Loading [MathJax]/jax/output/SVG/jax.js
Research article

DTSMA: Dominant Swarm with Adaptive T-distribution Mutation-based Slime Mould Algorithm

  • Received: 27 October 2021 Revised: 02 December 2021 Accepted: 16 December 2021 Published: 04 January 2022
  • The slime mould algorithm (SMA) is a metaheuristic algorithm recently proposed, which is inspired by the oscillations of slime mould. Similar to other algorithms, SMA also has some disadvantages such as insufficient balance between exploration and exploitation, and easy to fall into local optimum. This paper, an improved SMA based on dominant swarm with adaptive t-distribution mutation (DTSMA) is proposed. In DTSMA, the dominant swarm is used improved the SMA's convergence speed, and the adaptive t-distribution mutation balances is used enhanced the exploration and exploitation ability. In addition, a new exploitation mechanism is hybridized to increase the diversity of populations. The performances of DTSMA are verified on CEC2019 functions and eight engineering design problems. The results show that for the CEC2019 functions, the DTSMA performances are best; for the engineering problems, DTSMA obtains better results than SMA and many algorithms in the literature when the constraints are satisfied. Furthermore, DTSMA is used to solve the inverse kinematics problem for a 7-DOF robot manipulator. The overall results show that DTSMA has a strong optimization ability. Therefore, the DTSMA is a promising metaheuristic optimization for global optimization problems.

    Citation: Shihong Yin, Qifang Luo, Yanlian Du, Yongquan Zhou. DTSMA: Dominant Swarm with Adaptive T-distribution Mutation-based Slime Mould Algorithm[J]. Mathematical Biosciences and Engineering, 2022, 19(3): 2240-2285. doi: 10.3934/mbe.2022105

    Related Papers:

    [1] Takao Komatsu, Ram Krishna Pandey . On hypergeometric Cauchy numbers of higher grade. AIMS Mathematics, 2021, 6(7): 6630-6646. doi: 10.3934/math.2021390
    [2] Takao Komatsu, Huilin Zhu . Hypergeometric Euler numbers. AIMS Mathematics, 2020, 5(2): 1284-1303. doi: 10.3934/math.2020088
    [3] Nadia N. Li, Wenchang Chu . Explicit formulae for Bernoulli numbers. AIMS Mathematics, 2024, 9(10): 28170-28194. doi: 10.3934/math.20241366
    [4] Taekyun Kim, Hye Kyung Kim, Dae San Kim . Some identities on degenerate hyperbolic functions arising from p-adic integrals on Zp. AIMS Mathematics, 2023, 8(11): 25443-25453. doi: 10.3934/math.20231298
    [5] Jizhen Yang, Yunpeng Wang . Congruences involving generalized Catalan numbers and Bernoulli numbers. AIMS Mathematics, 2023, 8(10): 24331-24344. doi: 10.3934/math.20231240
    [6] Taekyun Kim, Dae San Kim, Jin-Woo Park . Degenerate r-truncated Stirling numbers. AIMS Mathematics, 2023, 8(11): 25957-25965. doi: 10.3934/math.20231322
    [7] Dojin Kim, Patcharee Wongsason, Jongkyum Kwon . Type 2 degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions. AIMS Mathematics, 2022, 7(6): 9716-9730. doi: 10.3934/math.2022541
    [8] Aimin Xu . Some identities connecting Stirling numbers, central factorial numbers and higher-order Bernoulli polynomials. AIMS Mathematics, 2025, 10(2): 3197-3206. doi: 10.3934/math.2025148
    [9] Waseem A. Khan, Abdulghani Muhyi, Rifaqat Ali, Khaled Ahmad Hassan Alzobydi, Manoj Singh, Praveen Agarwal . A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties. AIMS Mathematics, 2021, 6(11): 12680-12697. doi: 10.3934/math.2021731
    [10] Xhevat Z. Krasniqi . Approximation of functions in a certain Banach space by some generalized singular integrals. AIMS Mathematics, 2024, 9(2): 3386-3398. doi: 10.3934/math.2024166
  • The slime mould algorithm (SMA) is a metaheuristic algorithm recently proposed, which is inspired by the oscillations of slime mould. Similar to other algorithms, SMA also has some disadvantages such as insufficient balance between exploration and exploitation, and easy to fall into local optimum. This paper, an improved SMA based on dominant swarm with adaptive t-distribution mutation (DTSMA) is proposed. In DTSMA, the dominant swarm is used improved the SMA's convergence speed, and the adaptive t-distribution mutation balances is used enhanced the exploration and exploitation ability. In addition, a new exploitation mechanism is hybridized to increase the diversity of populations. The performances of DTSMA are verified on CEC2019 functions and eight engineering design problems. The results show that for the CEC2019 functions, the DTSMA performances are best; for the engineering problems, DTSMA obtains better results than SMA and many algorithms in the literature when the constraints are satisfied. Furthermore, DTSMA is used to solve the inverse kinematics problem for a 7-DOF robot manipulator. The overall results show that DTSMA has a strong optimization ability. Therefore, the DTSMA is a promising metaheuristic optimization for global optimization problems.



    L. Carlitz ([1]) introduced analogues of Bernoulli numbers for the rational function (finite) field K=Fr(T), which are called Bernoulli-Carlitz numbers now. Bernoulli-Carlitz numbers have been studied since then (e.g., see [2,3,4,5,6]). According to the notations by Goss [7], Bernoulli-Carlitz numbers BCn are defined by

    xeC(x)=n=0BCnΠ(n)xn. (1.1)

    Here, eC(x) is the Carlitz exponential defined by

    eC(x)=i=0xriDi, (1.2)

    where Di=[i][i1]r[1]ri1 (i1) with D0=1, and [i]=TriT. The Carlitz factorial Π(i) is defined by

    Π(i)=mj=0Dcjj (1.3)

    for a non-negative integer i with r-ary expansion:

    i=mj=0cjrj(0cj<r). (1.4)

    As analogues of the classical Cauchy numbers cn, Cauchy-Carlitz numbers CCn ([8]) are introduced as

    xlogC(x)=n=0CCnΠ(n)xn. (1.5)

    Here, logC(x) is the Carlitz logarithm defined by

    logC(x)=i=0(1)ixriLi, (1.6)

    where Li=[i][i1][1] (i1) with L0=1.

    In [8], Bernoulli-Carlitz numbers and Cauchy-Carlitz numbers are expressed explicitly by using the Stirling-Carlitz numbers of the second kind and of the first kind, respectively. These properties are the extensions that Bernoulli numbers and Cauchy numbers are expressed explicitly by using the Stirling numbers of the second kind and of the first kind, respectively.

    On the other hand, for N1, hypergeometric Bernoulli numbers BN,n ([9,10,11,12]) are defined by the generating function

    11F1(1;N+1;x)=xN/N!exN1n=0xn/n!=n=0BN,nxnn!, (1.7)

    where

    1F1(a;b;z)=n=0(a)(n)(b)(n)znn!

    is the confluent hypergeometric function with (x)(n)=x(x+1)(x+n1) (n1) and (x)(0)=1. When N=1, Bn=B1,n are classical Bernoulli numbers defined by

    xex1=n=0Bnxnn!.

    In addition, hypergeometric Cauchy numbers cN,n (see [13]) are defined by

    12F1(1,N;N+1;x)=(1)N1xN/Nlog(1+t)N1n=1(1)n1xn/n=n=0cN,nxnn!, (1.8)

    where

    2F1(a,b;c;z)=n=0(a)(n)(b)(n)(c)(n)znn!

    is the Gauss hypergeometric function. When N=1, cn=c1,n are classical Cauchy numbers defined by

    xlog(1+x)=n=0cnxnn!.

    In [14], for N0, the truncated Bernoulli-Carlitz numbers BCN,n and the truncated Cauchy-Carlitz numbers CCN,n are defined by

    xrN/DNeC(x)N1i=0xri/Di=n=0BCN,nΠ(n)xn (1.9)

    and

    (1)NxrN/LNlogC(x)N1i=0(1)ixri/Li=n=0CCN,nΠ(n)xn, (1.10)

    respectively. When N=0, BCn=BC0,n and CCn=CC0,n are the original Bernoulli-Carlitz numbers and Cauchy-Carlitz numbers, respectively. These numbers BCN,n and CCN,n in (1.9) and (1.10) in function fields are analogues of hypergeometric Bernoulli numbers in (1.7) and hypergeometric Cauchy numbers in (1.8) in complex numbers, respectively. In [15], the truncated Euler polynomials are introduced and studied in complex numbers.

    It is known that any real number α can be expressed uniquely as the simple continued fraction expansion:

    α=a0+1a1+1a2+1a3+, (1.11)

    where a0 is an integer and a1,a2, are positive integers. Though the expression is not unique, there exist general continued fraction expansions for real or complex numbers, and in general, analytic functions f(x):

    f(x)=a0(x)+b1(x)a1(x)+b2(x)a2(x)+b3(x)a3(x)+, (1.12)

    where a0(x),a1(x), and b1(x),b2(x), are polynomials in x. In [16,17] several continued fraction expansions for non-exponential Bernoulli numbers are given. For example,

    n=1B2n(4x)n=x1+12+x12+13+x13+14+x. (1.13)

    More general continued fractions expansions for analytic functions are recorded, for example, in [18]. In this paper, we shall give expressions for truncated Bernoulli-Carlitz numbers and truncated Cauchy-Carlitz numbers.

    In [19], the hypergeometric Bernoulli numbers BN,n (N1, n1) can be expressed as

    BN,n=(1)nn!|N!(N+1)!10N!(N+2)!N!(N+1)!10N!(N+n1)!N!(N+n2)!N!(N+1)!1N!(N+n)!N!(N+n1)!N!(N+2)!N!(N+1)!|.

    When N=1, we have a determinant expression of Bernoulli numbers ([20,p.53]). In addition, relations between BN,n and BN1,n are shown in [19].

    In [21,22], the hypergeometric Cauchy numbers cN,n (N1, n1) can be expressed as

    cN,n=n!|NN+110NN+2NN+110NN+n1NN+n2NN+11NN+nNN+n1NN+2NN+1|.

    When N=1, we have a determinant expression of Cauchy numbers ([20,p.50]).

    Recently, in ([23]) the truncated Euler-Carlitz numbers ECN,n (N0), introduced as

    xq2N/D2NCoshC(x)N1i=0xq2i/D2i=n=0ECN,nΠ(n)xn,

    are shown to have some determinant expressions. When N=0, ECn=EC0,n are the Euler-Carlitz numbers, denoted by

    xCoshC(x)=n=0ECnΠ(n)xn,

    where

    CoshC(x)=i=0xq2iD2i

    is the Carlitz hyperbolic cosine. This reminds us that the hypergeometric Euler numbers EN,n ([24]), defined by

    t2N/(2N)!coshtN1n=0t2n/(2n)!=n=0EN,nxnn!,

    have a determinant expression [25,Theorem 2.3] for N0 and n1,

    EN,2n=(1)n(2n)!|(2N)!(2N+2)!10(2N)!(2N+4)!01(2N)!(2N+2n)!(2N)!(2N+4)!(2N)!(2N+2)!|.

    When N=0, we have a determinant expression of Euler numbers (cf. [20,p.52]). More general cases are studied in [26].

    In this paper, we also give similar determinant expressions of truncated Bernoulli-Carlitz numbers and truncated Cauchy-Carlitz numbers as natural extensions of those of hypergeometric numbers.

    Let the n-th convergent of the continued fraction expansion of (1.12) be

    Pn(x)Qn(x)=a0(x)+b1(x)a1(x)+b2(x)a2(x)++bn(x)an(x). (2.1)

    There exist the fundamental recurrence formulas:

    Pn(x)=an(x)Pn1(x)+bn(x)Pn2(x)(n1),Qn(x)=an(x)Qn1(x)+bn(x)Qn2(x)(n1), (2.2)

    with P1(x)=1, Q1(x)=0, P0(x)=a0(x) and Q0(x)=1.

    From the definition in (1.9), truncated Bernoulli-Carlitz numbers satisfy the relation

    (DNi=0xrN+irNDN+i)(n=0BCN,nΠ(n)xn)=1.

    Thus,

    Pm(x)=DN+mDN,Qm(x)=DN+mmi=0xrN+irNDN+i

    yield that

    Qm(x)n=0BCN,nΠ(n)xnPm(x)(m).

    Notice that the n-th convergent pn/qn of the simple continued fraction (1.11) of a real number α yields the approximation property

    |qnαpn|<1qn+1.

    Now,

    P0(x)Q0(x)=1=11,P1(x)Q1(x)=1xrN+1rNDN+1/DN+xrN+1rN

    and Pn(x) and Qn(x) (n2) satisfy the recurrence relations

    Pn(x)=(DN+nDN+n1+xrN+nrN+n1)Pn1(x)DN+n1DN+n2xrN+nrN+n1Pn2(x)Qn(x)=(DN+nDN+n1+xrN+nrN+n1)Qn1(x)DN+n1DN+n2xrN+nrN+n1Qn2(x)

    (They are proved by induction). Since by (2.2) for n2

    an(x)=DN+nDN+n1+xrN+nrN+n1andbn(x)=DN+n1DN+n2xrN+nrN+n1,

    we have the following continued fraction expansion.

    Theorem 1.

    n=0BCN,nΠ(n)xn=1xrN+1rNDN+1DN+xrN+1rNDN+1DNxrN+2rN+1DN+2DN+1+xrN+2rN+1DN+2DN+1xrN+3rN+2DN+3DN+2+xrN+3rN+2.

    Put N=0 in Theorem 1 to illustrate a simpler case. Then, we have a continued fraction expansion concerning the original Bernoulli-Carlitz numbers.

    Corollary 1.

    n=0BCnΠ(n)xn=1xr1D1+xr1D1xr2rD2D1+xr2rD2D1xr3r2D3D2+xr3r2.

    From the definition in (1.10), truncated Cauchy-Carlitz numbers satisfy the relation

    (LNi=0(1)ixrN+irNLN+i)(n=0CCN,nΠ(n)xn)=1.

    Thus,

    Pm(x)=LN+mLN,Qm(x)=LN+mmi=0(1)ixrN+irNLN+i

    yield that

    Qm(x)n=0CCN,nΠ(n)xnPm(x)(m).

    Now,

    P0(x)Q0(x)=1=11,P1(x)Q1(x)=1+xrN+1rNLN+1/LNxrN+1rN

    and Pn(x) and Qn(x) (n2) satisfy the recurrence relations

    Pn(x)=(LN+nLN+n1xrN+nrN+n1)Pn1(x)+LN+n1LN+n2xrN+nrN+n1Pn2(x)Qn(x)=(LN+nLN+n1xrN+nrN+n1)Qn1(x)+LN+n1LN+n2xrN+nrN+n1Qn2(x).

    Since by (2.2) for n2

    an(x)=LN+nLN+n1xrN+n+rN+n1andbn(x)=LN+n1LN+n2xrN+nrN+n1,

    we have the following continued fraction expansion.

    Theorem 2.

    n=0CCN,nΠ(n)xn=1+xrN+1rNLN+1LNxrN+1rN+LN+1LNxrN+2rN+1LN+2LN+1xrN+2rN+1+LN+2LN+1xrN+3rN+2LN+3LN+2xrN+3rN+2+.

    In [14], some expressions of truncated Cauchy-Carlitz numbers have been shown. One of them is for integers N0 and n1,

    CCN,n=Π(n)nk=1(LN)ki1,,ik1rN+i1++rN+ik=n+krN(1)i1++ikLN+i1LN+ik (3.1)

    [14,Theorem 2].

    Now, we give a determinant expression of truncated Cauchy-Carlitz numbers.

    Theorem 3. For integers N0 and n1,

    CCN,n=Π(n)|a110a2a10a11(1)nana2a1|,

    where

    al=(1)iLNδlLN+i(l1)

    with

    δl={1if l=rN+irN(i=0,1,);0otherwise. (3.2)

    We need the following Lemma in [27] in order to prove Theorem 3.

    Lemma 1. Let {αn}n0 be a sequence with α0=1, and R(j) be a function independent of n. Then

    αn=|R(1)10R(2)R(1)10R(n1)R(n2)R(1)1R(n)R(n1)R(2)R(1)|. (3.3)

    if and only if

    αn=nj=1(1)j1R(j)αnj(n1) (3.4)

    with α0=1.

    Proof of Theorem 3. By the definition (1.10) with (1.6), we have

    1=(i=0(1)iLNLN+i)xrN+irN(m=0CCmΠ(m)xm)=(l=0alxl)(m=0CCmΠ(m)xm)=n=0l=0alCCnlΠ(nl)xn.

    Thus, for n1, we get

    l=0alCCnlΠ(nl)=0.

    By Lemma 1, we have

    CCnΠ(n)=nl=1alCCnlΠ(nl)=nl=1(1)l1(1)lalCCnlΠ(nl)=|a110a2a10a11(1)nana2a1|.

    Examples. When n=rN+1rN,

    CCrN+1rNΠ(rN+1rN)=|0101(1)rN+1rNarN+1rN00|=(1)rN+1rN+1(1)rN+1rN(1)2N+1LNLN+1=LNLN+1.

    Let n=rN+2rN. For simplicity, put

    ˉa=(1)rN+1rN(1)2N+1LNLN+1,ˆa=(1)rN+2rN(1)2N+2LNLN+2.

    Then by expanding at the first column, we have

    CCrN+1rNΠ(rN+1rN)=|0100ˉa00ˆa00rN+2rN+1ˉa0100rN+1rN1|=(1)rN+1rN+1ˉa|11ˉarN+1rN101ˉa210rN+1rN1|+(1)rN+2rN+1ˆa|10ˉa0ˉa1|.

    The second term is equal to

    (1)rN+2rN+1(1)rN+2rNLNLN+2=LNLN+2.

    The first term is

    (1)rN+1rN+1ˉa|01ˉarN+22rN+1+rNˉa10rN+1rN1|=(1)2(rN+1rN+1)ˉa2|11ˉarN+1rN101ˉa210rN+1rN1|=(1)r(rN+1rN+1)ˉar|0101ˉa00|rN+1rN=(1)(r+1)(rN+1rN+1)ˉar+1=(1)(r+1)(rN+1rN+1)(1)(rN+1rN)(r+1)(1)r+1Lr+1NLr+1N+1=Lr+1NLr+1N+1.

    Therefore,

    CCrN+1rNΠ(rN+1rN)=Lr+1NLr+1N+1LNLN+2.

    From this procedure, it is also clear that CCN,n=0 if rN+1rNn, since all the elements of one column (or row) become zero.

    In [14], some expressions of truncated Bernoulli-Carlitz numbers have been shown. One of them is for integers N0 and n1,

    BCN,n=Π(n)nk=1(DN)ki1,,ik1rN+i1++rN+ik=n+krN1DN+i1DN+ik (4.1)

    [14,Theorem 1].

    Now, we give a determinant expression of truncated Bernoulli-Carlitz numbers.

    Theorem 4. For integers N0 and n1,

    BCN,n=Π(n)|d110d2d10d11(1)ndnd2d1|,

    where

    dl=DNδlDN+i(l1)

    with δl as in (3.2).

    Proof. The proof is similar to that of Theorem 3, using (1.9) and (1.2).

    Example. Let n=2(rN+1rN). For convenience, put

    ˉd=DNDN+1.

    Then, we have

    BCN,2(rN+1rN)Π(2(rN+1rN))=|010ˉdˉdrN+1rN+1100rN+1rN1|=(1)rN+1rN+1|11ˉdrN+1rN10ˉd110rN+1rN1|=(1)rN+1rN+1ˉd|011ˉd0|rN+1rN=(1)2(rN+1rN+1)ˉd2|11|=D2ND2N+1.

    It is also clear that BCN,n=0 if rN+1rNn.

    We shall use Trudi's formula to obtain different explicit expressions and inversion relations for the numbers CCN,n and BCN,n.

    Lemma 2. For a positive integer n, we have

    |a1a00a2a10an1a1a0anan1a2a1|=t1+2t2++ntn=n(t1++tnt1,,tn)(a0)nt1tnat11at22atnn,

    where (t1++tnt1,,tn)=(t1++tn)!t1!tn! are the multinomial coefficients.

    This relation is known as Trudi's formula [28,Vol.3,p.214], [29] and the case a0=1 of this formula is known as Brioschi's formula [30], [28,Vol.3,pp.208–209].

    In addition, there exists the following inversion formula (see, e.g. [27]), which is based upon the relation

    nk=0(1)nkαkD(nk)=0(n1).

    Lemma 3. If {αn}n0 is a sequence defined by α0=1 and

    αn=|D(1)10D(2)01D(n)D(2)D(1)|, then D(n)=|α110α201αnα2α1|.

    From Trudi's formula, it is possible to give the combinatorial expression

    αn=t1+2t2++ntn=n(t1++tnt1,,tn)(1)nt1tnD(1)t1D(2)t2D(n)tn.

    By applying these lemmata to Theorem 3 and Theorem 4, we obtain an explicit expression for the truncated Cauchy-Carlitz numbers and the truncated Bernoulli-Carlitz numbers.

    Theorem 5. For integers N0 and n1, we have

    CCN,n=Π(n)t1+2t2++ntn=n(t1++tnt1,,tn)(1)nt2t4t2n/2at11atnn,

    where an are given in Theorem 3.

    Theorem 6. For integers N0 and n1, we have

    BCN,n=Π(n)t1+2t2++ntn=n(t1++tnt1,,tn)(1)nt2t4t2n/2dt11dtnn,

    where dn are given in Theorem 4.

    By applying the inversion relation in Lemma 3 to Theorem 3 and Theorem 4, we have the following.

    Theorem 7. For integers N0 and n1, we have

    an=(1)n|CCN,1Π(1)10CCN,2Π(2)CCN,1Π(1)10CCN,n1Π(n1)CCN,n2Π(n2)CCN,1Π(1)1CCN,nΠ(n)CCN,n1Π(n1)CCN,2Π(2)CCN,1Π(1)|,

    where an is given in Theorem 3.

    Theorem 8. For integers N0 and n1, we have

    dn=(1)n|BCN,1Π(1)10BCN,2Π(2)BCN,1Π(1)10BCN,n1Π(n1)BCN,n2Π(n2)BCN,1Π(1)1BCN,nΠ(n)BCN,n1Π(n1)BCN,2Π(2)BCN,1Π(1)|,

    where dn is given in Theorem 4.

    We would like to thank the referees for their valuable comments.

    The authors declare no conflict of interest.



    [1] J. Fliege, L. M. G. Drummond, B. F. Svaiter, Newton's method for multiobjective optimization, SIAM J. Optim., 20 (2009), 602-626. doi: 10.1137/08071692X. doi: 10.1137/08071692X
    [2] Ž. Povalej, Quasi-Newton's method for multiobjective optimization, J. Comput. Appl. Math., 255 (2013), 765-777. doi: 10.1016/j.cam.2013.06.045.
    [3] J. Zhang, Y. Xiao, Z. Wei, Nonlinear conjugate gradient methods with sufficient descent condition for large-scale unconstrained optimization, Math. Probl. Eng., 2009 (2009), 1-16. doi: 10.1155/2009/243290. doi: 10.1155/2009/243290
    [4] M.-W. Li, Y.-T. Wang, J. Geng, W.-C. Hong, Chaos cloud quantum bat hybrid optimization algorithm, Nonlinear Dyn., 103 (2021), 1167-1193. doi: 10.1007/s11071-020-06111-6. doi: 10.1007/s11071-020-06111-6
    [5] D. Izci, S. Ekinci, Comparative performance analysis of slime mould algorithm for efficient design of proportional-integral-derivative controller, Electrica, 21 (2021), 151-159. doi: 10.5152/electrica.2021.20077. doi: 10.5152/electrica.2021.20077
    [6] C. Tang, Y. Zhou, Z. Tang, Q. Luo, Teaching-learning-based pathfinder algorithm for function and engineering optimization problems, Appl. Intell., (2020). doi: 10.1007/s10489-020-02071-x. doi: 10.1007/s10489-020-02071-x
    [7] J. J. Grefenstette, Genetic algorithms and machine learning, Mach. Learn., 3 (1988), 95-99. doi: 10.1023/A:1022602019183. doi: 10.1023/A:1022602019183
    [8] R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., 11 (1997), 341-359. doi: 10.1023/A:1008202821328. doi: 10.1023/A:1008202821328
    [9] S. Kirkpatrick, Optimization by simulated annealing: Quantitative studies, J. Stat. Phys., 34 (1984), 975-986. doi: 10.1007/BF01009452. doi: 10.1007/BF01009452
    [10] L. K. Grover, A fast quantum mechanical algorithm for database search, Proceedings of the twenty-eighth annual ACM symposium on Theory of computing - STOC '96, (1996), 212-219. doi: 10.1145/237814.237866.
    [11] O. K. Erol, I. Eksin, A new optimization method: Big Bang-Big Crunch, Adv. Eng. Softw., 37 (2005), 106-111. doi: 10.1016/j.advengsoft.2005.04.005. doi: 10.1016/j.advengsoft.2005.04.005
    [12] B. Alatas, ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization, Expert Syst. Appl., 38 (2011), 13170-13180. doi: 10.1016/j.eswa.2011.04.126. doi: 10.1016/j.eswa.2011.04.126
    [13] H. Shareef, A. A. Ibrahim, A. H. Mutlag, Lightning search algorithm, Appl. Soft Comput., 36 (2015), 315-333. doi: 10.1016/j.asoc.2015.07.028. doi: 10.1016/j.asoc.2015.07.028
    [14] S. Mirjalili, S. M. Mirjalili, A. Hatamlou, Multi-Verse Optimizer: A nature-inspired algorithm for global optimization, Neural Comput. Appl., 27 (2015), 495-513. doi: 10.1007/s00521-015-1870-7. doi: 10.1007/s00521-015-1870-7
    [15] V. K. Patel, V. J. Savsani, Heat transfer search (HTS): A novel optimization algorithm, Inf. Sci., 324 (2015), 217-246. doi: 10.1016/j.ins.2015.06.044. doi: 10.1016/j.ins.2015.06.044
    [16] W. Zhao, L. Wang, Z. Zhang, A novel atom search optimization for dispersion coefficient estimation in groundwater, Future Gener. Comput. Syst., 91 (2018), 601-610. doi: 10.1016/j.future.2018.05.037. doi: 10.1016/j.future.2018.05.037
    [17] A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili, Equilibrium optimizer: A novel optimization algorithm, Knowl.-Based Syst., 191 (2020), 105190. doi: 10.1016/j.knosys.2019.105190. doi: 10.1016/j.knosys.2019.105190
    [18] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, (1995), 39-43. doi: 10.1109/MHS.1995.494215.
    [19] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Glob. Optim., 39 (2007), 459-471. doi: 10.1007/s10898-007-9149-x. doi: 10.1007/s10898-007-9149-x
    [20] R. V. Rao, V. J. Savsani, D. P. Vakharia, Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems, Comput.-Aided Des., 43 (2011), 303-315. doi: 10.1016/j.cad.2010.12.015. doi: 10.1016/j.cad.2010.12.015
    [21] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey Wolf Optimizer, Adv. Eng. Softw., 69 (2014), 46-61. doi: 10.1016/j.advengsoft.2013.12.007. doi: 10.1016/j.advengsoft.2013.12.007
    [22] S. Mirjalili, A. Lewis, The Whale Optimization Algorithm, Adv. Eng. Softw., 95 (2016), 51-67. doi: 10.1016/j.advengsoft.2016.01.008. doi: 10.1016/j.advengsoft.2016.01.008
    [23] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili, Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Softw., 114 (2017), 163-191. doi: 10.1016/j.advengsoft.2017.07.002. doi: 10.1016/j.advengsoft.2017.07.002
    [24] E. Cuevas, M. Cienfuegos, D. Zaldívar, M. Pérez-Cisneros, A swarm optimization algorithm inspired in the behavior of the social-spider, Expert Syst. Appl., 40 (2013), 6374-6384. doi: 10.1016/j.eswa.2013.05.041. doi: 10.1016/j.eswa.2013.05.041
    [25] G. Dhiman, V. Kumar, Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems, Knowl.-Based Syst., 165 (2018), 169-196. doi: 10.1016/j.knosys.2018.11.024. doi: 10.1016/j.knosys.2018.11.024
    [26] A. Faramarzi, M. Heidarinejad, S. Mirjalili, A. H. Gandomi, Marine Predators Algorithm: A nature-inspired metaheuristic, Expert Syst. Appl., 152 (2020), 113377. doi: 10.1016/j.eswa.2020.113377. doi: 10.1016/j.eswa.2020.113377
    [27] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: Algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849-872. doi: 10.1016/j.future.2019.02.028. doi: 10.1016/j.future.2019.02.028
    [28] H. A. Alsattar, A. A. Zaidan, B. B. Zaidan, Novel meta-heuristic bald eagle search optimisation algorithm, Artif. Intell. Rev., 53 (2019), 2237-2264. doi: 10.1007/s10462-019-09732-5. doi: 10.1007/s10462-019-09732-5
    [29] S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300-323. doi: 10.1016/j.future.2020.03.055. doi: 10.1016/j.future.2020.03.055
    [30] M. S. Braik, Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems, Expert Syst. Appl., 174 (2021), 114685. doi: 10.1016/j.eswa.2021.114685. doi: 10.1016/j.eswa.2021.114685
    [31] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1 (1996), 67-82. doi: 10.1109/4235.585893. doi: 10.1109/4235.585893
    [32] Y. Zhang, X. Han, Y. Dong, J. Xie, G. Xie, X. Xu, A novel state transition simulated annealing algorithm for the multiple traveling salesmen problem, J. Supercomput., (2021). doi: 10.1007/s11227-021-03744-1. doi: 10.1007/s11227-021-03744-1
    [33] K. Yu, B. Qu, C. Yue, S. Ge, X. Chen, J. Liang, A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module, Appl. Energy, 237 (2019), 241-257. doi: 10.1016/j.apenergy.2019.01.008. doi: 10.1016/j.apenergy.2019.01.008
    [34] C. Fan, Y. Zhou, Z. Tang, Neighborhood centroid opposite-based learning Harris Hawks optimization for training neural networks, Evol. Intell., (2020). doi: 10.1007/s12065-020-00465-x. doi: 10.1007/s12065-020-00465-x
    [35] A. A. Ewees, L. Abualigah, D. Yousri, Z. Y. Algamal, M. A. A. AI-qaness, R. A. Ibrahim, et al., Improved Slime Mould Algorithm based on Firefly Algorithm for feature selection: A case study on QSAR model, Eng. Comput., (2021). doi: 10.1007/s00366-021-01342-6. doi: 10.1007/s00366-021-01342-6
    [36] M. Abdel-Basset, R. Mohamed, R. K. Chakrabortty, M. J. Ryan, S. Mirjalili, An efficient binary slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection, Comput. Ind. Eng., 153 (2021), 107078. doi: 10.1016/j.cie.2020.107078. doi: 10.1016/j.cie.2020.107078
    [37] M. Abdel-Basset, V. Chang, R. Mohamed, HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images, Appl. Soft Comput., 95 (2020), 106642. doi: 10.1016/j.asoc.2020.106642. doi: 10.1016/j.asoc.2020.106642
    [38] S. Zhao, P. Wang, A. A. Heidari, H. Chen, H. Turabieh, M. Mafarja, et al., Multilevel threshold image segmentation with diffusion association slime mould algorithm and Renyi's entropy for chronic obstructive pulmonary disease, Comput. Biol. Med., 134 (2021), 104427. doi: 10.1016/j.compbiomed.2021.104427. doi: 10.1016/j.compbiomed.2021.104427
    [39] M. K. Naik, R. Panda, A. Abraham, Normalized square difference based multilevel thresholding technique for multispectral images using leader slime mould algorithm, J. King Saud Univ. - Comput. Inf. Sci., (2020). doi: 10.1016/j.jksuci.2020.10.030. doi: 10.1016/j.jksuci.2020.10.030
    [40] D. Yousri, A. Fathy, H. Rezk, T. S. Babu, M. R. Berber, A reliable approach for modeling the photovoltaic system under partial shading conditions using three diode model and hybrid marine predators-slime mould algorithm, Energy Convers. Manag., 243 (2021), 114269. doi: 10.1016/j.enconman.2021.114269. doi: 10.1016/j.enconman.2021.114269
    [41] M. Mostafa, H. Rezk, M. Aly, E. M. Ahmed, A new strategy based on slime mould algorithm to extract the optimal model parameters of solar PV panel, Sustain. Energy Technol. Assess., 42 (2020), 100849. doi: 10.1016/j.seta.2020.100849. doi: 10.1016/j.seta.2020.100849
    [42] A. A. El-Fergany, Parameters identification of PV model using improved slime mould optimizer and Lambert W-function, Energy Rep., 7 (2021), 875-887. doi: 10.1016/j.egyr.2021.01.093. doi: 10.1016/j.egyr.2021.01.093
    [43] Y. Liu, A. A. Heidari, X. Ye, G. Liang, H. Chen, C. He, Boosting slime mould algorithm for parameter identification of photovoltaic models, Energy, 234 (2021), 121164. doi: 10.1016/j.energy.2021.121164. doi: 10.1016/j.energy.2021.121164
    [44] C. Kumar, T. D. Raj, M. Premkumar, T. D. Raj, A new stochastic slime mould optimization algorithm for the estimation of solar photovoltaic cell parameters, Optik, 223 (2020), 165277. doi: 10.1016/j.ijleo.2020.165277. doi: 10.1016/j.ijleo.2020.165277
    [45] D. Agarwal, P. S. Bharti, Implementing modified swarm intelligence algorithm based on Slime moulds for path planning and obstacle avoidance problem in mobile robots, Appl. Soft Comput., 107 (2021), 107372. doi: 10.1016/j.asoc.2021.107372. doi: 10.1016/j.asoc.2021.107372
    [46] R. M. Rizk-Allah, A. E. Hassanien, D. Song, Chaos-opposition-enhanced slime mould algorithm for minimizing the cost of energy for the wind turbines on high-altitude sites, ISA Trans., (2020). doi: 10.1016/j.isatra.2021.04.011. doi: 10.1016/j.isatra.2021.04.011
    [47] M. H. Hassan, S. Kamel, L. Abualigah, A. Eid, Development and application of slime mould algorithm for optimal economic emission dispatch, Expert Syst. Appl., 182 (2021), 115205. doi: 10.1016/j.eswa.2021.115205. doi: 10.1016/j.eswa.2021.115205
    [48] Y. Wei, Y. Zhou, Q. Luo, W. Deng, Optimal reactive power dispatch using an improved slime mould algorithm, Energy Reports, 7 (2021), 8742-8759. doi: 10.1016/j.egyr.2021.11.138. doi: 10.1016/j.egyr.2021.11.138
    [49] B. Abdollahzadeh, S. Barshandeh, H. Javadi, N. Epicoco, An enhanced binary slime mould algorithm for solving the 0-1 knapsack problem, Eng. Comput., (2021). doi: 10.1007/s00366-021-01470-z. doi: 10.1007/s00366-021-01470-z
    [50] S. L. Zubaidi, I. H. Abdulkareem, K. S. Hashim, H. Al-Bugharbee, H. M. Ridha, S. K. Gharghan, et al., Hybridised Artificial Neural Network Model with Slime Mould Algorithm: A Novel Methodology for Prediction of Urban Stochastic Water Demand, Water, 12 (2020), 2692. doi: 10.3390/w12102692. doi: 10.3390/w12102692
    [51] Z. Chen, W. Liu, An Efficient Parameter Adaptive Support Vector Regression Using K-Means Clustering and Chaotic Slime Mould Algorithm, IEEE Access, 8 (2020), 156851-156862. doi: 10.1109/ACCESS.2020.3018866. doi: 10.1109/ACCESS.2020.3018866
    [52] S. Ekinci, D. Izci, H. L. Zeynelgil, S. Orenc, An Application of Slime Mould Algorithm for Optimizing Parameters of Power System Stabilizer, in 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, (2020), 1-5. doi: 10.1109/ISMSIT50672.2020.9254597.
    [53] Y. M. Wazery, E. Saber, E. H. Houssein, A. A. Ali, E. Amer, An Efficient Slime Mould Algorithm Combined With K-Nearest Neighbor for Medical Classification Tasks, IEEE Access, 9 (2021), 113666-113682. doi: 10.1109/ACCESS.2021.3105485. doi: 10.1109/ACCESS.2021.3105485
