Fractional differential equations, Pramana J. Phys., 87 (2016), 17.
    [22] W. Y. Shen, Y. M. Chu, M. ur Rahman, I. Mahariq, A. Zeb, Mathematical analysis of HBV and HCV co-infection model under nonsingular fractional order derivative, Results Phys., 28 (2021), 104582. https://doi.org/10.1016/j.rinp.2021.104582 doi: 10.1016/j.rinp.2021.104582
    [23] L. Zhang, M. ur Rahman, M. Arfan, A. Ali, Investigation of mathematical model of transmission co-infection TB in HIV community with a non-singular kernel, Results Phys., 28 (2021), 104559. https://doi.org/10.1016/j.rinp.2021.104559 doi: 10.1016/j.rinp.2021.104559
    [24] A. G. C. Pérez, D. A. Oluyori, A model for COVID-19 and bacterial pneumonia coinfection with community-and hospital-acquired infections, Math. Model. Numer. Simul. Appl., 2 (2022), 197–210. https://doi.org/10.53391/mmnsa.2022.016 doi: 10.53391/mmnsa.2022.016
    [25] F. Özköse, M. Yavuz, Investigation of interactions between COVID-19 and diabetes with hereditary traits using real data: A case study in Turkey, Comput. Biol. Med., 141 (2022), 105044. https://doi.org/10.1016/j.compbiomed.2021.105044 doi: 10.1016/j.compbiomed.2021.105044
    [26] L. Xuan, M. ur Rahmamn, S. Ahmad, D. Baleanu, Y. N. Anjam, A new fractional infectious disease model under the non-singular Mittag–Leffler derivative, Waves Random Complex Media, 2022 (2022), forthcoming. https://doi.org/10.1080/17455030.2022.2036386 doi: 10.1080/17455030.2022.2036386
    [27] S. T. M. Thabet, M. S. Abdo, K. Shah, T. Abdeljawad, Study of transmission dynamics of COVID-19 mathematical model under ABC fractional order derivative, Results Phys., 19 (2020), 103507. https://doi.org/10.1016/j.rinp.2020.103507 doi: 10.1016/j.rinp.2020.103507
    [28] M. ur Rahman, A. Althobaiti, M. B. Riaz, F. S. Al-Duais, A theoretical and numerical study on fractional order biological models with Caputo Fabrizio derivative, Fractal Fractional, 6 (2022), 446. https://doi.org/10.3390/fractalfract6080446 doi: 10.3390/fractalfract6080446
    [29] V. S. Erturk, E. Godwe, D. Baleanu, P. Kumar, J. Asad, A. Jajarmi, Novel fractional-order Lagrangian to describe motion of beam on nanowire, Acta Phys. Pol. A, 140 (2021), 265–272. https://doi.org/10.12693/APhysPolA.140.265 doi: 10.12693/APhysPolA.140.265
    [30] M. I. Liaqat, S. Etemad, S. Rezapour, C. Park, A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients, AIMS Math., 7 (2022), 16917–16948. https://doi.org/10.3934/math.2022929 doi: 10.3934/math.2022929
    [31] Z. Odibat, D. Baleanu, Nonlinear dynamics and chaos in fractional differential equations with a new generalized Caputo fractional derivative, Chin. J. Phys., 77 (2022), 1003–1014. https://doi.org/10.1016/j.cjph.2021.08.018 doi: 10.1016/j.cjph.2021.08.018
    [32] F. Özköse, M. Yavuz, M. T. Şenel, R. Habbireeh, Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom, Chaos Solitons Fractals, 157 (2022), 111954. https://doi.org/10.1016/j.chaos.2022.111954 doi: 10.1016/j.chaos.2022.111954
    [33] I. ul Haq, M. Yavuz, N. Ali, A. Akgül, A SARS-CoV-2 fractional-order mathematical model via the modified euler method, Math. Comput. Appl., 27 (2022), 82. https://doi.org/10.3390/mca27050082 doi: 10.3390/mca27050082
    [34] M. Yavuz, F. Ö. Coşar, F. Usta, A novel modeling and analysis of fractional-order COVID-19 pandemic having a vaccination strategy, in AIP Conference Proceedings, (2022), 070005. https://doi.org/10.1063/5.0114880
    [35] M. Naim, Y. Sabbar, A. Zeb, Stability characterization of a fractional-order viral system with the non-cytolytic immune assumption, Math. Modell. Numer. Simul. Appl., 2 (2022), 164–176. https://doi.org/10.53391/mmnsa.2022.013 doi: 10.53391/mmnsa.2022.013
    [36] I. ul Haq, N. Ali, K. S. Nisar, An optimal control strategy and Grünwald-Letnikov finite-difference numerical scheme for the fractional-order COVID-19 model, Math. Modell. Numer. Simul. Appl., 2 (2022), 108–116. https://doi.org/10.53391/mmnsa.2022.009 doi: 10.53391/mmnsa.2022.009
    [37] C. Xu, M. Liao, P. Li, Y. Guo, Z. Liu, Bifurcation properties for fractional order delayed BAM neural networks, Cognit. Comput., 13 (2021), 322–356. https://doi.org/10.1007/s12559-020-09782-w doi: 10.1007/s12559-020-09782-w
    [38] B. Li, H. Liang, L. Shi, Q. He, Complex dynamics of Kopel model with nonsymmetric response between oligopolists, Chaos Solitons Fractals, 156 (2022), 111860. https://doi.org/10.1016/j.chaos.2022.111860 doi: 10.1016/j.chaos.2022.111860
    [39] Z. Hammouch, M. Yavuz, N. Özdemir, Numerical solutions and synchronization of a variable-order fractional chaotic system, Math. Modell. Numer. Simul. Appl., 1 (2021), 11–23. https://doi.org/10.53391/mmnsa.2021.01.002 doi: 10.53391/mmnsa.2021.01.002
    [40] R. Ikram, A. Khan, M. Zahri, A. Saeed, M. Yavuz, P. Kumam, Extinction and stationary distribution of a stochastic COVID-19 epidemic model with time-delay, Comput. Biol. Med., 141 (2022), 105115. https://doi.org/10.1016/j.compbiomed.2021.105115 doi: 10.1016/j.compbiomed.2021.105115
    [41] B. Li, Bo, H. Liang, Q. He, Multiple and generic bifurcation analysis of a discrete Hindmarsh-Rose model, Chaos Solitons Fractals, 146 (2021), 110856. https://doi.org/10.1016/j.chaos.2021.110856 doi: 10.1016/j.chaos.2021.110856
    [42] M. Sinan, K. Shah, P. Kumam, I. Mahariq, K. J. Ansari, Z. Ahmad, et al., Fractional order mathematical modeling of typhoid fever disease, Results Phys., 32 (2022), 105044. https://doi.org/10.1016/j.rinp.2021.105044 doi: 10.1016/j.rinp.2021.105044
    [43] Z. Ahmad, G. Bonanomi, D. d. Serafino, F. Giannino, Transmission dynamics and sensitivity analysis of pine wilt disease with asymptomatic carriers via fractal-fractional differential operator of Mittag-Leffler kernel, Appl. Numer. Math., 2022 (2022). https://doi.org/10.1016/j.apnum.2022.12.004 doi: 10.1016/j.apnum.2022.12.004
    [44] M. Sinan, H. Ahmad, Z. Ahmad, J. Baili, S. Murtaza, M. A. Aiyashi, et al., Fractional mathematical modeling of malaria disease with treatment & insecticides, Results Phys., 34 (2022), 105220. https://doi.org/10.1016/j.rinp.2022.105220 doi: 10.1016/j.rinp.2022.105220
    [45] A. Atangana, S. I. Araz, New concept in calculus:Piecewise differential and integral operators, Chaos Soliton Fractals, 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638
    [46] A. Sohail, Z. Yu, R. Arif, A. Nutini, T. A. Nofal, Piecewise differentiation of the fractional order CAR-T cells-SARS-2 virus model, Results Phys., 33 (2022), 105046. https://doi.org/10.1016/j.rinp.2021.105046 doi: 10.1016/j.rinp.2021.105046
    [47] A. Atangana, M. Toufik, A piecewise heat equation with constant and variable order coefficients: A new approach to capture crossover behaviors in heat diffusion, AIMS Math., 7 (2022), 8374–8389. https://doi.org/10.3934/math.2022467 doi: 10.3934/math.2022467
    [48] M. H. Heydari, M. Razzaghi, A numerical approach for a class of nonlinear optimal control problems with piecewise fractional derivative, Chaos Solitons Fractals, 152 (2021), 111465. https://doi.org/10.1016/j.chaos.2021.111465 doi: 10.1016/j.chaos.2021.111465
    [49] K. Shah, T. Abdeljawad, A. Ali, Mathematical analysis of the Cauchy type dynamical system under piecewise equations with Caputo fractional derivative, Chaos Solitons Fractals, 161 (2022), 112356. https://doi.org/10.1016/j.chaos.2022.112356 doi: 10.1016/j.chaos.2022.112356
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1436) PDF downloads(93) Cited by(4)

Article outline

Figures and Tables

Figures(15)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog