In this paper, based on a complete residuated lattice, we propose the definition of fuzzy weakly cut-stable map and prove the extension property of the fuzzy weakly cut-stable map. Following this, it is explored the conditions under which the extension map to be fuzzy order isomorphism.
Citation: Nana Ma, Qingjun Luo, Geni Xu. Characterization of extension map on fuzzy weakly cut-stable map[J]. AIMS Mathematics, 2022, 7(5): 7507-7518. doi: 10.3934/math.2022421
[1] | I. M. Taha . Some new results on fuzzy soft r-minimal spaces. AIMS Mathematics, 2022, 7(7): 12458-12470. doi: 10.3934/math.2022691 |
[2] | Tareq Saeed . Intuitionistic fuzzy variational inequalities and their applications. AIMS Mathematics, 2024, 9(12): 34289-34310. doi: 10.3934/math.20241634 |
[3] | Sandeep Kaur, Alkan Özkan, Faizah D. Alanazi . A new perspective on fuzzy mapping theory with invertedly open and closed mappings. AIMS Mathematics, 2025, 10(1): 921-931. doi: 10.3934/math.2025043 |
[4] | Ayesha Shareef, Uzma Ahmad, Saba Siddique, Mohammed M. Ali Al-Shamiri . Pythagorean fuzzy incidence graphs with application in illegal wildlife trade. AIMS Mathematics, 2023, 8(9): 21793-21827. doi: 10.3934/math.20231112 |
[5] | Bowen Zhang, Lingfeng Liu . A novel delayed exponent coupled chaotic map with countering dynamical degradation. AIMS Mathematics, 2024, 9(1): 99-121. doi: 10.3934/math.2024007 |
[6] | Moosa Gabeleh, Elif Uyanık Ekici, Manuel De La Sen . Noncyclic contractions and relatively nonexpansive mappings in strictly convex fuzzy metric spaces. AIMS Mathematics, 2022, 7(11): 20230-20246. doi: 10.3934/math.20221107 |
[7] | Maysaa Al-Qurashi, Mohammed Shehu Shagari, Saima Rashid, Y. S. Hamed, Mohamed S. Mohamed . Stability of intuitionistic fuzzy set-valued maps and solutions of integral inclusions. AIMS Mathematics, 2022, 7(1): 315-333. doi: 10.3934/math.2022022 |
[8] | Muhammad Jawad, Niat Nigar, Sarka Hoskova-Mayerova, Bijan Davvaz, Muhammad Haris Mateen . Fundamental theorems of group isomorphism under the framework of complex intuitionistic fuzzy set. AIMS Mathematics, 2025, 10(1): 1900-1920. doi: 10.3934/math.2025088 |
[9] | Javid Iqbal, Imran Ali, Puneet Kumar Arora, Waseem Ali Mir . Set-valued variational inclusion problem with fuzzy mappings involving XOR-operation. AIMS Mathematics, 2021, 6(4): 3288-3304. doi: 10.3934/math.2021197 |
[10] | Muhammad Bilal Khan, Hakeem A. Othman, Gustavo Santos-García, Muhammad Aslam Noor, Mohamed S. Soliman . Some new concepts in fuzzy calculus for up and down λ-convex fuzzy-number valued mappings and related inequalities. AIMS Mathematics, 2023, 8(3): 6777-6803. doi: 10.3934/math.2023345 |
In this paper, based on a complete residuated lattice, we propose the definition of fuzzy weakly cut-stable map and prove the extension property of the fuzzy weakly cut-stable map. Following this, it is explored the conditions under which the extension map to be fuzzy order isomorphism.
Domain theory [1], which is a mathematical foundation of theoretical computer science, was put forward by Scott in the late 1960s. As an important content of domain theory, Dedekind-MacNeille completion (also called the normal completion), has been studied by many researchers [2,3,4].
Quantitative domain theory ([5,6,7,8,9]), which is regarded as the deep combination of denotational semantics of domain theory and the method of measurement, forms a new research field of domain theory. Its essence is to find a kind of model structure which can be calculated. As an important part of quantitative domain theory, the completions have also developed rapidly, and many researchers are devoted to studying the completions. Wagner [9] discussed the enriched Dedekind-MacNeille completion. Bělohlávek [10] discussed the Dedekind-MacNeille completion from the aspect of fuzzy concept lattice. Xie, Zhang and Fan [11] studied the Dedekind-MacNeille completion from the aspect of fuzzy poset. Wang and Zhao characterized the Dedekind-MacNeille completion from the aspect of the category [12]. Ma and Zhao studied the Dedekind-MacNeille completion based on a complete residuated lattice and obtain the full reflective subcategory of the category of fuzzy poset and fuzzy precontinuous in a certain morphism [13]. Halaš and Lihová characterized weakly cut-stable map by the 1st-order language [14]. In this paper, we study weakly cut-stable map based on a complete residuated lattice, that is, fuzzy weakly cut-stable map. Furthermore, we prove the extension property of fuzzy weakly cut-stable map. Following this, it is explored the conditions under which the extension map to be fuzzy order isomorphism.
The remainder of this paper is organized as follows. In Section 2, we review the basic definitions and results which are used in the rest of the paper. In Section 3, we propose the definitions of fuzzy weakly lower (upper) cut-stable map, fuzzy weakly lower (upper) cut-continuous map, and fuzzy weakly cut-preserving map. Furthermore, we discuss the extension property of fuzzy weakly cut-stable map. In Section 4, we explore the conditions under which the extension map to be fuzzy order isomorphism. Finally, we provide conclusions in Section 5.
This section is devoted to providing a review of some key concepts of domain theory and fuzzy set theory.
Definition 2.1. ([15]) A residuated lattice is an algebraic structure L= (L; ∧, ∨, ∗, →, 0, 1) of type (2, 2, 2, 2, 0, 0) such that the following conditions hold.
(1) (L; ∧, ∨, 0, 1) is a bounded lattice with the least element 0 and the greatest element 1;
(2) (L; ∗, 1) is a commutative monoid with the identity 1;
(3) L satisfies the adjointness property, i.e. ∀ x, y, z∈L, x∗y≤z iff x≤y→z.
A residuated lattice is called complete if the underlying lattice is complete. In this paper, if no otherwise specified, a complete residuated lattice is always denoted by L.
Definition 2.2. ([16,17]) A fuzzy poset is a pair (X,e) such that X is a set and e:X×X⟶L is a map, which satisfies the following conditions for all x,y,z∈X,
(1) e(x,x)=1 (reflexivity);
(2) e(x,y)∗e(y,z)≤e(x,z) (transitivity);
(3) e(x,y)=e(y,x)=1 implies x=y (antisymmetry).
For a set X, LX denotes the set of all fuzzy subsets of X, that is, the set of all maps from X to L. For λ∈L, we use λX to denote the constant map with the value λ. For C⊆X,
χC(x)={1, x∈C,0, otherwises. |
Obviously, λX and χC(x) are the fuzzy subsets of X.
Definition 2.3. ([16,17]) Let (X,e) be a fuzzy poset and A∈LX. An element x0∈X is called a supremum (resp., infimum) of A, in symbols x0=⊔A (resp., x0=⊓A), if the follwoing conditions hold.
(1) ∀ x∈X,A(x)≤e(x,x0) (resp.,∀ x∈X,A(x)≤e(x0,x));
(2) ∀ y∈X, ⋀x∈X(A(x)→e(x,y))≤e(x0,y) (resp.,∀ y∈X, ⋀x∈X(A(x)→e(y,x))≤e(y,x0)).
Theorem 2.4. ([16,17]) Let (X,e) be a fuzzy poset and A∈LX,x0∈X. Then the following statements are equivalent:
(1) x0=⊔A (x0=⊓A);
(2) e(x0,x)=⋀y∈X(A(y)→e(y,x)) (e(x,x0)=⋀y∈X(A(y)→e(x,y))) for all x∈X.
Proposition 2.5. ([16,17]) Let (X,e) be a fuzzy poset. Then (X,e) is a fuzzy complete lattice iff ⊔A exists for all A∈LX iff \ ⊓A exists for all A∈LX.
Definition 2.6. ([18]) Let f:X→Y be a map. The Zadeh forward powerset operator f→L:LX→LY and the Zadeh backward powerset operator f←L:LY→LX are, respectively, defined by f→L(A)(y)=⋁f(x)=yA(x) for all A∈LX,y∈Y and f←L(B)=B∘f for all B∈LY.
Definition 2.7. ([11]) Let (X,e) be a fuzzy poset and A∈LX. Define Al,Au as follows: ∀ x∈X, Al(x)=⋀x′∈X(A(x′)→e(x,x′)), Au(x)=⋀x′∈X(A(x′)→e(x′,x)).
Proposition 2.8. ([10]) (The Dedekind-MacNeille completion) Given a fuzzy poset (X,e), if ∀A,B∈LX, A=Bl,B=Au, then the pair (A,B) is called a fuzzy cut and Au, Bl are usually called fuzzy upper cut and fuzzy lower cut, respectively. The collection of all fuzzy cuts, ordered by e((A,B),(C,D))=sub(A,C)=sub(D,B), is a fuzzy complete lattice, called the Dedekind-MacNeille completion of X. The Dedekind-MacNeille completion of X is also denoted by DML(X) or N(X). That is to say, DML(X)={(A,B)∣∀A,B∈LX,A=Bl,B=Au}.
Since {(A,B)∣∀ A,B∈LX,A=Bl,B=Au} is isomorphic to {A∣∀ A∈LX,A=Aul}, the Dedekind-MacNeille completion of X can also be denoted by {A∣∀ A∈LX,A=Aul}, that is to say, N(X)={A∣∀ A∈LX,A=Aul}.
Let (X,e) be a fuzzy poset and x∈X. Define two maps ιx, μx:X→L by ιx(y)=e(y,x), μx(y)=e(x,y) for all y∈X. Clearly, we have ⊔ ιx=⊓ μx=x and the pair (ιx,μx) is a fuzzy cut of X.
Lemma 2.9. ([10,13]) Let (X,e) be a fuzzy poset and A,B∈LX. Then
(1) A≤Aul and A≤Alu;
(2) sub(A,B)≤sub(Bu,Au) and sub(A,B)≤sub(Bl,Al);
(3) sub(A,B)≤sub(Aul,Bul) and sub(A,B)≤sub(Alu,Blu);
(4) Au=Aulu and Al=Alul.
Theorem 2.10. ([14]) Let P,Q be posets. For a mapping f:P→Q there exists a (unique) weakly complete lattice homomorphism f∗:N(P)→N(Q) extending f if and only if f is weakly cut-stable.
In this section, we propose the definition of fuzzy weakly cut-stable map and discuss the extension theorem of fuzzy weakly cut-stable map.
Definition 3.1. Let (X,eX) and (Y,eY) be fuzzy posets and f:X→Y be a map. Then f is called fuzzy weakly lower (upper) cut-stable if for all A∈LX, when Au≠0X,(f→L(Au))l=(f→L(A))ul (when Al≠0X, (f→L(Al))u=(f→L(A))lu), and when Au=0X,(f→L(A))u=(f→L(1X))u (when Al=0X, (f→L(A))l=(f→L(1X))l). If f is both fuzzy weakly lower and upper cut-stable, then f is called fuzzy weakly cut-stable.
For simplicity, we denote (f→L(A))− as f→L(A)−.
Definition 3.2. Let (X,eX),(Y,eY) be fuzzy posets and f:X→Y be a map. f is called fuzzy weakly lower (upper) cut-continuous if ∀ A∈LX,A≠0X, f→L(Aul)≤f→L(A)ul(f→L(Alu)≤f→L(A)lu). If f is both fuzzy weakly lower and upper cut-continuous, then f is called fuzzy weakly cut-continuous.
Example 3.3. The identity mapping on a fuzzy poset is fuzzy weakly cut-continuous.
Definition 3.4. Let (X,eX),(Y,eY) be fuzzy posets, f:X→Y a map. f is called fuzzy weakly cut-preserving if for all fuzzy cut (A,B) of X, and A,B≠0X, (f→L(B)l,f→L(A)u) is a fuzzy cut of Y.
Example 3.5. For the fuzzy poset (L,eL), define f:LL→L as follows ∀A∈LL,f(A)=⊔A, then f is fuzzy weakly cut-preserving.
Obversely, by Lemma 2.9, (f→L(B)l,f→L(A)u) is a fuzzy cut of Y is equivalent to f→L(A)ul=f→L(B)l or f→L(B)lu=f→L(A)u. Next, we explore the relationships among these maps.
Proposition 3.6. If f is fuzzy weakly lower (upper) cut-stable, then f is fuzzy weakly cut-preserving. Conversely, if f:X→Y is fuzzy weakly (lower, upper) cut-continuous and fuzzy weakly cut-preserving, then it is fuzzy weakly (lower, upper) cut-stable.
Proof. Suppose that f:X→Y is fuzzy weakly lower cut-stable map. If ∀ (A,B)∈DML(X),A,B≠0X, then Au=B,Bl=A. Therefore, f→L(B)l=f→L(Au)l=f→L(A)ul. Hence, f is fuzzy weakly cut-preserving.
Conversely, let f be fuzzy weakly lower cut-continuous and fuzzy weakly cut-preserving. ∀ 0X≠A∈LX, when Au≠0X, (Aul,Au)∈DML(X), since f is fuzzy weakly cut-preserving, we have (f→L(Au)l,f→L(Aul)u)∈DML(Y), then f→L(Au)l=f→L(Aul)ul. As f→L(Aul)≤f→L(A)ul, we have f→L(A)ul=f→L(A)ulul≥f→L(Aul)ul=f→L(Au)l. ∀ y∈Y,
f→L(Au)(y)=⋁x∈X,f(x)=yAu(x) =⋁x∈X,f(x)=y⋀x1∈X(A(x1)→e(x1,x)) ≤⋁x∈X,f(x)=y⋀x1∈X(A(x1)→e(f(x1),f(x))) =⋀x1∈X(A(x1)→e(f(x1),y)) =⋀y1∈Y(f→L(A)(y1)→e(y1,y)) =f→L(A)u(y). |
Hence, f→L(Au)≤f→L(A)u, f→L(Au)l≥f→L(A)ul. Therefore, f→L(Au)l=f→L(A)ul.
When Au=0X, f→L(A)≤f→L(1X)=f→L(Aul)≤f→L(A)ul. Hence, f→L(A)u≥f→L(1X)u=f→L(Aul)u≥f→L(A)ulu=f→L(A)u, that is, f→L(A)u=f→L(1X)u.
Therefore, f:X→Y is fuzzy weakly lower cut-stable map. Other cases can be proved in a similar manner.
Proposition 3.7. If f is fuzzy weakly cut-preserving or fuzzy weakly cut-continuous, then f is fuzzy order-preserving.
Proof. Let f:X→Y be fuzzy weakly cut-preserving. Since ∀ x∈X,(ιx,μx) is a fuzzy cut of X and ιx,μx≠0X, it holds that (f→L(μx)l,f→L(ιx)u) is a fuzzy cut of Y. Hence, f→L(μx)≤f→L(μx)lu=f→L(ιx)u, we have μx≤f←L(f→L(ιx)u). ∀ x,y∈X, eX(x,y)=μx(y)≤f←L(f→L(ιx)u)(y)=f→L(ιx)u(f(y))=⋀z∈Y(f→L(ιx)(z)→eY(z,f(y)))= ⋀z∈Y((⋁f(x′)=zeX(x′,x))→eY(z,f(y)))=⋀x′∈X(eX(x′,x)→eY(f(x′),f(y)))≤eY(f(x),f(y)). Therefore, we have that f is fuzzy order-preserving. Next we prove if f is fuzzy weakly cut-continuous, then f is fuzzy order-preserving.
Firstly, ∀ z∈Y,(χf(x))ul(z)=⋀z1∈Y((χf(x))u(z1)→e(z,z1))=⋀z1∈Y((⋀z2∈Yχf(x)(z2)→e(z2,z1))→e(z,z1))= ⋀z1∈Y(f(x),z1)→e(z,z1))=e(z,f(x))=ιf(x)(z).
Secondly, χf(x)=f→L(χx), ∀ z∈Y, if z=f(x), then (χf(x))(z)=1=⋁x1∈X,f(x1)=zχx(x1)=f→L(χx)(z). If z≠f(x), then (χf(x))(z)=0=⋁x1∈X,f(x1)=zχx(x1)=f→L(χx)(z).
Finally, ∀ x,y∈X,
e(f(x),f(y))=ιf(y)(f(x)) =(χf(y))ul(f(x)) =(f→L(χy))ul(f(x)) ≥f→L((χy)ul)(f(x)) =f→L(ιy)(f(x)) =⋁z∈X,f(z)=f(x)ιy(z) ≥e(x,y). |
By Propositions 3.6 and 3.7, we have every fuzzy weakly lower (upper) cut-stable map is fuzzy order-preserving. Next, we show the extension property of the fuzzy weakly cut-stable map.
Let X, Y be fuzzy posets, f:X→Y is a map. If ∀ 0X≠A∈LX, f(⊔A)=⊔f→L(A),f(⊓A) =⊓f→L(A), then f is called a fuzzy weakly complete homomorphism.
Theorem 3.8. Let X and Y be fuzzy posets. Then f:X→Y is fuzzy weakly cut-stable if and only if there exists a unique fuzzy weakly complete homomorphism f∗:\ N(X)→N(Y) extending f.
Proof. (Necessity) Suppose that f:X→Y is fuzzy weakly cut-stable. Define f∗:N(X)→N(Y) by ∀ A∈N(X). If A≠0X, then f∗(Aul)=f→L(A)ul. If A=0X, then f∗(Aul)=f→L(1X)l.
(1) f∗ is well-defined. ∀ A,B∈LX, if A,B≠0X, Aul=Bul, then Au=Bu. When Au=Bu≠0X, f→L(A)ul=f→L(Au)l=f→L(Bu)l=f→L(B)ul. When Au=Bu=0X, f→L(A)ul=f→L(1X)ul=f→L(B)ul. If A≠0X,B=0X, then Aul=0ulX. Therefore, Au=1X, f→L(A)ul=f→L(Au)l=f→L(1X)l. Hence f∗(Aul)=f∗(Bul). Similarly, B≠0X,A=0X, f∗(Aul)=f∗(Bul). If A=B=0X, clearly we have f∗(Aul)=f∗(Bul).
(2) f∗ is a fuzzy weakly complete homomorphism. ∀ Φ∈LN(X), Φ≠0N(X). Firstly, we show (⋁ϕ∈N(X)Φ(ϕ)∗f→L(ϕ))ul=(⋁ϕ∈N(X)Φ(ϕ)∗(f→L(ϕ))ul)ul. ∀ φ∈N(Y),
sub((⋁ϕ∈N(X)Φ(ϕ)∗f→L(ϕ))ul,φ)=sub(⋁ϕ∈N(X)Φ(ϕ)∗f→L(ϕ),φ) =⋀y∈Y(⋁ϕ∈N(X)Φ(ϕ)∗f→L(ϕ)(y)→φ(y)) =⋀ϕ∈N(X)⋀y∈Y(Φ(ϕ)∗f→L(ϕ)(y)→φ(y)) =⋀ϕ∈N(X)⋀y∈Y(Φ(ϕ)→(f→L(ϕ)(y)→φ(y))) =⋀ϕ∈N(X)(Φ(ϕ)→sub(f→L(ϕ),φ)) =⋀ϕ∈N(X)(Φ(ϕ)→sub((f→L(ϕ))ul,φ)) =sub((⋁ϕ∈N(X)Φ(ϕ)∗f→L(ϕ)ul),φ) =sub((⋁ϕ∈N(X)Φ(ϕ)∗f→L(ϕ)ul)ul,φ). |
Therefore, (⋁ϕ∈N(X)Φ(ϕ)∗f→L(ϕ))ul=(⋁ϕ∈N(X)Φ(ϕ)∗(f→L(ϕ))ul)ul.
By [17], we have that N(X) is complete lattice, and ⨆Φ=⋁ϕ∈N(X)Φ(ϕ)∗ϕ=(⋁ϕ∈N(X)Φ(ϕ)∗ϕ)ul.
f∗(⨆Φ)=f∗((⋁ϕ∈N(X)Φ(ϕ)∗ϕ)ul) =(f→L(⋁ϕ∈N(x)Φ(ϕ)∗ϕ))ul =(⋁ϕ∈N(X)Φ(ϕ)∗f→L(ϕ))ul =(⋁ϕ∈N(X)Φ(ϕ)∗(f→L(ϕ))ul)ul =(⋁ϕ∈N(X)Φ(ϕ)∗f∗(ϕ))ul =(⋁ψ∈N(Y)(⋁ϕ∈N(X),f∗(ϕ)=ψΦ(ϕ)∗ψ))ul =(⋁ψ∈N(Y)((f∗)L→(Φ)(ψ)∗ψ))ul =⨆(f∗)L→(Φ). |
So, f∗(⨆Φ)=⨆(f∗)L→(Φ). Similarly we can show ∀ Φ∈LN(X), Φ≠0N(X), f∗(⊓Φ)=⊓(f∗)L→(Φ). Hence, f∗ is a fuzzy weakly complete homomorphism.
(3) Commutativity. ∀ x∈X,
f∗∘ιX(x)=f∗(ιx) =f∗(ιulx) =f→L(ιx)ul =ιf(x) =ιY∘f(x). |
(4) f∗ is unique. Assume that there is g:N(X)→N(Y) such that g∘ιX=ιY∘f.
∀ ϕ∈N(X),
g(ϕ)=g(⊔(ιX)→L(ϕ)) =⊔g→L((ιX)→L(ϕ)) =⊔(ιY∘f)→L(ϕ) =⊔(f∗)L→((ιX)→L(ϕ)) =f∗(⊔(ιX)→L(ϕ)) =f∗(ϕ). |
(Sufficiency) Assume that there is a fuzzy weakly complete homomorphism f∗:X→Y such that f∗∘ιX=ιY∘f. ∀ 0X≠A∈LX. If Au≠0X, then (ιX)→L(Au)≠0N(X).
f→L(Au)l=⊓ι→Y(f→L(Au)) =⊓(ιY∘f)→L(Au) =⊓(f∗∘ιX)→L(Au) =⊓(f∗)L→((ιX)→L(Au)) =f∗(⊓(ιX)→L(Au)) =f∗(⊔(ιX)→L(A)) =⊔(f∗∘ιX)→L(A) =⊔(ιY∘f)→L(A) =⊔(ιY)→L∘f→L(A) =f→L(A)ul. |
If Au=0X, f→L(A)ul=⊔(ιY)→L(f→L(A))=⊓(f∗)L→((ιX)→L(A))=f∗(⊔(ιX)→L(A))=f∗(Aul)=f∗(0lX)=f∗(1X) =f∗(⊔(ιX)→L(1X))=⊔(f∗∘ιX)→L(1X)=⊔(ιY∘f)→L(1X)=⊔(ιY)→L∘f→L(1X)=f→L(1X)ul.
Hence, f→L(A)ul=f→L(1X)ul. Therefore, f is fuzzy weakly lower cut-stable. Similarly, f is also fuzzy weakly upper cut-stable.
In this section, we explore the conditions under which the extension map to be fuzzy order isomorphism.
Definition 4.1. Let (X,e) be a fuzzy poset, A⊆X. If ∀ x∈X, there exists ϕ∈LA such that μx=ϕu, then we call (X,e) fuzzy A-dense.
Next we give an example of fuzzy A-dense.
Example 4.2. Let X={0,a,b,c}, L={0,12,1} and ∗=∧, the fuzzy order eX is defined as follows:
![]() |
Let A={0,a,b}⊆X, we can show 0∈X, there exists ϕ=χ0∈LA such that μ0=ϕu. a∈X, there exists ϕ=χ{0,a}∈LA such that μa=ϕu. b∈X, there exists ϕ=χ{0,b}∈LA such that μb=ϕu. c∈X, there exists ϕ=χ{0,c}∈LA such that μc=ϕu. This shows that (X,eX) is fuzzy A-dense.
Proposition 4.3. Let (X,e) and (Y,e) be fuzzy posets. If f is fuzzy weakly cut-stable, then f∗ is surjective iff Y is fuzzy f(X)-dense and (f→L(1X))l=1lY.
Proof. (Necessity) Suppose that f∗ is surjective.
(1) By the definition of f∗, (f→L(1X))l=f∗(0ulX).
(2) (f→L(1X))l=1lY. Since ∀ y∈Y,
(f→L(1X))l(y)=⋀z∈Y(f→L(1X)(z)→e(y,z)) =⋀z∈Y((⋁x∈X,f(x)=z1X(x))→e(y,z)) =⋀x∈Xe(y,f(x)). |
Thus,
1lY(y)=⋀z∈Y(1Y(z)→e(y,z)) =⋀z∈Ye(y,z) ≤⋀x∈Xe(y,f(x)) =(f→L(1X))l(y). |
Conversely, we need to show (f→L(1X))l≤1lY. ∀ z∈Y,ιz∈N(Y), as f∗ is surjective, there exists A∈N(X) such that f∗(Aul)=ιz,ιz=f∗(Aul)≥f∗(0ulX)=(f→L(1X))l. Thus 1lY(y)=⋀z∈Y1Y(z)→e(y,z)=⋀z∈Yιz(y)≥(f→L(1X))l. Therefore, (f→L(1X))l=1lY.
∀ y∈Y, since f∗ is surjective, there exists A∈N(X) such that f∗(Aul)=ιy=(ιy)ul. If A≠0X, then f∗(Aul)=(f→L(A))ul=(f→L(A)∣f(X))ul, we have μy=(f→L(A)∣f(X))u. If A=0X, then f∗(Aul)=(f→L(1X))l=(1Y)l, we have μy=1Y=0uY=0Y∣uf(Y). Thus Y is fuzzy f(X)-dense.
(Sufficiency) Let Y be fuzzy f(X)-dense and (f→L(1X))l=(1Y)l. First we need to show ∀ y∈Y, ιy has preimage. Since Y is fuzzy f(X)-dense, there exists B∈Lf(X) such that μy=Bu. By B∈Lf(X), f←L(B)∈LX. If f←L(B)≠0X, notice that ∀ y∈Y,f→L(f←L(B))(y)=⋁x∈X,f(x)=yf←L(B)(x)=⋁x∈X,f(x)=yB(f(x))=B(y), we have f→L(f←L(B))=B, then f∗(f←L(B)ul)=(f→L(f←L(B)))ul=Bul=μly=ιy.
If f←L(B)=0X, notice that ∀ y∈Y,
f→L(0X)u(y)=⋀z∈Yf→L(0X)(z)→e(z,y) =⋀x∈X(⋁x∈X,f(x)=z0X(x))→e(z,y) =1 =1Y(y). |
We have (1Y)l=f→L(0X)ul, then
f∗(f←L(B)ul)=f∗(1lX) =f→L(1lX) =(1Y)l =f→L(0X)ul =μly =ιy. |
Therefore, (f←L(B))ul is the preimage of ιy.
Suppose that B∈N(Y). The above tells us that ∀ y∈Y, there exists By∈Lf(X) such thatf∗((f←L(By))ul)=ιy. Having B=⋁y∈YB(y)∗χy implies that Bul=(⋁y∈YB(y)∗χy)ul. Define Φ∈LN(X),∀ y∈Y.
Φ(ψ)={B(y), ψ=(f←L(By))ul,0, otherwises. |
Notice that (⋁y∈YB(y)∗ιy)ul=(⋁y∈YB(y)∗χy)ul. ∀ z∈Y,
(⋁y∈YB(y)∗ιy)u(z)=⋀z1∈Y((⋁y∈YB(y)∗ιy(z1))→e(z1,z)) =⋀y∈Y(B(y)→e(y,z)) =Bu(z) =⋀z1∈Y(B(z1)→e(z1,z)) =⋀z1∈Y(⋁y∈Y(B(y)∗χy(z1))→e(z1,z)) =(⋁y∈YB(y)∗χy)u(z). |
f∗(⨆Φ)=⨆(f∗)L→(Φ) =(⋁ϕ∈N(Y)(f∗)L→(Φ)(ϕ)∗ϕ)ul =(⋁ϕ∈N(Y)(⋁ψ∈N(X),f∗(ψ)=ϕΦ(ψ))∗ϕ)ul =(⋁ψ∈N(X)Φ(ψ)∗f∗(ψ))ul =(⋁y∈YB(y)∗(f←L(By))ul)ul =(⋁y∈YB(y)∗ιy)ul =(⋁y∈YB(y)∗χy)ul =Bul =B. |
Theorem 4.4. Let f:(X,e)→(Y,e) be fuzzy weakly cut-stable. Then f∗ is fuzzy order isomorphism if and only if e(f(x),f(y))≤e(x,y) for all x,y∈X, Y is fuzzy f(X)-dense and (f→L(1X))l=1lY.
Proof. (Necessity) Let f∗ be fuzzy order isomorphism. ∀ x,y∈X,e(f(x),f(y))=sub(ιf(x),ιf(y)) =sub(f∗(ιx),f∗(ιy))≤sub(ιx,ιy)=e(x,y).
(Sufficiency) By Proposition 4.3, we have that f∗ is surjective, we only need to show f∗ is order embedding. That is ∀ A,B∈LX,sub(f∗(Aul),f∗(Bul))≤sub(Aul,Bul).
If A=0X, obviously. If A≠0X, when B≠0X,
sub(f∗(Aul),f∗(Bul))=sub(f→L(A)ul,f→L(B)ul)≤sub(f→L(B)u,f→L(A)u)=(⋀y∈Yf→L(B)u(y)→f→L(A)u(y)=⋀y∈Y(⋀z1∈Yf→L(B)(z1)→e(z1,y))→(⋀z2∈Yf→L(A)(z2)→e(z2,y))=⋀y∈Y(⋀x1∈YB(x1)→e(f(x1),y))→(⋀x2∈XA(x2)→e(f(x2),y))≤⋀x∈X(⋀x1∈XB(x1)→e(f(x1),f(x)))→(⋀x2∈XA(x2)→e(f(x2),f(x)))≤⋀x∈X(⋀x1∈XB(x1)→e(x1,x))→(⋀x2∈XA(x2)→e(x2,x))=sub(Bu,Au)≤sub(Aul,Bul). |
When B=0X, notice that
sub(1Y,f→L(A)u)=⋀y∈Y(1→f→L(A)u(y)) =⋀y∈Y(⋀z∈Yf→L(A)(z)→e(z,y)) =⋀y∈Y(⋀x∈XA(x)→e(f(x),y)) ≤⋀x1∈X(⋀x∈XA(x)→e(f(x),f(x1))) ≤⋀x1∈X(1X(x1)→(⋀x∈XA(x)→e(x,x1))) =⋀x1∈X(1X(x1)→Au(x1)) =sub(1X,Au) ≤sub(Aul,1lX). |
Therefore,
sub(f∗(Aul),f∗(Bul))=sub(f→L(A)ul,f→L(1X)l) =sub(f→L(A)ul,1lY) ≤sub(1Y,f→L(A)u) ≤sub(Aul,1lX) =sub(Aul,Bul). |
In this paper, we proposed the definitions of fuzzy weakly lower (upper) cut-stable map, fuzzy weakly lower (upper) cut-continuous map, and fuzzy weakly cut-preserving map. Furthermore, we obtained the equivalent characterization and the extension property of fuzzy weakly cut-stable map. In addition, we showed that the extension map of the fuzzy weakly cut-stable map was fuzzy order isomorphism under some conditions.
The authors express their gratitude to the anonymous reviewers and editor for their careful reading of the manuscript and for many valuable remarks and suggestions.
This work was supported by the National Natural Science Foundation of China (Grant Nos.12001413), Natural Science Basic Research Program of Shaanxi (No.2019JQ-869 and No.2021JQ763) and Scientific Research Project of Education Department of Shaanxi Province (No.20JK0640 and No.19JK0317)
The authors declare that there is no conflicts of interest regarding this manuscript.
[1] | G. Giers, K. H. Hofmann K. Keimel, J. D. Lawson, M. Mislove, D. S. Scott, Continuous lattices and domains, Cambridge University Press, 2003. |
[2] |
A. Bishop, A universal mapping characterization of the completion by cuts, Algebr. Univ., 8 (1978), 349–353. https://doi.org/10.1007/BF02485405 doi: 10.1007/BF02485405
![]() |
[3] |
M. Erne, The Dedekind-MacNeille completion as a reflector, Order, 8 (1991), 159–173. https://doi.org/10.1007/BF00383401 doi: 10.1007/BF00383401
![]() |
[4] |
M. Erne, Ideal completions and compactifications, Appl. Categor. Struct., 9 (2001), 217–243. https://doi.org/10.1023/A:1011260817824 doi: 10.1023/A:1011260817824
![]() |
[5] |
M. Liu, B. Zhao, A non-frame valued cartesian closed category of liminf complete fuzzy orders, Fuzzy Sets Syst., 321 (2017), 50–54. https://doi.org/10.1016/j.fss.2016.07.008 doi: 10.1016/j.fss.2016.07.008
![]() |
[6] | N. N. Ma, B. Zhao, An equivalent of algebraic Ω-categories, J. Math. Res. Appl., 37 (2017), 148–162. |
[7] |
H. L. Lai, D. X. Zhang, Closedness of the category of liminf complete fuzzy orders, Fuzzy Sets Syst., 282 (2016), 86–98. https://doi.org/10.1016/j.fss.2014.10.031 doi: 10.1016/j.fss.2014.10.031
![]() |
[8] |
W. Li, H. L. Lai, D. X. Zhang, Yoneda completeness and flat completeness of ordered fuzzy sets, Fuzzy Sets Syst., 313 (2017), 1–24. https://doi.org/10.1016/j.fss.2016.06.009 doi: 10.1016/j.fss.2016.06.009
![]() |
[9] | K. R. Wagner, Solving recursive domain equations with enriched categories, Pittsburgh: Carnegie Mellon University, School of Computer Science, 1994. |
[10] |
R. Belohlavek, Concept lattices and order in fuzzy logic, Ann. Pure Appl. Logic, 128 (2004), 277–298. https://doi.org/10.1016/j.apal.2003.01.001 doi: 10.1016/j.apal.2003.01.001
![]() |
[11] |
W. X. Xie, Q. Y. Zhang, L. Fan, The Dedekind-MacNeille completions for fuzzy posets, Fuzzy Sets Syst., 160 (2009), 2292–2316. https://doi.org/10.1016/j.fss.2008.12.002 doi: 10.1016/j.fss.2008.12.002
![]() |
[12] |
K. Y. Wang, B. Zhao, Join-completions of L-ordered sets, Fuzzy Sets Syst., 199 (2012), 92–107. https://doi.org/10.1016/j.fss.2011.12.011 doi: 10.1016/j.fss.2011.12.011
![]() |
[13] |
N. N. Ma, B. Zhao, Fuzzy cut-stable maps and its extension property, J. Intell. Fuzzy Syst., 30 (2016), 2213–2221. https://doi.org/10.3233/IFS-151990 doi: 10.3233/IFS-151990
![]() |
[14] |
R. Halas, J. Lihova, On weakly cut-stable maps, Inform. Sci., 180 (2010), 971–983. https://doi.org/10.1016/j.ins.2009.11.025 doi: 10.1016/j.ins.2009.11.025
![]() |
[15] |
R. Belohlavek, Some properties of residuated lattices, Czech. Math. J., 53 (2003), 161–171. https://doi.org/10.1023/A:1022935811257 doi: 10.1023/A:1022935811257
![]() |
[16] |
Q. Y. Zhang, W. X. Xie, L. Fan, Fuzzy complete lattices, Fuzzy Sets Syst., 160 (2009), 2275–2291. https://doi.org/10.1016/j.fss.2008.12.001 doi: 10.1016/j.fss.2008.12.001
![]() |
[17] |
N. N. Ma, B. Zhao, Some results on fuzzy ZL-continuous (algebraic) poset, Soft Comput., 22 (2018), 4549–4559. https://doi.org/10.1007/s00500-017-2924-9 doi: 10.1007/s00500-017-2924-9
![]() |
[18] | U. Hohle, S. E. Rodabaugh, Mathematical of fuzzy sets: Logic, topology, and measure theory, Kluwer Academic Publishers, Boston/Dordrecht/London, 1999. |