    [54] M. Premkumar, P. Jangir, R. Sowmya, H. H. Alhelou, A. A. Heidari, H. Chen, MOSMA: Multi-Objective Slime Mould Algorithm Based on Elitist Non-Dominated Sorting, IEEE Access, 9 (2021), 3229-3248. doi: 10.1109/ACCESS.2020.3047936. doi: 10.1109/ACCESS.2020.3047936
    [55] C. Yu, A. Asghar Heidari, X. Xue, L. Zhang, H. Chen, W. Chen, Boosting Quantum Rotation Gate Embedded Slime Mould Algorithm, Expert Syst. Appl., (2021), 115082. doi: 10.1016/j.eswa.2021.115082. doi: 10.1016/j.eswa.2021.115082
    [56] E. H. Houssein, M. A. Mahdy, M. J. Blondin, D. Shebl, W. M. Mohamed, Hybrid slime mould algorithm with adaptive guided differential evolution algorithm for combinatorial and global optimization problems, Expert Syst. Appl., 174 (2021), 114689. doi: 10.1016/j.eswa.2021.114689. doi: 10.1016/j.eswa.2021.114689
    [57] H. Ren, J. Li, H. Chen, C. Li, Adaptive levy-assisted salp swarm algorithm: Analysis and optimization case studies, Math. Comput. Simul., 181 (2020), 380-409. doi: 10.1016/j.matcom.2020.09.027. doi: 10.1016/j.matcom.2020.09.027
    [58] J. Zhao, Z.-M. Gao, W. Sun, The improved slime mould algorithm with Levy flight, J. Phys. Conf. Ser., 1617 (2020), 012033. doi: 10.1088/1742-6596/1617/1/012033.
    [59] X. Zhang, Y. Xu, C. Yu, A. A. Heidari, S. Li, H. Chen, et al., Gaussian mutational chaotic fruit fly-built optimization and feature selection, Expert Syst. Appl., 141 (2019), 112976. doi: 10.1016/j.eswa.2019.112976.
    [60] S. Song, P. Wang, A. A. Heidari, M. Wang, X. Zhao, H. Chen, et al., Dimension decided Harris hawks optimization with Gaussian mutation: Balance analysis and diversity patterns, Knowl.-Based Syst., 215 (2020), 106425. doi: 10.1016/j.knosys.2020.106425.
    [61] N. Kumar, I. Hussain, B. Singh, B. Panigrahi, Single Sensor-Based MPPT of Partially Shaded PV System for Battery Charging by Using Cauchy and Gaussian Sine Cosine Optimization, IEEE Trans. Energy Convers., (2017), 983-992. doi: 10.1109/TEC.2017.2669518. doi: 10.1109/TEC.2017.2669518
    [62] S. Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowl.-Based Syst., 89 (2015), 228-249. doi: 10.1016/j.knosys.2015.07.006. doi: 10.1016/j.knosys.2015.07.006
    [63] S. Mirjalili, The Ant Lion Optimizer, Adv. Eng. Softw., 83 (2015), 80-98. doi: 10.1016/j.advengsoft.2015.01.010.
    [64] S. Mirjalili, Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput. Appl., 27 (2016), 1053-1073. doi: 10.1007/s00521-015-1920-1.
    [65] S. Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems, Knowl.-Based Syst., 96 (2016), 120-133. doi: 10.1016/j.knosys.2015.12.022. doi: 10.1016/j.knosys.2015.12.022
    [66] H. Yapici, N. Cetinkaya, A new meta-heuristic optimizer: Pathfinder algorithm, Appl. Soft Comput., 78 (2019), 545-568. doi: 10.1007/s13369-014-1156-x. doi: 10.1007/s13369-014-1156-x
    [67] S. Mirjalili, A. Lewis, A. S. Sadiq, Autonomous Particles Groups for Particle Swarm Optimization, Arab. J. Sci. Eng., 39 (2014), 4683-4697. doi: 10.1007/s13369-014-1156-x. doi: 10.1007/s13369-014-1156-x
    [68] L. dos S. Coelho, Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems, Expert Syst. Appl., 37 (2010), 1676-1683. doi: 10.1016/j.eswa.2009.06.044. doi: 10.1016/j.eswa.2009.06.044
    [69] S. Mirjalili, S. Z. M. Hashim, A new hybrid PSOGSA algorithm for function optimization, 2010 International Conference on Computer and Information Application, (2010), 374-377. doi: 10.1109/ICCIA.2010.6141614.
    [70] S. Rahnamayan, J. Jesuthasan, F. Bourennani, H. Salehinejad, G. F. Naterer, Computing opposition by involving entire population, 2014 IEEE Congress on Evolutionary Computation (CEC), (2014), 1800-1807. doi: 10.1109/CEC.2014.6900329.
    [71] M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, H. Faris, MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems, Appl. Soft Comput., 97 (2020), 106761. doi: 10.1016/j.asoc.2020.106761.
    [72] Y. Li, X. Lin, J. Liu, An Improved Gray Wolf Optimization Algorithm to Solve Engineering Problems, Sustainability, 13 (2021), 3208. doi: 10.3390/su13063208.
    [73] C. Tang, Y. Zhou, Q. Luo, Z. Tang, An enhanced pathfinder algorithm for engineering optimization problems, Eng. Comput., (2021). doi: 10.1007/s00366-021-01286-x.
    [74] A. G. Hussien, M. Amin, A self-adaptive Harris Hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection, Int. J. Mach. Learn. Cybern., (2021). doi: 10.1007/s13042-021-01326-4. doi: 10.1007/s13042-021-01326-4
    [75] A. H. Gandomi, X.-S. Yang, A. H. Alavi, Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Eng. Comput., 29 (2011), 17-35. doi: 10.1007/s00366-011-0241-y. doi: 10.1007/s00366-011-0241-y
    [76] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, A. H. Gandomi, The Arithmetic Optimization Algorithm, Comput. Methods Appl. Mech. Eng., 376 (2020), 113609. doi: 10.1016/j.cma.2020.113609.
    [77] S. Gupta, K. Deep, A. P. Engelbrecht, A memory guided sine cosine algorithm for global optimization, Eng. Appl. Artif. Intell., 93 (2020), 103718. doi: 10.1016/j.engappai.2020.103718. doi: 10.1016/j.engappai.2020.103718
    [78] S. Gupta, K. Deep, A memory-based Grey Wolf Optimizer for global optimization tasks, Appl. Soft Comput., 93 (2020), 106367. doi: 10.1016/j.asoc.2020.106367. doi: 10.1016/j.asoc.2020.106367
    [79] S. Saremi, S. Mirjalili, A. Lewis, Grasshopper Optimisation Algorithm: Theory and application, Adv. Eng. Softw., 105 (2017), 30-47. doi: 10.1016/j.advengsoft.2017.01.004. doi: 10.1016/j.advengsoft.2017.01.004
    [80] V. K. Kamboj, A. Nandi, A. Bhadoria, S. Sehgal, An intensify Harris Hawks optimizer for numerical and engineering optimization problems, Appl. Soft Comput., 89 (2019), 106018. doi: 10.1016/j.asoc.2019.106018. doi: 10.1016/j.asoc.2019.106018
    [81] A. Sadollah, A. Bahreininejad, H. Eskandar, M. Hamdi, Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems, Appl. Soft Comput., 13 (2013), 2592-2612. doi: 10.1016/j.asoc.2012.11.026. doi: 10.1016/j.asoc.2012.11.026
    [82] D. Wei, Z. Wang, L. Si, C. Tan, Preaching-inspired swarm intelligence algorithm and its applications, Knowl.-Based Syst., 211 (2020), 106552. doi: 10.1016/j.knosys.2020.106552. doi: 10.1016/j.knosys.2020.106552
    [83] C. Chen, X. Wang, H. Yu, N. Zhao, M. Wang, H. Chen, An Enhanced Comprehensive Learning Particle Swarm Optimizer with the Elite-Based Dominance Scheme, Complexity, 2020 (2020), 1-24. doi: 10.1155/2020/4968063. doi: 10.1155/2020/4968063
    [84] L. Abualigah, D. Yousri, M. Abd Elaziz, A. A. Ewees, M. A. A. Al-qaness, A. H. Gandomi, Aquila Optimizer: A novel meta-heuristic optimization algorithm, Comput. Ind. Eng., 157 (2021), 107250. doi: 10.1016/j.cie.2021.107250. doi: 10.1016/j.cie.2021.107250
    [85] H. Chen, M. Wang, X. Zhao, A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems, Appl. Math. Comput., 369 (2019), 124872. doi: 10.1016/j.amc.2019.124872. doi: 10.1016/j.amc.2019.124872
    [86] E. Zahara, Y.-T. Kao, Hybrid Nelder-Mead simplex search and particle swarm optimization for constrained engineering design problems, Expert Syst. Appl., 36 (2009), 3880-3886. doi: 10.1016/j.eswa.2008.02.039. doi: 10.1016/j.eswa.2008.02.039
    [87] M. Wang, A. A. Heidari, M. Chen, H. Chen, X. Zhao, X. Cai, Exploratory differential ant lion-based optimization, Expert Syst. Appl., 159 (2020), 113548. doi: 10.1016/j.eswa.2020.113548. doi: 10.1016/j.eswa.2020.113548
    [88] X. Yang, W. Li, L. Su, Y. Wang, A. Yang, An improved evolution fruit fly optimization algorithm and its application, Neural Comput. Appl., 32 (2019), 9897-9914. doi: 10.1007/s00521-019-04512-2. doi: 10.1007/s00521-019-04512-2
    [89] B. S. Yildiz, N. Pholdee, S. Bureerat, A. R. Yildiz, S. M. Sait, Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems, Eng. Comput., (2021). doi: 10.1007/s00366-021-01368-w. doi: 10.1007/s00366-021-01368-w
    [90] S. Gupta, K. Deep, A novel Random Walk Grey Wolf Optimizer, Swarm Evol. Comput., 44 (2018), 101-112. doi: 10.1016/j.swevo.2018.01.001. doi: 10.1016/j.swevo.2018.01.001
    [91] P. Savsani, V. Savsani, Passing vehicle search (PVS): A novel metaheuristic algorithm, Appl. Math. Model., 40 (2016), 3951-3978. doi: 10.1016/j.apm.2015.10.040. doi: 10.1016/j.apm.2015.10.040
    [92] W. Guo, Y. Wang, F. Dai, P. Xu, Improved sine cosine algorithm combined with optimal neighborhood and quadratic interpolation strategy, Eng. Appl. Artif. Intell., 94 (2020), 103779. doi: 10.1016/j.engappai.2020.103779. doi: 10.1016/j.engappai.2020.103779
    [93] W. Zhou, P. Wang, A. A. Heidari, M. Wang, X. Zhao, H. Chen, Multi-core sine cosine optimization: Methods and inclusive analysis, Expert Syst. Appl., 164 (2020), 113974. doi: 10.1016/j.eswa.2020.113974. doi: 10.1016/j.eswa.2020.113974
    [94] A. S. Assiri, On the performance improvement of Butterfly Optimization approaches for global optimization and Feature Selection, PLOS ONE, 16 (2021), e0242612. doi: 10.1371/journal.pone.0242612. doi: 10.1371/journal.pone.0242612
    [95] K. Zhong, Q. Luo, Y. Zhou, M. Jiang, TLMPA: Teaching-learning-based Marine Predators algorithm, AIMS Math., 6 (2020), 1395-1442. doi: 10.3934/math.2021087. doi: 10.3934/math.2021087
    [96] Z. Wang, Q. Luo, Y. Zhou, Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems, Eng. Comput., (2020). doi: 10.1007/s00366-020-01025-8. doi: 10.1007/s00366-020-01025-8
    [97] N. Li, L. Wang, Bare-Bones Based Sine Cosine Algorithm for global optimization, J. Comput. Sci., 47 (2020), 101219. doi: 10.1016/j.jocs.2020.101219. doi: 10.1016/j.jocs.2020.101219
    [98] L. Zhong, Y. Zhou, Q. Luo, K. Zhong, Wind driven dragonfly algorithm for global optimization, Concurr. Comput. Pract. Exp., 33 (2020), 1-31. doi: 10.1002/cpe.6054. doi: 10.1002/cpe.6054
    [99] Y. Wang, Z. Cai, Y. Zhou, Z. Fan, Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique, Struct. Multidiscip. Optim., 37 (2009), 395-413. doi: 10.1007/s00158-008-0238-3. doi: 10.1007/s00158-008-0238-3
    [100] G. Azizyan, F. Miarnaeimi, M. Rashki, N. Shabakhty, Flying Squirrel Optimizer (FSO): A Novel SI-Based Optimization Algorithm for Engineering Problems, Iranian Journal of Optimization, 11 (2019), 177-205.
    [101] H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, Water cycle algorithm - A novel metaheuristic optimization method for solving constrained engineering optimization problems, Comput. Struct., 110-111 (2012), 151-166. doi: 10.1016/j.compstruc.2012.07.010.
    [102] L. Gu, R.-J. Yang, C. Tho, M. Makowskit, O. Faruquet, Y. Li, Optimisation and robustness for crashworthiness of side impact, Int. J. Veh. Des. - INT J VEH DES, 26 (2001), 348-360. doi: 10.1504/IJVD.2001.005210. doi: 10.1504/IJVD.2001.005210
    [103] B. D. Youn, K. K. Choi, R.-J. Yang, L. Gu, Reliability-based design optimization for crashworthiness of vehicle side impact, Struct. Multidiscip. Optim., 26 (2004), 272-283. doi: 10.1007/s00158-003-0345-0. doi: 10.1007/s00158-003-0345-0
    [104] A. H. Gandomi, X.-S. Yang, A. H. Alavi, Mixed variable structural optimization using Firefly Algorithm, Comput. Struct., 89 (2011), 2325-2336. doi: 10.1016/j.compstruc.2011.08.002. doi: 10.1016/j.compstruc.2011.08.002
    [105] S. Sharma, A. K. Saha, G. Lohar, Optimization of weight and cost of cantilever retaining wall by a hybrid metaheuristic algorithm, Eng. Comput., (2021). doi: 10.1007/s00366-021-01294-x.
    [106] M. Toz, Chaos-based Vortex Search algorithm for solving inverse kinematics problem of serial robot manipulators with offset wrist, Appl. Soft Comput., 89 (2020), 106074. doi: 10.1016/j.asoc.2020.106074. doi: 10.1016/j.asoc.2020.106074
    [107] S. Dereli, R. Köker, A meta-heuristic proposal for inverse kinematics solution of 7-DOF serial robotic manipulator: quantum behaved particle swarm algorithm, Artif. Intell. Rev., 53 (2020), 949-964. doi: 10.1007/s10462-019-09683-x. doi: 10.1007/s10462-019-09683-x
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4293) PDF downloads(274) Cited by(40)

Figures and Tables

Figures(20)  /  Tables(16)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog