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Abstract: An expanding field of study that offers fresh and intriguing approaches to both
mathematicians and biologists is the symbolic representation of mathematics. In relation to COVID-19,
such a method might provide information to humanity for halting the spread of this epidemic, which has
severely impacted people’s quality of life. In this study, we examine a crucial COVID-19 model under
a globalized piecewise fractional derivative in the context of Caputo and Atangana Baleanu fractional
operators. The said model has been constructed in the format of two fractional operators, having a
non-linear time-varying spreading rate, and composed of ten compartmental individuals: Susceptible,
Infectious, Diagnosed, Ailing, Recognized, Infectious Real, Threatened, Recovered Diagnosed, Healed
and Extinct populations. The qualitative analysis is developed for the proposed model along with the
discussion of their dynamical behaviors. The stability of the approximate solution is tested by using
the Ulam-Hyers stability approach. For the implementation of the given model in the sense of an
approximate piecewise solution, the Newton Polynomial approximate solution technique is applied.
The graphing results are with different additional fractional orders connected to COVID-19 disease, and
the graphical representation is established for other piecewise fractional orders. By using comparisons
of this nature between the graphed and analytical data, we are able to calculate the best-fit parameters
for any arbitrary orders with a very low error rate. Additionally, many parameters’ effects on the
transmission of viral infections are examined and analyzed. Such a discussion will be more informative
as it demonstrates the dynamics on various piecewise intervals.
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1. Introduction

Covid-19 is a pandemic infections which globally has caused damage to human lives and also effect
other lining things. This coronavirus has been a terrible epidemic for mankind around the globe. The
transmission of COVID-19 has significant negative effects on the lives of all people, and the many
people have died from the virus. The first attack of these viruses occurred on last days of 2019.
Symptoms of unfamiliar conditions of lungs, coughing, fever, tiredness and breathing problems were
seen in the people of Wuhan, China. The healthy territory of China as well as its Central Infections
Control (CDC) quickly reconsidered the cause of such signs, a viral virus from the population of
Coronaviruses, and it was named as COVID-19 by the World Health Organization (WHO) [1–3].

For the investigation of the new coronavirus in terms of predictions and infectivity, the authors in [4]
established a deep analysis algorithm and found that bat and minks are the main sourced of the said
virus. Mostly, mathematical models have had an important role in modeling the direct transmission
between humans in the outbreak. As demonstrated in the literature, many people were infected in
Wuhan and had no contact with other people, but the virus spread very rapidly in the whole province
and China [5]. The infected people have a long incubation period, they are not aware of the symptoms
and don not know the quarantine time. This infection can easily spread to other people, and many
researchers have documented models of COVID-19 [6–10]. Several researchers have developed the
COVID-19 time delay models and studied by different aspects. Most of them modified the said models
by the application of fractional operators such as Power and Mittag-Leffler law [11–18].

In this article, we have re-considered the COVID-19 mathematical model [19], which has not been
investigated under novel piecewise derivative and integrals operators. The considered model has ten
agents, namely: Susceptible S, Infectious I, Diagnosed D, Ailing A, Recognized R, Infectious Real Ir,
Threatened T, Recovered Diagnosed Hd, Healed H, and Extinct population E. The COVID-19 model
has the following form:

Ṡ = −(αI + βD + γA + δR)S
İ = −(ϵ + ζ + λ)I + (αI + βD + γA + δR)S
Ḋ = −(η + ρ)D + ϵI
Ȧ = −(θ + µ + κ)A + ζI
Ṙ = −(ν + ξ)R + ηDθA
İr = (αI + βD + γA + δR)S
Ṫ = −(σ + τ)T + µA + νR
Ḣd = ρDξR + σT

Ḣ = λI + ρD + κA + ξR + σA

Ė = τT,

(1.1)

where the used parameters in the model with descriptions are given in Table 1.
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Table 1. Parameters and their description in model 1.1.

Parameter Description
α, β, γ, δ transfer rates from Susceptible class to infectious,

Diagnosed, Ailing and Recognized stages, respectively
ϵ Rates of detecting related to Asymptomatic person and
θ detecting rate of Symptomatic individuals
ζ, η1 Rates of Awareness and Non-awareness classes from being infected
µ Rate at which Un-detected class transfers to Threaten class
v Rate at which Detected classes transfer to Threaten class
τ Death rate of Threaten individuals, transfer to Extinct class
λ, κ, ξ, σ, ρ Rates of Recovery from five Compartments

Modern calculus (MC) has attracted more interest from researchers and scientists in the last 20
years [20, 21]. MC, compared to traditional integer-order models, gives novel, accurate, and deeper
information on the complicated activity of several infectious disease mathematical models [22–25].
Because of genetic properties and memory behaviors, integer order problems are not superior to MC
problems. Many types of integer order equations are used in mathematical models of the real world.
The real phenomena are analyzed for a higher degree of choices and precision by applying the
fractional differential equations. Several researchers have done enough work in MC, and the authors
in [26] used the Mittag-Leffler derivative and investigated the fractional infectious disease model.
In [27], the authors used Atangana-Baleanu-Caputo fractional derivative and studied a mathematical
model of Covid-19. The authors in [28] applied the Caputo-Fabrizio operator along with double
Laplace transform and found the series solution for the fractional biological model. The scholars
in [29] applied a novel fractional order Lagrangian scheme to show the motion of a beam on
nanowire. Liaqat et al. [30], established a new scheme to obtain the approximate and exact solution in
the sense of Caputo fractional partial differential equation along with variable. Odibat and
Baleanu [31] studied a novel system of fractional differential equations involving generalized
fractional Caputo operator. Different disease models have been investigated by researchers by using
the fractional operators such as [32–36]. By using various operators to solve a variety of issues from
the real world, significant work in the area of fractional calculus has been documented by numerous
mathematicians and academics [37–44].

A novel operator for piecewise derivative and integrals was presented by Atangana and Araz [45].
The piecewise derivative is divided into two sub intervals: The first interval solution is found out in
the sense of Caputo while the second intervals solution is under the ABC derivative. As the time of
crossover behavior is not mentioned by the power or Mittag-Leffler law and therefore it is well defined
in the piecewise derivative. In order to overcome these challenges, one of the unique ways of piecewise
derivative has been proposed in [45]. A new window of cross-over behaviors using these operators has
been studied by researchers. Several applications of the aforesaid fractional operators are investigated
in the literature by different researchers [46–49]. Inspired by the above novel operator, we investigate
the model taken from [19] under the framework of piecewise Caputo and Atangana-Baleanu operator
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as follows: 

PCABC
0 Dυt S(t) = −(αI + βD + γA + δR)S,
PCABC
0 Dυt I(t) = −(ϵ + ζ + λ)I + (αI + βD + γA + δR)S,
PCABC
0 DυtD(t) = −(η + ρ)D + ϵI,
PCABC
0 DυtA(t) = −(θ + µ + κ)A + ζI,
PCABC
0 Dυt R(t) = −(ν + ξ)R + ηDθA,
PCABC
0 Dυt Ir = (αI + βD + γA + δR)S
PCABC
0 Dυt T = −(σ + τ)T + µA + νR
PCABC
0 DυtHd = ρDξR + σT
PCABC
0 DυtH = λI + ρD + κA + ξR + σA
PCABC
0 Dυt E = τT.

(1.2)

In more detail we can write Eq (1.2) as

CABC
0 Dυt (S(t)) =

C
0 Dυt (S(t)) =C ℧1(S, I,D,A,R, Ir,T,Hd,H,E, t), 0 < t ≤ t1,
ABC
0 Dυt (S(t)) =ABC ℧1(S, I,D,A,R, Ir,T,Hd,H,E, t), t1 < t ≤ T,

CABC
0 Dυt (I(t)) =

C
0 Dυt (I(t)) =C ℧2(S, I,D,A,R, Ir,T,Hd,H,E, t), 0 < t ≤ t1,
ABC
0 Dυt (I(t)) =ABC ℧2(S, I,D,A,R, Ir,T,Hd,H,E, t), t1 < t ≤ T,

CABC
0 Dυt (D(t)) =

C
0 Dυt (D(t)) =C ℧3(S, I,D,A,R, Ir,T,Hd,H,E, t), 0 < t ≤ t1,
ABC
0 Dυt (D(t)) =ABC ℧3(S, I,D,A,R, Ir,T,Hd,H,E, t), t1 < t ≤ T,

CABC
0 Dυt (A(t)) =

C
0 Dυt (A(t)) =C ℧4(S, I,D,A,R, Ir,T,Hd,H,E, t), 0 < t ≤ t1,
ABC
0 Dυt (A(t)) =ABC ℧4(S, I,D,A,R, Ir,T,Hd,H,E, t), t1 < t ≤ T,

CABC
0 Dυt (R(t)) =

C
0 Dυt (R(t)) =C ℧5(S, I,D,A,R, Ir,T,Hd,H,E, t), 0 < t ≤ t1,
ABC
0 Dυt (R(t)) =ABC ℧5(S, I,D,A,R, Ir,T,Hd,H,E, t), t1 < t ≤ T,

(1.3)

CABC
0 Dυt (Ir(t)) =

C
0 Dυt (Ir(t)) =C ℧6(S, I,D,A,R, Ir,T,Hd,H,E, t), 0 < t ≤ t1,
ABC
0 Dυt (Ir(t)) =ABC ℧6(S, I,D,A,R, Ir,T,Hd,H,E, t), t1 < t ≤ T,

CABC
0 Dυt (T(t)) =

C
0 Dυt (T(t)) =C ℧7(S, I,D,A,R, Ir,T,Hd,H,E, t), 0 < t ≤ t1,
ABC
0 Dυt (T(t)) =ABC ℧7(S, I,D,A,R, Ir,T,Hd,H,E, t), t1 < t ≤ T,

CABC
0 Dυt (Hd(t)) =

C
0 Dυt (Hd(t)) =C ℧8(S, I,D,A,R, Ir,T,Hd,H,E, t), 0 < t ≤ t1,
ABC
0 Dυt (Hd(t)) =ABC ℧8(S, I,D,A,R, Ir,T,Hd,H,E, t), t1 < t ≤ T,

CABC
0 Dυt (H(t)) =

C
0 Dυt (H(t)) =C ℧9(S, I,D,A,R, Ir,T,Hd,H,E, t), 0 < t ≤ t1,
ABC
0 Dυt (H(t)) =ABC ℧9(S, I,D,A,R, Ir,T,Hd,H,E, t), t1 < t ≤ T,

CABC
0 Dυt (E(t)) =

C
0 Dυt (E(t)) =C ℧10(S, I,D,A,R, Ir,T,Hd,H,E, t), 0 < t ≤ t1,
ABC
0 Dυt (E(t)) =ABC ℧10(S, I,D,A,R, Ir,T,Hd,H,E, t), t1 < t ≤ T.

We considered the dynamics in terms of piecewise fractional operators. The piecewise operators
discuss the crossover and abrupt dynamics very well. Therefore, we treated the said model under the
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two fractional operators in different intervals. For each operator the qualitative analysis is provided
on each subinterval. The UH stability is applied for stability analysis of the system. The system is
investigated for approximate solution with the piecewise term and also the fractional parameters in
the last expression of the system. This gives the choice for any dynamics of integer order as well as
rational values.

2. Preliminaries

Here we present some definitions regarding Caputo and ABC fractional as well as piecewise
derivatives and also integrals.

Definition 2.1. The definition of ABC operator of function K(t) with condition K(t) ∈ H1(0,T ) is :

ABC
0Dυt (K(t)) =

ABC(υ)
1 − υ

∫ t

0

d
dϑ

K(ϑ)Eυ
[−υ(t − ϑ)υ

1 − υ

]
dϑ. (2.1)

One can replace Eυ
[
−υ
1−υ

(
t − ϑ

)ϑ]
by E1 = exp

[
−υ

1−υ

(
t − ϑ

)]
in (2.1) and obtain the Caputo-Fabrizio

operator.

Definition 2.2. Consider K(t) ∈ P[0,T ], and then the ABC integral is:

ABC
0Iυt K(t) =

1 − υ
ABC(υ)

K(t) +
υ

ABC(υ)Γ(υ)

∫ t

0
K(ϑ)(t − ϑ)υ−1dϑ. (2.2)

Definition 2.3. The Caputo operator of function K(t) is

C
0 Dυt K(t) =

1
Γ(1 − υ)

∫ t

0
K
′

(ϑ)(t − ϑ)n−υ−1dϑ.

Definition 2.4. Suppose K(t) is piecewise differentiable. Then, the piecewise derivative with Caputo
and ABC operators [26] is

PCABC
0 Dυt K(t) =

C
0 Dυt K(t), 0 < t ≤ t1,
ABC
0 Dυt K(t) t1 < t ≤ T,

where PCABC
0 Dυt represents piecewise differential operator , where Caputo operator is in interval 0 <

t ≤ t1 and ABC operator in interval t1 < t ≤ T.

Definition 2.5. Suppose K(t) is piecewise integrable, and then piecewise derivative with Caputo and
ABC operators [26] is

PCABC
0 ItK(t) =


1
Γ(υ)

∫ t

t1
K(ϑ)(t − ϑ)υ−1d(ϑ), 0 < t ≤ t1,

1 − υ
ABC(υ)

K(t) +
υ

ABC(υ)Γυ

∫ t

t1
K(ϑ)(t − ϑ)υ−1d(ϑ) t1 < t ≤ T,

where PCABC
0 Iυt represents piecewise integral operator , where Caputo operator is in interval 0 < t ≤ t1

and ABC operator in interval t1 < t ≤ T.
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3. Existence and uniqueness

The existence and the uniqueness results of the suggested model in the piecewise notion are found
in this part. We shall now determine whether a solution exists for the hypothetical piecewise derivable
function as well as its specific solution attribute. In order to do this, we may use the system (1.3) and
can also write the following by way of more explanation:

PCABC
0 DυtW(t) = N(t,W(t)), 0 < υ ≤ 1

is

W(t) =


W0 +

1
Γ(υ)

∫ t

0
N(ϑ,W(ϑ))(t − ϑ)υ−1dϑ, 0 < t ≤ t1

W(t1) +
1 − υ

ABC(υ)
N(t,W(t)) +

υ

ABC(υ)Γ(υ)

∫ t

t1
(t − ϑ)υ−1N(ϑ,W(ϑ))d(ϑ), t1 < t ≤ T,

(3.1)

where

W(t) =



S(t)
I(t)
D(t)
A(t)
R(t)
Ir(t)
T(t)
Hd(t)
H(t)
E(t)

, W0 =



S0

I0

D0

A0

R0

Ir(0)

T0

Hd(0)

H0

E0

, Wt1 =



St1

It1

Dt1

At1

Rt1

Ir(t1)

Tt1

Hd(t1)

Ht1

Et1

, N(t,W(t)) =

℧i =

C℧i(S, I,D,A,R, Ir,T,Hd,H,E, t)
ABC℧i(S, I,D,A,R, Ir,T,Hd,H,E, t)

,

(3.2)
where i = 1, 2, 3..., 10. Take 0 < t ≤ T < ∞ and the Banach space E1 = C[0,T] with a norm

∥W∥ = max
t∈[0,T]

|W(t)|.

We assume the following growth condition:

(C1) ∃ LW > 0; ∀ N , W̄ ∈ E we have

|N(t,W) − N(t,W̄)| ≤ LN |W − W̄|,

(C2) ∃ CN > 0 & MN > 0,;
|N(t,W(t))| ≤ CN |W| + MN .

If N is piece-wise continuous on (0, t1] and [t1,T ] on [0,T ], also satisfying (C2), then (1.3) has ≥ 1
solution.
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Proof. Let us use the Schauder theorem to define a closed sub-set as B and E in both subintervals of
[0,L ].

B = {W ∈ E : ∥W∥ ≤ R1,2, R1,2 > 0},

Suppose L : B→ B and using (4.8) as

L (W) =


W0 +

1
Γ(υ)

∫ t1

0
N(ϑ,W(ϑ))(t − ϑ)υ−1dϑ, 0 < t ≤ t1

W(t1) +
1 − υ

ABC(υ)
N(t,W(t)) +

υ

ABC(υ)Γ(υ)

∫ t

t1
(t − ϑ)υ−1N(ϑ,W(ϑ))d(ϑ), t1 < t ≤ T.

(3.3)

AnyW ∈ B, we have

|L (W)(t)| ≤


|W0| +

1
Γ(υ)

∫ t1

0
(t − ϑ)υ−1|N(ϑ,W(ϑ))|dϑ,

|W(t1)| +
1 − υ

ABC(υ)
|N(t,W(t))| +

υ

ABC(υ)Γ(υ)

∫ t

t1
(t − ϑ)υ−1|N(ϑ,W(ϑ))|d(ϑ),

≤


|W0| +

1
Γ(υ)

∫ t1

0
(t − ϑ)υ−1[CN |W| + MN ]dυ,

|W(t1)| +
1 − υ

ABC(υ)
[CN |W| + MN ] +

υ

ABC(υ)Γ(υ)

∫ t

t1
(t − ϑ)υ−1[CN |W| + MN ]d(υ),

≤


|W0| +

Tυ

Γ(υ + 1)
[CH |W| + MN ] = R1, 0 < t ≤ t1,

|W(t1)| +
1 − υ

ABC(υ)
[CN |W| + MN ] +

υ(T − T)υ

ABC(υ)Γ(υ) + 1
[CN |W| + MN ]d(υ) = R2, t1 < t ≤ T,

≤

R1, 0 < t ≤ t1,

R2, t1 < t ≤ T.

As determined by the previous equation,W ∈ B. Therefore, L (B) ⊂ B. Thus, it demonstrates that L
is closed and complete. In order to further demonstrate the complete continuity, we also write by using
ti < t j ∈ [0, t1] as the initial interval in the sense of Caputo, consider

|L (W)(t j) −L (W)(ti)| =
∣∣∣∣∣ 1
Γ(υ)

∫ t j

0
(t j − ϑ)υ−1N(ϑ,W(ϑ))dϑ −

1
Γ(υ)

∫ ti

0
(ti − ϑ)υ−1N(ϑ,W(ϑ))dϑ

∣∣∣∣∣
≤

1
Γ(υ)

∫ ti

0
[(ti − ϑ)υ−1 − (t j − ϑ)υ−1]|N(ϑ,W(ϑ))|dϑ

+
1
Γ(υ)

∫ t j

ti
(t j − ϑ)υ−1|N(ϑ,W(ϑ))|dϑ

≤
1
Γ(υ)

[ ∫ ti

0
[(ti − ϑ)υ−1 − (t j − ϑ)υ−1]dϑ +

∫ t j

ti
(t j − ϑ)υ−1dϑ

]
(CH |W| + MN )

≤
(CNW + MN )
Γ(υ + 1)

[tϑj − tυi + 2(t j − ti)υ]. (3.4)

Next (3.4), we obtain ti → t j, and then

|L (W)(t j) −L (W)(ti)| → 0, as ti → t j.
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So, L is equi-continuous in [0, t1]. Consider ti, t j ∈ [t1,T ] in ABC sense as

|L (W)(t j) −L (W)(ti)| =
∣∣∣∣∣ 1 − υ
ABC(υ)

N(t,W(t)) +
υ

ABC(υ)Γ(υ)

∫ t j

t1
(t j − ϑ)υ−1N(ϑ,W(ϑ))dϑ,

−
1 − υ

ABC(υ)
N(t,W(t)) +

(υ)
ABC(υ)Γ(υ)

∫ ti

t1
(ti − ϑ)υ−1N(ϑ,W(ϑ))dϑ

∣∣∣∣∣
≤

υ

ABC(υ)Γ(υ)

∫ ti

t1
[(ti − ϑ)υ−1 − (t j − ϑ)υ−1]|N(ϑ,W(ϑ))|dϑ

+
υ

ABC(υ)Γ(υ)

∫ t j

ti
(t j − ϑ)υ−1|N(ϑ,W(ϑ))|dϑ

≤
υ

ABC(υ)Γ(υ)

[ ∫ ti

t1
[(ti − ϑ)υ−1 − (t j − ϑ)υ−1]dϑ

+

∫ t j

ti
(t j − ϑ)υ−1dυ

]
(CN |W| + MN )

≤
υ(CNW + MN )
ABC(υ)Γ(υ + 1)

[tυj − tυi + 2(t j − ti)υ]. (3.5)

If ti → t j, then
|L (W)(t j) −L (W)(ti)| → 0, as ti → t j.

So, the operator L shows its equi-continuity in [t1,T ]. Thus, L is an equi-continuous map. Based
on the Arzelà-Ascoli result, L is continuous (completely), uniformly continuous, and bounded. The
Schauder result shows that problem (1.3) has at least one solution in the subintervals.

Further, if L is a contraction mapping with (C1), then the suggested system has unique solution.
As L : B→ B is piece-wise continuous, considerW and W̄ ∈ B on [0, t1] in the sense of Caputo as

∥L (W) −L (W̄)∥ = max
t∈[0,t1]

∣∣∣∣∣ 1
Γ(υ)

∫ t

0
(t − ϑ)υ−1N(ϑ,W(ϑ))dϑ −

1
Γ(υ)

∫ t

0
(t − ϑ)υ−1N(ϑ,W̄(ϑ))dϑ

∣∣∣∣∣
≤

Tυ

Γ(υ + 1)
LN∥W − W̄∥. (3.6)

From (3.6), we have

∥L (W) −L (W̄)∥ ≤
Tυ

Γ(υ + 1)
LN∥W − W̄∥. (3.7)

As a result, L is a contraction. As a result, the issue under consideration has only one solution in the
provided sub interval in light of the Banach result. Also t ∈ [t1,T ] in the sense of the ABC derivative as

∥L (W) −L (W̄)∥ ≤
1 − υ

ABC(υ)
LN∥W − W̄∥ +

υ(T − T υ)
ABC(υ)Γ(υ + 1)

L℧∥W − W̄∥. (3.8)

or

∥L (W) −L (W̄)∥ ≤ LN
[ 1 − υ
ABC(υ)

+
υ(T − T)υ

ABC(υ)Γ(υ + 1)

]
∥W − W̄∥. (3.9)

This is why L is a contraction. As a result, the issue under consideration has a singleton solution in
the provided sub interval in light of the Banach result. So, with (3.7) and (3.9), the suggested problem
has unique solution on each sub-interval. □
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4. Stability analysis

Here, we prove the H-U stability and different forms for our considered model.

Definition 4.1. Our proposed model (1.1) is U-H stable, if for each α > 0, and the inequality∣∣∣PCABCDυtΘ(t) −℧(t,Θ(t))
∣∣∣ < α, f or all, t ∈ T , (4.1)

unique solution Θ ∈ Z exists with a constantH > 0,∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣
Z
≤ Hα, f or all, t ∈ T , (4.2)

In addition, if we take the increasing function Φ : [0,∞) → R+, then the above inequality can be
written as ∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣

Z
≤ HΦ(α), at every, t ∈ T ,

if Φ(0) = 0, then the obtained solution is generalized U-H stable.

Definition 4.2. Our considered model 1.2 is U-H Rassias stable if, Ψ : [0,∞) → R+, for each α > 0,
and inequality ∣∣∣PCABCDυtΘ(t) −℧(t,Θ(t))

∣∣∣ < αΨ(t), f or all, t ∈ T , (4.3)

unique solution Θ ∈ Z with constantHΨ > 0, so that∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣
Z
≤ HΨαΨ(t), t ∈ T . (4.4)

If Ψ : [0,∞)→ R+ is exist, for the above inequality, then∣∣∣PCABCDυtΘ(t) −℧(t,Θ(t))
∣∣∣ < Ψ(t), t ∈ T , (4.5)

then there exist a unique solution Θ ∈ Z with constantHΨ > 0, such that∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣
Z
≤ HΨΨ(t), t ∈ T . (4.6)

then the obtained solution is generalized U-H Rassias stable.

Remark 1. Suppose a function ϕ ∈ C(T ) does not depend upon Θ ∈ Z, and ϕ(0) = 0. Then,

|ϕ(t)| ≤ α, t ∈ T
PCABCDυtΘ(t) = ℧ (t,Θ(t)) + ϕ(t), t ∈ T .

Lemma 4.2.1. Consider the function

PCABC
0 DϱtΘ(t) = ℧(t,Θ(t)), 0 < ϱ ≤ 1. (4.7)
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The solution of (4.7) is

Θ(t) =


Θ0 +

1
Γ(υ)

∫ t

0
℧(ϑ,Θ(ϑ))(t − ϑ)υ−1dϑ, 0 < t ≤ t1

Θ(t1) +
1 − υ

ABC(υ)
℧(t,Θ(t)) +

υ

ABC(υ)Γ(υ)

∫ t

t1
(t − ϑ)υ−1℧(ϑ,Θ(ϑ))d(ϑ), t1 < t ≤ T,

(4.8)

∣∣∣∣∣∣F(Θ) − F(Θ)
∣∣∣∣∣∣ ≤


T υ1

Γ(υ + 1)
α, t ∈ T1[

(1 − υ)Γ(υ) + (T υ2 )
ABC(υ)Γ(υ)

]
α = Λα, t ∈ T2.

(4.9)

Theorem 1. In light of lemma (4.2.1), if the condition L fT
υ

Γ(υ) < 1 holds, then the solution of our
considered model (1.2) is H-U as well as generalized H-U stable.

Proof. Suppose Θ ∈ Z is the solution of (1.2), and Θ ∈ Z is a unique solution of (1.2). Then we have
Case:1 for t ∈ T , we have

∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣ = sup
t∈T

∣∣∣∣∣∣Θ −
(
Θ◦ +

1
Γ(υ)

∫ t1

0
(t1 − ϑ)υ−1℧

(
ϑ,Θ(ϑ)

)
dϑ

)∣∣∣∣∣∣
≤ sup

t∈T

∣∣∣∣∣∣Θ −
(
Θ◦ +

1
Γ(υ)

∫ t1

0
(t1 − ϑ)υ−1℧

(
ϑ,Θ(ϑ)

)
dϑ

)∣∣∣∣∣∣
+ sup

t∈T

∣∣∣∣∣∣+ 1
Γ(υ)

∫ t1

0
(t1 − ϑ)υ−1℧ (ϑ,Θ(ϑ)) dϑ −

1
Γ(υ)

∫ t1

0
(t1 − ϑ)υ−1℧

(
ϑ,Θ(ϑ)

)
dϑ

∣∣∣∣∣∣
≤
T∞
υ

Γ(υ + 1)
α +

L fT∞

Γ(υ + 1)

∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣ .
(4.10)

On further simplification

∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣ ≤  T∞
Γ(υ+1)

1 − L fT∞

Γ(υ+1)

α (4.11)

Case:2 ∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣ ≤ sup
t∈T

∣∣∣∣∣∣Θ −
[
Θ(t1) +

1 − υ
ABC(υ)

[℧ (t,Θ(t)) , ]

+
υ

ABC(υ)Γ(υ)

[∫ t

t1
(t − ϑ)υ−1℧

(
ϑ,Θ(ϑ)

)
d(ϑ)

]]∣∣∣∣∣∣
+ sup

t∈T

1 − υ
ABC(υ)

∣∣∣∣℧ (t,Θ(t)) −℧
(
t,Θ(t),

)∣∣∣∣
+ sup

t∈T

υ

ABC(υ)Γ(υ)

∫ t

t1
(t − ϑ)υ−1

∣∣∣∣℧ (ϑ,Θ(ϑ)) −℧
(
ϑ,Θ(ϑ)

)∣∣∣∣ ds.
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By further simplification and using Λ =
[ (1−υ)Γ(υ)+Tυ2

ABC(υ)Γ(υ)

]
, we have∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣

Z
≤ Λα + ΛL f

∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣
Z

(4.12)

We have

∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣
Z
≤

 Λ

1 − ΛL f

α ∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣
Z
.

we use

H = max


 T1

Γ(υ+1)

1 − L fT1

Γ(υ+1)

 , Λ

1 − ΛL f

1−M f


Now, from Eqs (4.11) and (4.12), we have∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣

Z
≤ Hα, at each t ∈ T .

Therefore, the solution of model (1.2) is H-U stable. Also, if we replace α by Φ(α), then from (4.13),∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣
Z
≤ HΦ(α), at each t ∈ T .

Now, Φ(0) = 0 shows that the solution of our proposed model (1.2) is generalized H-U stable. □

We give the following remark to conclude the Rassias stability results and also the generalized form.
Remark 2. Suppose a function ϕ ∈ C(T ) does not depend upon Θ ∈ Z, and ϕ(0) = 0. Then,

|ϕ(t)| ≤ Ψ(t)α, t ∈ T
PCABCDυtΘ(t) = ℧ (t,Θ(t)) + ϕ(t), t ∈ T∫ t

0
Ψ(ϑ)ds ≤ CΨΨ(t), t ∈ T .

Lemma 4.2.2. Solution to the model

PCABCDυtΘ(t) = ℧ (t,Θ(t)) + ϕ(t),
Θ(0) = Θ◦,

hold the relation given below:

∣∣∣∣∣∣F(Θ) − F(Θ)
∣∣∣∣∣∣ ≤


T υ1

Γ(υ + 1)
CΨΨ(t)α, t ∈ T1[

(1 − υ)Γ(υ) + (T υ2 )
ABC(υ)Γ(υ)

]
CΨΨ(t)α = ΛCΨΨ(t)α, t ∈ T2.

(4.13)

whereH f ,Ψ,Λ = ΛH f ,Ψ.
With the help of remark 2, one can get Eq (4.7).
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Theorem 2. The solution of model (4.13) is H-U-R stable if the following conditions hold:
H1) For each Θ, v ∈ Z and a constant CΦ > 0, we get

|Φ(Θ) − Φ(v)| ≤ CΦ |Θ − v| ,

H2) For each Θ, v,Θ, v ∈ Z and constant L f > 0, 0 < M f < 1, we get∣∣∣℧(t,Θ, v) −℧(t,Θ, v)
∣∣∣ ≤ L f

∣∣∣Θ − Θ∣∣∣ + M f |v − v|

M f < 1.

Proof. We prove these results in two cases.
Case:1 for t ∈ T , we have∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣ = sup

t∈T

∣∣∣∣∣∣Θ −
(
Θ◦ +

1
Γ(υ)

∫ t1

0
(t1 − ϑ)υ−1℧

(
ϑ,Θ(ϑ)

)
dϑ

)∣∣∣∣∣∣
≤ sup

t∈T

∣∣∣∣∣∣Θ −
(
Θ◦ +

1
Γ(υ)

∫ t1

0
(t1 − ϑ)υ−1℧

(
ϑ,Θ(ϑ)

)
dϑ

)∣∣∣∣∣∣
+ sup

t∈T

∣∣∣∣∣∣+ 1
Γ(υ)

∫ t1

0
(t1 − ϑ)υ−1℧ (ϑ,Θ(ϑ)) dϑ

−
1
Γ(υ)

∫ t1

0
(t1 − ϑ)υ−1℧

(
ϑ,Θ(ϑ)

)
dϑ

∣∣∣∣∣∣
≤

T υ1

Γ(υ + 1)
CΦΦ(t)α +

L fT∞

Γ(υ + 1)

∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣ .
On further simplification

∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣ ≤ CΦΦ(t) T1
Γ(υ+1)

1 − L fT1

Γ(υ+1)

α (4.14)

Case:2 ∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣ ≤ sup
t∈T

∣∣∣∣∣∣Θ −
[
Θ(t1) +

1 − υ
ABC(υ)

[℧ (t,Θ(t)) , ]

+
υ

ABC(υ)Γ(υ)

[∫ t

t1
(t − ϑ)υ−1℧

(
ϑ,Θ(ϑ)

)
d(ϑ)

]]∣∣∣∣∣∣
+ sup

t∈T

1 − υ
ABC(υ)

∣∣∣∣℧ (t,Θ(t)) −℧
(
t,Θ(t),

)∣∣∣∣
+ sup

t∈T

υ

ABC(υ)Γ(υ)

∫ t

t1
(t − ϑ)υ−1

∣∣∣∣℧ (ϑ,Θ(ϑ)) −℧
(
ϑ,Θ(ϑ)

)∣∣∣∣ ds.

By further simplification and using Λ =
[ (1−υ)Γ(υ)+Tυ2

ABC(υ)Γ(υ)

]
, we have∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣

Z
≤ ΛCΦΦ(t)α + ΛL f

∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣
Z

(4.15)
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We have ∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣
Z
≤

ΛCΦΦ(t)
1 − ΛL f

α ∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣
Z
.

We use

HΛ,CΦ = max


 T1

Γ(υ+1)

1 − L fT1

Γ(υ+1)

 , CΦΦ(t)Λ

1 − ΛL f

1−M f


Now, from Eqs (4.14) and (4.15), we have∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣

Z
≤ HΛ,CΦα, at each t ∈ T

So, the solution of model (1.2) is H-U-R stable. □

Remark 3. Suppose a function ϕ ∈ C(T ) does not depend upon Θ ∈ Z, and ϕ(0) = 0; then,

|ϕ(t)| ≤ Ψ(t), t ∈ T ;

Theorem 3. In light of H1, H2, Remark 3 and 4.2.2, the solution of model 1.2 is generalized H-U-R
stable, if M f < 1.
Where
H1) For each Θ, v ∈ Z and constant CΦ > 0, we get

|Φ(Θ) − Φ(v)| ≤ CΦ |Θ − v|

and
H2) For each Θ, v,Θ, v ∈ Z and constant L f > 0, 0 < M f < 1, we get∣∣∣℧(t,Θ, v) −℧(t,Θ, v)

∣∣∣ ≤ L f

∣∣∣Θ − Θ∣∣∣ + M f |v − v|

Proof. We obtained our results in two cases:
Case 1: for t ∈ T , we have∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣ = sup

t∈T

∣∣∣∣∣∣Θ −
(
Θ◦ +

1
Γ(υ)

∫ t1

0
(t1 − ϑ)υ−1℧

(
ϑ,Θ(ϑ)

)
dϑ

)∣∣∣∣∣∣
≤ sup

t∈T

∣∣∣∣∣∣Θ −
(
Θ◦ +

1
Γ(υ)

∫ t1

0
(t1 − ϑ)υ−1℧

(
ϑ,Θ(ϑ)

)
dϑ

)∣∣∣∣∣∣
+ sup

t∈T

∣∣∣∣∣∣+ 1
Γ(υ)

∫ t1

0
(t1 − ϑ)υ−1℧ (ϑ,Θ(ϑ)) dϑ −

1
Γ(υ)

∫ t1

0
(t1 − ϑ)υ−1℧

(
ϑ,Θ(ϑ)

)
dϑ

∣∣∣∣∣∣
≤

T υ1

Γ(υ + 1)
CΦΦ(t)α +

L fT∞

Γ(υ + 1)

∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣ .
On further simplification

∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣ ≤ CΦΦ(t) T1
Γ(υ+1)

1 − L fT1

Γ(υ+1)

α (4.16)
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Case 2: ∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣ ≤ sup
t∈T

∣∣∣∣∣∣Θ −
[
Θ(t1) +

1 − υ
ABC(υ)

[℧ (t,Θ(t))]

+
υ

ABC(υ)Γ(υ)

[∫ t

t1
(t − ϑ)υ−1℧

(
ϑ,Θ(ϑ)

)
d(ϑ)

]]∣∣∣∣∣∣
+ sup

t∈T

1 − υ
ABC(υ)

∣∣∣∣℧ (t,Θ(t)) −℧
(
t,Θ(t),

)∣∣∣∣
+ sup

t∈T

υ

ABC(υ)Γ(υ)

∫ t

t1
(t − ϑ)υ−1

∣∣∣∣℧ (ϑ,Θ(ϑ)) −℧
(
ϑ,Θ(ϑ)

)∣∣∣∣ ds.

By further simplification and using Λ =
[ (1−υ)Γ(υ)+Tυ2

ABC(υ)Γ(υ)

]
, we have∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣

Z
≤ ΛCΦΦ(t)α + ΛL f

∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣
Z

(4.17)

We have ∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣
Z
≤

(
ΛCΦΦ(t)
1 − ΛL f

) ∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣
Z
.

We use

HΛ,CΦ = max


 T1

Γ(υ+1)

1 − L fT1

Γ(υ+1)

 , CΦΦ(t)Λ
1 − ΛL f


Now, from Eqs (4.16) and (4.17), we have∣∣∣∣∣∣Θ − Θ∣∣∣∣∣∣

Z
≤ HΛ,CΦ , at each t ∈ T

So the solution of the model (1.2) is generalized H-U-R stable. □

5. Numerical Scheme for the fractional piecewise COVID-19 model

In this section we derive the numerical scheme for the following Covid-19 model (1.2).



PCABC
0 Dυt S(t) = −(αI + βD + γA + δR)S,
PCABC
0 Dυt I(t) = −(ϵ + ζ + λ)I + (αI + βD + γA + δR)S,
PCABC
0 DυtD(t) = −(η + ρ)D + ϵI,
PCABC
0 DυtA(t) = −(θ + µ + κ)A + ζI,
PCABC
0 Dυt R(t) = −(ν + ξ)R + ηDθA,
PCABC
0 Dυt Ir(t) = (αI + βD + γA + δR)S,
PCABC
0 Dυt T(t) = −(σ + τ)T + µA + νR,
PCABC
0 DυtHd(t) = ρDξR + σT,
PCABC
0 DυtH(t) = λI + ρD + κA + ξR + σA,
PCABC
0 Dυt E(t) = τT,

(5.1)
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By applying the piece-wise integral to the Caputo and AB derivative, we obtain

S(t) =

S(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧1(t,S)dρ 0 < t ≤ t1,

S(t1) + 1−υ
AB(υ)℧1(t,S)dρ + υ

AB(υ)Γ(υ)

∫ t

t1
(t − ρ)υ−1℧1(t,S)dρ t1 < t ≤ T

I(t) =

I(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧2(t, I)dρ 0 < t ≤ t1,

I(t1) + 1−υ
AB(υ)℧2(t, I)dρ + υ

AB(υ)Γ(υ)

∫ t

t1
(t − ρ)υ−1℧2(t, I)dρ t1 < t ≤ T

(5.2)

D(t) =

D(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧3(t,D)dρ 0 < t ≤ t1,

D(t1) + 1−υ
AB(υ)℧3(t,D)dρ + υ

AB(υ)Γ(υ)

∫ t

t1
(t − ρ)υ−1℧3(t,D)dρ t1 < t ≤ T

A(t) =

A(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧4(t,A)dρ 0 < t ≤ t1,

A(t1) + 1−υ
AB(υ)℧4(t,A)dρ + υ

AB(υ)Γ(υ)

∫ t

t1
(t − ρ)υ−1℧4(t,A)dρ t1 < t ≤ T

R(t) =

R(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧5(t,R)dρ 0 < t ≤ t1,

R(t1) + 1−υ
AB(υ)℧5(t,R)dρ + υ

AB(υ)Γ(υ)

∫ t

t1
(t − ρ)υ−1℧5(t,R)dρ t1 < t ≤ T

Ir(t) =

Ir(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧6(t, Ir)dρ 0 < t ≤ t1,

Ir(t1) + 1−υ
AB(υ)℧6(t, Ir)dρ + υ

AB(υ)Γ(υ)

∫ t

t1
(t − ρ)υ−1℧6(t, Ir)dρ t1 < t ≤ T

T(t) =

T(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧7(t,T)dρ 0 < t ≤ t1,

T(t1) + 1−υ
AB(υ)℧7(t,T)dρ + υ

AB(υ)Γ(υ)

∫ t

t1
(t − ρ)υ−1℧7(t,T)dρ t1 < t ≤ T

Hd(t) =

Hd(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧8(t,Hd)dρ 0 < t ≤ t1,

Hd(t1) + 1−υ
AB(υ)℧8(t,Hd)dρ + υ

AB(υ)Γ(υ)

∫ t

t1
(t − ρ)υ−1℧8(t,Hd)dρ t1 < t ≤ T

H(t) =

H(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧9(t,H)dρ 0 < t ≤ t1,

H(t1) + 1−υ
AB(υ)℧9(t,H)dρ + υ

AB(υ)Γ(υ)

∫ t

t1
(t − ρ)υ−1℧9(t,H)dρ t1 < t ≤ T

E(t) =

E(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧10(t,R)dρ 0 < t ≤ t1,

E(t1) + 1−υ
AB(υ)℧10(t,E)dρ + υ

AB(υ)Γ(υ)

∫ t

t1
(t − ρ)υ−1℧10(t,E)dρ t1 < t ≤ T

At t = tn+1

S(t) =

S(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧1(t,S)dρ 0 < t ≤ t1,

S(t1) + 1−υ
AB(υ)℧1(t,S)dρ + υ

AB(υ)Γ(υ)

∫ tn+1

t1
(t − ρ)υ−1℧1(t,S)dρ t1 < t ≤ T

I(t) =

I(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧2(t,E)dρ 0 < t ≤ t1,

I(t1) + 1−υ
AB(υ)℧2(t, I)dρ + υ

AB(υ)Γ(υ)

∫ tn+1

t1
(t − ρ)υ−1℧2(t, I)dρ t1 < t ≤ T

D(t) =

D(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧3(t, I)dρ 0 < t ≤ t1,

D(t1) + 1−υ
AB(υ)℧3(t,D)dρ + υ

AB(υ)Γ(υ)

∫ tn+1

t1
(t − ρ)υ−1℧3(t,D)dρ t1 < t ≤ T

A(t) =

A(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧4(t,A)dρ 0 < t ≤ t1,

A(t1) + 1−υ
AB(υ)℧4(t,A)dρ + υ

AB(υ)Γ(υ)

∫ tn+1

t1
(t − ρ)υ−1℧4(t,A)dρ t1 < t ≤ T

R(t) =

R(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧5(t,R)dρ 0 < t ≤ t1,

R(t1) + 1−υ
AB(υ)℧5(t,R)dρ + υ

AB(υ)Γ(υ)

∫ tn+1

t1
(t − ρ)υ−1℧5(t,R)dρ t1 < t ≤ T
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Ir(t) =

Ir(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧6(t, Ir)dρ 0 < t ≤ t1,

Ir(t1) + 1−υ
AB(υ)℧6(t, Ir)dρ + υ

AB(υ)Γ(υ)

∫ tn+1

t1
(t − ρ)υ−1℧6(t, Ir)dρ t1 < t ≤ T

T(t) =

T(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧7(t,T)dρ 0 < t ≤ t1,

T(t1) + 1−υ
AB(υ)℧7(t,T)dρ + υ

AB(υ)Γ(υ)

∫ tn+1

t1
(t − ρ)υ−1℧7(t,T)dρ t1 < t ≤ T

Hd(t) =

Hd(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧8(t,Hd)dρ 0 < t ≤ t1,

Hd(t1) + 1−υ
AB(υ)℧8(t,Hd)dρ + υ

AB(υ)Γ(υ)

∫ tn+1

t1
(t − ρ)υ−1℧8(t,Hd)dρ t1 < t ≤ T

H(t) =

H(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧9(t,H)dρ 0 < t ≤ t1,

H(t1) + 1−υ
AB(υ)℧9(t,H)dρ + υ

AB(υ)Γ(υ)

∫ tn+1

t1
(t − ρ)υ−1℧9(t,H)dρ t1 < t ≤ T

E(t) =

E(0) + 1
Γ(υ)

∫ t1
0

(t − ρ)υ−1c℧10(t,E)dρ 0 < t ≤ t1,

E(t1) + 1−υ
AB(υ)℧10(t,E)dρ + υ

AB(υ)Γ(υ)

∫ tn+1

t1
(t − ρ)υ−1℧10(t,E)dρ t1 < t ≤ T

We put the Newton polynomials, so we obtain

S(tn+1) =



S0 +


(∆t)υ−1

Γ(υ + 1)

i∑
k=2

[C
℧1(Sk−2, tk−2)

]
Π +

(∆t)υ−1

Γ(υ + 2)

i∑
k=2

[C
℧1(Sk−1, tk−1) −C ℧1(Sk−2, tk−2)

]∧
+
υ(∆t)υ−1

2Γ(υ + 3)

i∑
k=2

[C
℧1(Sk, tk) − 2C℧1(Sk−1, tk−1) +C ℧1(Sk−2, tk−2)

]
∆

S(t1) +



1 − υ
ABC(υ)

ABC℧1(Sn, tn) +
υ

ABC(υ)
(δt)υ−1

Γ(υ + 1)

n∑
k=i+3

[ABC
℧1(Sk−2, tk−2)

]
Π

+
υ

ABC(υ)
(υt)υ−1

Γ(υ + 2)

n∑
k=i+3

[ABC
℧1(Sk−1, tk−1) + ABC℧1(Sk−2, tk−2)

]∧
+

υ

ABC(υ)
υ(υt)υ−1

Γ(υ + 3)

n∑
k=i+3

[ABC
℧1(Sk, tk) − 2ABC℧1(Sk−1, tk−1) +ABC ℧1(Sk−2, tk−2)

]
∆

(5.3)

I(tn+1) =



I0 +


(∆t)υ−1

Γ(υ + 1)

i∑
k=2

[C
℧2(Ik−2, tk−2)

]
Π +

(∆t)υ−1

Γ(υ + 2)

i∑
k=2

[C
℧2(Ik−1, tk−1) −C ℧2(Ik−2, tk−2)

]∧
+
υ(∆t)υ−1

2Γ(υ + 3)

i∑
k=2

[C
℧2(Ik, tk) − 2C℧2(Ik−1, tk−1) +C ℧2(Ik−2, tk−2)

]
∆

I(t1) +



1 − υ
ABC(υ)

ABC℧2(In, tn) +
υ

ABC(υ)
(δt)υ−1

Γ(υ + 1)

n∑
k=i+3

[ABC
℧2(Ik−2, tk−2)

]
Π

+
υ

ABC(υ)
(υt)υ−1

Γ(υ + 2)

n∑
k=i+3

[ABC
℧2(Ik−1, tk−1) + ABC℧2(Ik−2, tk−2)

]∧
+

υ

ABC(υ)
υ(υt)υ−1

Γ(υ + 3)

n∑
k=i+3

[ABC
℧2(Ik, tk) − 2ABC℧2(Ik−1, tk−1) +ABC ℧2(Ik−2, tk−2)

]
∆

(5.4)
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D(tn+1) =



D0 +


(∆t)υ−1

Γ(υ + 1)

i∑
k=2

[C
℧3(Dk−2, tk−2)

]
Π +

(∆t)υ−1

Γ(υ + 2)

i∑
k=2

[C
℧3(Dk−1, tk−1) −C ℧3(Dk−2, tk−2)

]∧
+
υ(∆t)υ−1

2Γ(υ + 3)

i∑
k=2

[C
℧3(Dk, tk) − 2C℧3(Dk−1, tk−1) +C ℧3(Dk−2, tk−2)

]
∆

D(t1) +



1 − υ
ABC(υ)

ABC℧3(Dn, tn) +
υ

ABC(υ)
(δt)υ−1

Γ(υ + 1)

n∑
k=i+3

[ABC
℧3(Dk−2, tk−2)

]
Π

+
υ

ABC(υ)
(υt)υ−1

Γ(υ + 2)

n∑
k=i+3

[ABC
℧3(Dk−1, tk−1) + ABC℧3(Dk−2, tk−2)

]∧
+

υ

ABC(υ)
υ(υt)υ−1

Γ(υ + 3)

n∑
k=i+3

[ABC
℧3(Dk, tk) − 2ABC℧3(Dk−1, tk−1) +ABC ℧3(Dk−2, tk−2)

]
∆

(5.5)

A(tn+1) =



A0 +


(∆t)υ−1

Γ(υ + 1)

i∑
k=2

[C
℧4(Ak−2, tk−2)

]
Π +

(∆t)υ−1

Γ(υ + 2)

i∑
k=2

[C
℧4(Ak−1, tk−1) −C ℧4(Ak−2, tk−2)

]∧
+
υ(∆t)υ−1

2Γ(υ + 3)

i∑
k=2

[C
℧4(Ak, tk) − 2C℧4(Ak−1, tk−1) +C ℧4(Ak−2, tk−2)

]
∆

A(t1) +



1 − υ
ABC(υ)

ABC℧4(An, tn) +
υ

ABC(υ)
(δt)υ−1

Γ(υ + 1)

n∑
k=i+3

[ABC
℧4(Ak−2, tk−2)

]
Π

+
υ

ABC(υ)
(υt)υ−1

Γ(υ + 2)

n∑
k=i+3

[ABC
℧4(Ak−1, tk−1) + ABC℧4(Ak−2, tk−2)

]∧
+

υ

ABC(υ)
υ(υt)υ−1

Γ(υ + 3)

n∑
k=i+3

[ABC
℧4(Ak, tk) − 2ABC℧4(Ak−1, tk−1) +ABC ℧4(Ak−2, tk−2)

]
∆.

(5.6)

R(tn+1) =



R0 +


(∆t)υ−1

Γ(υ + 1)

i∑
k=2

[C
℧5(Rk−2, tk−2)

]
Π +

(∆t)υ−1

Γ(υ + 2)

i∑
k=2

[C
℧5(Rk−1, tk−1) −C ℧5(Rk−2, tk−2)

]∧
+
υ(∆t)υ−1

2Γ(υ + 3)

i∑
k=2

[C
℧5(Rk, tk) − 2C℧5(Rk−1, tk−1) +C ℧5(Rk−2, tk−2)

]
∆

R(t1) +



1 − υ
ABC(υ)

ABC℧5(Rn, tn) +
υ

ABC(υ)
(δt)υ−1

Γ(υ + 1)

n∑
k=i+3

[ABC
℧5(Rk−2, tk−2)

]
Π

+
υ

ABC(υ)
(υt)υ−1

Γ(υ + 2)

n∑
k=i+3

[ABC
℧5(Rk−1, tk−1) + ABC℧5(Rk−2, tk−2)

]∧
+

υ

ABC(υ)
υ(υt)υ−1

Γ(υ + 3)

n∑
k=i+3

[ABC
℧5(Rk, tk) − 2ABC℧5(Rk−1, tk−1) +ABC ℧5(Rk−2, tk−2)

]
∆

(5.7)
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Ir(tn+1) =



Ir(0) +


(∆t)υ−1

Γ(υ + 1)

i∑
k=2

[C
℧6(Ik−2

r , tk−2)
]
Π +

(∆t)υ−1

Γ(υ + 2)

i∑
k=2

[C
℧6(Ik−1

r , tk−1) −C ℧6(Ik−2
r , tk−2)

]∧
+
υ(∆t)υ−1

2Γ(υ + 3)

i∑
k=2

[C
℧6(Ikr , tk) − 2C℧6(Ik−1

r , tk−1) +C ℧6(Ik−2
r , tk−2)

]
∆

Ir(t1) +



1 − υ
ABC(υ)

ABC℧6(Inr , tn) +
υ

ABC(υ)
(δt)υ−1

Γ(υ + 1)

n∑
k=i+3

[ABC
℧6(Ik−2

r , tk−2)
]
Π

+
υ

ABC(υ)
(υt)υ−1

Γ(υ + 2)

n∑
k=i+3

[ABC
℧6(Ik−1

r , tk−1) + ABC℧6(Ik−2
r , tk−2)

]∧
+

υ

ABC(υ)
υ(υt)υ−1

Γ(υ + 3)

n∑
k=i+3

[ABC
℧6(Ikr , tk) − 2ABC℧6(Ik−1

r , tk−1) +ABC ℧6(Ik−2
r , tk−2)

]
∆

(5.8)

T(tn+1) =



T(0) +


(∆t)υ−1

Γ(υ + 1)

i∑
k=2

[C
℧7(Tk−2, tk−2)

]
Π +

(∆t)υ−1

Γ(υ + 2)

i∑
k=2

[C
℧7(Tk−1, tk−1) −C ℧7(Tk−2, tk−2)

]∧
+
υ(∆t)υ−1

2Γ(υ + 3)

i∑
k=2

[C
℧7(Tk, tk) − 2C℧7(Tk−1, tk−1) +C ℧7(Tk−2, tk−2)

]
∆

T(t1) +



1 − υ
ABC(υ)

ABC℧7(Tn, tn) +
υ

ABC(υ)
(δt)υ−1

Γ(υ + 1)

n∑
k=i+3

[ABC
℧7(Tk−2, tk−2)

]
Π

+
υ

ABC(υ)
(υt)υ−1

Γ(υ + 2)

n∑
k=i+3

[ABC
℧7(Tk−1, tk−1) + ABC℧7(Tk−2, tk−2)

]∧
+

υ

ABC(υ)
υ(υt)υ−1

Γ(υ + 3)

n∑
k=i+3

[ABC
℧7(Tk, tk) − 2ABC℧7(Tk−1, tk−1) +ABC ℧7(Tk−2, tk−2)

]
∆

(5.9)

Hd(tn+1) =



Hd(0) +


(∆t)υ−1

Γ(υ + 1)

i∑
k=2

[C
℧8(Hk−2

d , tk−2)
]
Π +

(∆t)υ−1

Γ(υ + 2)

i∑
k=2

[C
℧8(Hk−1

d , tk−1) −C ℧8(Hk−2
d , tk−2)

]∧
+
υ(∆t)υ−1

2Γ(υ + 3)

i∑
k=2

[C
℧8(Hk

d , tk) − 2C℧8(Hk−1
d , tk−1) +C ℧8(Hk−2

d , tk−2)
]
∆

Hd(t1) +



1 − υ
ABC(υ)

ABC℧8(Hn
d, tn) +

υ

ABC(υ)
(δt)υ−1

Γ(υ + 1)

n∑
k=i+3

[ABC
℧8(Hk−2

d , tk−2)
]
Π

+
υ

ABC(υ)
(υt)υ−1

Γ(υ + 2)

n∑
k=i+3

[ABC
℧8(Hk−1

d , tk−1) + ABC℧8(Hk−2
d , tk−2)

]∧
+

υ

ABC(υ)
υ(υt)υ−1

Γ(υ + 3)

n∑
k=i+3

[ABC
℧8(Hk

d , tk) − 2ABC℧8(Hk−1
d , tk−1) +ABC ℧8(Hk−2

d , tk−2)
]
∆

(5.10)
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H(tn+1) =



H(0) +


(∆t)υ−1

Γ(υ + 1)

i∑
k=2

[C
℧9(Hk−2, tk−2)

]
Π +

(∆t)υ−1

Γ(υ + 2)

i∑
k=2

[C
℧9(Hk−1, tk−1) −C ℧9(Hk−2, tk−2)

]∧
+
υ(∆t)υ−1

2Γ(υ + 3)

i∑
k=2

[C
℧9(Hk, tk) − 2C℧9(Hk−1, tk−1) +C ℧9(Hk−2, tk−2)

]
∆

H(t1) +



1 − υ
ABC(υ)

ABC℧9(Hn, tn) +
υ

ABC(υ)
(δt)υ−1

Γ(υ + 1)

n∑
k=i+3

[ABC
℧9(Hk−2, tk−2)

]
Π

+
υ

ABC(υ)
(υt)υ−1

Γ(υ + 2)

n∑
k=i+3

[ABC
℧9(Hk−1, tk−1) + ABC℧9(Hk−2, tk−2)

]∧
+

υ

ABC(υ)
υ(υt)υ−1

Γ(υ + 3)

n∑
k=i+3

[ABC
℧9(Hk, tk) − 2ABC℧9(Hk−1, tk−1) +ABC ℧9(Hk−2, tk−2)

]
∆

(5.11)

E(tn+1) =



E(0) +


(∆t)υ−1

Γ(υ + 1)

i∑
k=2

[C
℧10(Ek−2, tk−2)

]
Π +

(∆t)υ−1

Γ(υ + 2)

i∑
k=2

[C
℧10(Ek−1, tk−1) −C ℧10(Ek−2, tk−2)

]∧
+
υ(∆t)υ−1

2Γ(υ + 3)

i∑
k=2

[C
℧10(Ek, tk) − 2C℧10(Ek−1, tk−1) +C ℧10(Ek−2, tk−2)

]
∆

E(t1) +



1 − υ
ABC(υ)

ABC℧10(En, tn) +
υ

ABC(υ)
(δt)υ−1

Γ(υ + 1)

n∑
k=i+3

[ABC
℧10(Ek−2, tk−2)

]
Π

+
υ

ABC(υ)
(υt)υ−1

Γ(υ + 2)

n∑
k=i+3

[ABC
℧10(Ek−1, tk−1) + ABC℧10(Ek−2, tk−2)

]∧
+

υ

ABC(υ)
υ(υt)υ−1

Γ(υ + 3)

n∑
k=i+3

[ABC
℧10(Ek, tk) − 2ABC℧10(Ek−1, tk−1) +ABC ℧10(Ek−2, tk−2)

]
∆

(5.12)

Here

Π =


(1 − k + n)υ

(
2(−k + n)2 + (3υ + 10)(−k + n) + 2υ2 + 9υ + 12

)
− (−k + n)

(
2(−k + n)2 + (5υ + 10)(n − k) + 6υ2 + 18υ + 12

)
 ,

∧
=


(1 − k + n)υ

(
3 + n + 2υ − k

)
− (−k + n)

(
n + 3υ − k + 3

)
 ,

∆ =
[
(1 − k + n)υ − (−k + n)υ

]
,
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and

C℧1(S, t) = ABC℧1(S, t) = −(αI + βD + γA + δR)S,
C℧3(I, t) = ABC℧3(I, t) = −(ϵ + ζ + λ)I + (αI + βD + γA + δR)S,
C℧2(A, t) = ABC℧2(A, t) = −(η + ρ)D + ϵI,
C℧4(D, t) = ABC℧4(D, t) = −(θ + µ + κ)A + ζI,
C℧5(R, t) = ABC℧5(R, t) = −(ν + ξ)R + ηDθA,
C℧6(Ir, t) = ABC℧5(Ir, t) = (αI + βD + γA + δR)S,
C℧7(T, t) = ABC℧5(T, t) = −(σ + τ)T + µA + νR,
C℧8(Hd, t) = ABC℧5(Hd, t) = ρDξR + σT,
C℧9(H, t) = ABC℧5(H, t) = λI + ρD + κA + ξR + σA,
C℧10(E, t) = ABC℧5(E, t) = τT.

The above Eqs (5.3)–(5.12) are the solution for the considered model.

6. Numerical simulations

In this section we provide the numerical simulation for all the five compartments of the proposed
model using the initial data and parameters values taken from [19]. The initial populations are
S(0) = 1, I(0) = 0.001, D(0) = 0.002, A(0) = 0.0001, R(0) = 0.0003, Ir(0) = 0.0009, T(0) =
0.002,Hd(0) = 0.003, H(0) = 0.00012, E(0) = 0.00014.

Table 2. Parameters values in model 1.1.

Parameter Value Parameter Values
α 0.57 β 0.0114
γ 0.456 δ 0.0114
ϵ 0.171 θ 0.3705
ζ 0.1254 η1 0.1254
µ 0.0171 v 0.0274
τ 0.01 λ 0.0342
κ 0.0342 ξ 0.0171
σ 0.0171 ρ 0.0171

The graphical representation of all the ten compartments of the analyzed model has been shown on
three different data of fractional orders and time durations in the sense of piecewise Caputo and ABC
derivatives. The first compartment of susceptible population is shown in Figure 1a–c, respectively,
on two sub intervals. The said class population decreases slowly in the first interval, while in the
second interval it decreases very abruptly. On small fractional orders it is stable quickly, and piece
wise behaviors are negligible in this case, as shown in Figure 1a,c.
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Figure 1. Dynamical behaviors of susceptible individuals S(t) on different arbitrary
fractional orders υ and time durations on sub interval [0, t1] and [t1,T ] of [0,T ].

The second compartment of infected population is shown in Figure 2a–c respectively on two sub
intervals on three different data of fractional orders and time durations. The said class population
grows quickly in the first interval, while in the second interval it decreases very abruptly, as shown in
Figure 2a. On small fractional orders it is stable quickly and piece wise behaviors are negligible in
this case, as shown in Figure 2c.
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Figure 2. Dynamical behaviors of infected individuals I(t) on different arbitrary fractional
orders υ and time durations on sub interval [0, t1] and [t1,T ] of [0,T ].

The next agent of Diagnosed population is shown in Figure 3a–c respectively on two sub intervals
on three different data of fractional orders and time durations. The said class population depends on
the behavior of infected population showing the same dynamics but smaller than infectious
population. On small fractional orders it is stable very quickly, and piece wise behaviors are
negligible in this case, as shown in the Figure 3c.
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Figure 3. Dynamical behaviors of Diagnosed individuals D(t) on different arbitrary
fractional orders υ and time durations on sub interval [0, t1] and [t1,T ] of [0,T ].

The next quantity is of Ailing population, shown in Figure 4a-c respectively on two sub intervals
on three different data of fractional orders and time durations. The said class population grows quickly
in the first interval, while in second interval it decreases very abruptly, as shown in Figure 4a. It also
gives the same dynamics as given by the diagnosed population. On small fractional orders it is stable
quickly, and piece wise behaviors are negligible in this case as shown in Figure 4c.
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Figure 4. Dynamical behaviors of Ailing individuals A(t) on different arbitrary fractional
orders υ and time durations on sub interval [0, t1] and [t1,T ] of [0,T ].

Next is the Recognized population, shown in Figure 5a–c respectively on two sub intervals on
three different data of fractional orders and time durations. The said class population grows quickly in
the first interval, while in second interval it decreases slowly, as shown in Figure 5a. On small
fractional orders it converges quickly, and piece wise behaviors are negligible in this case as shown in
Figure 5c.
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Figure 5. Dynamical behaviors of Recognized individuals R(t) on different arbitrary
fractional orders υ and time durations on sub interval [0, t1] and [t1,T ] of [0,T ].

The sixth compartment is of real infected population, shown in Figure 6a–c respectively on two
sub intervals on three different data of fractional orders and time durations. The said class population
increases in the first interval, while in the second interval it is moving towards stability, as shown in
Figure 6a. On small fractional orders it is stable quickly, and piece wise behaviors are negligible in
this case, as shown in Figure 6c.
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Figure 6. Dynamical behaviors of Infected real individuals Ir(t) on different arbitrary
fractional orders υ and time durations on sub interval [0, t1] and [t1,T ] of [0,T ].

The next compartment is of threatened population, shown in Figure 7a–c respectively on two sub
intervals using three different data of fractional orders and time durations. The said class population
grows quickly in the first interval, while in the second interval it increases very abruptly, as shown in
Figure 7b. On small fractional orders it is stable quickly, and piece wise behaviors are negligible in
this case, as shown in Figure 7c.
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Figure 7. Dynamical behaviors of Threatened individuals T(t) on different arbitrary
fractional orders υ and time durations on sub interval [0, t1] and [t1,T ] of [0,T ].

The next quantity is of infected population, shown in Figure 8a–c respectively on two sub intervals
on three different data of fractional orders and time durations. The said class population grows in the
first interval, while in the second interval it increases very slowly, as shown in Figure 8b. On small
fractional orders it is stable quickly, and piece wise behaviors are negligible in this case, as shown in
Figure 8c.

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6134–6173.



6161

0 100 200 300

t

0

0.1

0.2

0.3

H
d
(t

)

0.90

0.89

0.87

0.86

(a)

0 50 100

t

2

2.5

3

3.5

4

H
d
(t

)

×10
-4

0.99

0.98

0.97

0.96

(b)

0 100 200 300

t

0

0.2

0.4

0.6

0.8

H
d
(t

)

0.05

0.15

0.25

0.35

(c)

Figure 8. Dynamical behaviors of Diagnosed recovered individuals Hd(t) on different
arbitrary fractional orders υ and time durations on sub interval [0, t1] and [t1,T ] of [0,T ].

The ninth compartment is of healed population, given in Figure 9a–c respectively on two sub
intervals on three different data of fractional orders and time durations. The said class population
grows quickly in the first interval, while in the second interval it increases very abruptly, as shown in
Figure 9b. On small fractional orders it is stable quickly, and piece wise behaviors are negligible in
this case as shown in Figure 9c.
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Figure 9. Dynamical behaviors of Healed individuals H(t) on different arbitrary fractional
orders υ and time durations on sub interval [0, t1] and [t1,T ] of [0,T ].

The tenth compartment is of Extinct population, shown in Figure 10a–c respectively on two sub
intervals on three different data of time and fractional orders. The said class population grows quickly
in the first interval, while in the second interval it increases slowly, as shown in Figure 10b. On small
fractional orders it is stable quickly, and piece wise behaviors are negligible in this case, as shown in
Figure 10c.
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Figure 10. Dynamical behaviors of Extinct individuals E(t) on different arbitrary fractional
orders υ and time durations on sub interval [0, t1] and [t1,T ] of [0,T ].

7. Sensitivity of parameters

In this section, we check the sensitivity of two parameters α and θ along with the fractional
parameters. Decreasing the value of α and increasing the value of θ, greatly affect the dynamics of the
said COVID-19 model. The infection may be controlled by reducing the infection rate α and by
increasing the value of θ in the sense of piecewise Caputo and ABC operators on different fractional
orders.
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Figure 11. Sensitivity α = 0.27, 0.17, 0.07 and θ = 0.4705, 0.5705, 0.9705 for I(t) and S(t)
on different arbitrary fractional orders υ and time durations on sub interval [0, t1] and [t1,T ]
of [0,T ].

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6134–6173.



6165

0 500 1000

t

0

0.005

0.01

0.015

0.02

D
(t

)

0.90

0.89

0.87

0.86

(a)

0 500 1000

t

0

0.5

1

1.5

D
(t

)

×10
-3

0.90

0.89

0.87

0.86

(b)

0 500 1000

t

0

0.01

0.02

0.03

0.04

0.05

D
(t

)

0.90

0.89

0.87

0.86

(c)

0 500 1000

t

0

1

2

3

4

A
(t

)
×10

-3

0.90

0.89

0.87

0.86

(d)

0 500 1000

t

0

0.5

1

1.5

2

A
(t

)

×10
-4

0.90

0.89

0.87

0.86

(e)

0 500 1000

t

0

2

4

6

A
(t

)

×10
-3

0.90

0.89

0.87

0.86

(f)

Figure 12. Sensitivity α = 0.27, 0.17, 0.07 and θ = 0.4705, 0.5705, 0.9705 for A(t) and D(t)
on different arbitrary fractional orders υ and time durations on sub interval [0, t1] and [t1,T ]
of [0,T ].
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Figure 13. Sensitivity α = 0.27, 0.17, 0.07 and θ = 0.4705, 0.5705, 0.9705 for Ir(t) and R(t)
on different arbitrary fractional orders υ and time durations on sub interval [0, t1] and [t1,T ]
of [0,T ].
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Figure 14. Sensitivity α = 0.27, 0.17, 0.07 and θ = 0.4705, 0.5705, 0.9705 for Hd(t) and T(t)
on different arbitrary fractional orders υ and time durations on sub interval [0, t1] and [t1,T ]
of [0,T ].
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Figure 15. Sensitivity α = 0.27, 0.17, 0.07 and θ = 0.4705, 0.5705, 0.9705 for E(t) and H(t)
on different arbitrary fractional orders υ and time durations on sub interval [0, t1] and [t1,T ]
of [0,T ].
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8. Conclusions

In this study, we have developed the scheme of a ten compartmental piecewise fractional model
of COVID-19 under the fractional derivatives of Caputo and Atangana Baleanu in the sub-partition
format. We have demonstrated that on small fractional orders, all quantities converge and are quickly
stable. The important theoretical and numerical properties have been presented for the proposed model.
Applying the concept of fixed point results, we have derived results which deal with existence and
uniqueness of solution for both sub intervals in the sense of Caputo and Atangana Baleanu operators.
The Ulam-Hyers stability concept on both intervals has also been derived. We have used the Newton
Polynomial technique to compute numerical solutions of the piecewise fractional model of COVID-
19 virus. We have used MATLAB-18 to depict the numerical results for few fractional orders and
time durations. We have observed that the piecewise data gives more information describing crossover
dynamics for different fractional orders. Further, the graphical results are very interesting for both
piecewise and fractional order analysis. In the future, the work can be extended to optimal control and
stochastic models to examine the behavior and control of the disease.
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39. Z. Hammouch, M. Yavuz, N. Özdemir, Numerical solutions and synchronization of a
variable-order fractional chaotic system, Math. Modell. Numer. Simul. Appl., 1 (2021), 11–23.
https://doi.org/10.53391/mmnsa.2021.01.002

40. R. Ikram, A. Khan, M. Zahri, A. Saeed, M. Yavuz, P. Kumam, Extinction and stationary
distribution of a stochastic COVID-19 epidemic model with time-delay, Comput. Biol. Med., 141
(2022), 105115. https://doi.org/10.1016/j.compbiomed.2021.105115

41. B. Li, Bo, H. Liang, Q. He, Multiple and generic bifurcation analysis of a
discrete Hindmarsh-Rose model, Chaos Solitons Fractals, 146 (2021), 110856.
https://doi.org/10.1016/j.chaos.2021.110856

42. M. Sinan, K. Shah, P. Kumam, I. Mahariq, K. J. Ansari, Z. Ahmad, et al., Fractional
order mathematical modeling of typhoid fever disease, Results Phys., 32 (2022), 105044.
https://doi.org/10.1016/j.rinp.2021.105044

43. Z. Ahmad, G. Bonanomi, D. d. Serafino, F. Giannino, Transmission dynamics and
sensitivity analysis of pine wilt disease with asymptomatic carriers via fractal-fractional
differential operator of Mittag-Leffler kernel, Appl. Numer. Math., 2022 (2022).
https://doi.org/10.1016/j.apnum.2022.12.004

44. M. Sinan, H. Ahmad, Z. Ahmad, J. Baili, S. Murtaza, M. A. Aiyashi, et al., Fractional
mathematical modeling of malaria disease with treatment & insecticides, Results Phys., 34 (2022),
105220. https://doi.org/10.1016/j.rinp.2022.105220

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6134–6173.

http://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.111954
http://dx.doi.org/https://doi.org/10.3390/mca27050082
http://dx.doi.org/https://doi.org/10.1063/5.0114880
http://dx.doi.org/https://doi.org/10.53391/mmnsa.2022.013
http://dx.doi.org/https://doi.org/10.53391/mmnsa.2022.009
http://dx.doi.org/https://doi.org/10.1007/s12559-020-09782-w
http://dx.doi.org/https://doi.org/10.1007/s12559-020-09782-w
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.111860
http://dx.doi.org/https://doi.org/10.53391/mmnsa.2021.01.002
http://dx.doi.org/https://doi.org/10.1016/j.compbiomed.2021.105115
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.110856
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2021.105044
http://dx.doi.org/https://doi.org/10.1016/j.apnum.2022.12.004
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2022.105220


6173

45. A. Atangana, S. I. Araz, New concept in calculus:Piecewise differential and integral operators,
Chaos Soliton Fractals, 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638

46. A. Sohail, Z. Yu, R. Arif, A. Nutini, T. A. Nofal, Piecewise differentiation of the
fractional order CAR-T cells-SARS-2 virus model, Results Phys., 33 (2022), 105046.
https://doi.org/10.1016/j.rinp.2021.105046

47. A. Atangana, M. Toufik, A piecewise heat equation with constant and variable order coefficients:
A new approach to capture crossover behaviors in heat diffusion, AIMS Math., 7 (2022), 8374–
8389. https://doi.org/10.3934/math.2022467

48. M. H. Heydari, M. Razzaghi, A numerical approach for a class of nonlinear optimal control
problems with piecewise fractional derivative, Chaos Solitons Fractals, 152 (2021), 111465.
https://doi.org/10.1016/j.chaos.2021.111465

49. K. Shah, T. Abdeljawad, A. Ali, Mathematical analysis of the Cauchy type dynamical system
under piecewise equations with Caputo fractional derivative, Chaos Solitons Fractals, 161 (2022),
112356. https://doi.org/10.1016/j.chaos.2022.112356

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 20, Issue 4, 6134–6173.

http://dx.doi.org/https://doi.org/10.1016/j.chaos.2020.110638
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2021.105046
http://dx.doi.org/https://doi.org/10.3934/math.2022467
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.111465
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.112356
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Existence and uniqueness
	Stability analysis
	Numerical Scheme for the fractional piecewise COVID-19 model
	Numerical simulations
	Sensitivity of parameters
	Conclusions

