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Abstract: The slime mould algorithm (SMA) is a metaheuristic algorithm recently proposed, which 

is inspired by the oscillations of slime mould. Similar to other algorithms, SMA also has some 

disadvantages such as insufficient balance between exploration and exploitation, and easy to fall into 

local optimum. This paper, an improved SMA based on dominant swarm with adaptive t-distribution 

mutation (DTSMA) is proposed. In DTSMA, the dominant swarm is used improved the SMA’s 

convergence speed, and the adaptive t-distribution mutation balances is used enhanced the 

exploration and exploitation ability. In addition, a new exploitation mechanism is hybridized to 

increase the diversity of populations. The performances of DTSMA are verified on CEC2019 

functions and eight engineering design problems. The results show that for the CEC2019 functions, 

the DTSMA performances are best; for the engineering problems, DTSMA obtains better results than 

SMA and many algorithms in the literature when the constraints are satisfied. Furthermore, DTSMA 

is used to solve the inverse kinematics problem for a 7-DOF robot manipulator. The overall results 

show that DTSMA has a strong optimization ability. Therefore, the DTSMA is a promising 

metaheuristic optimization for global optimization problems. 

Keywords: Slime mould algorithm; t-distribution mutation; functions optimization; engineering 

problems; metaheuristic optimization 
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1. Introduction 

With the development of technology and society, more and more highly complex and 

challenging practical optimization problems need to be solved. Most of the traditional optimization 

methods are based on gradient or derivative information, such as Newton's method [1,2], conjugate 

gradient method [3], which have the advantages of theoretical soundness and fast convergence and 

can be used to solve optimization problems in some engineering fields. However, these methods tend 

to be based on problem-specific characteristics, are difficult to meet the needs of a large number of 

practical problems, and it easily becomes trapped into local optima when used to solve complex, 

highly nonlinear, and multi-peak complex problems [4]. To overcome these problems, metaheuristic 

optimization algorithms were introduced, which can help to solve optimal or near-optimal solutions 

of complex functional and real-world problems with the iterative process of the algorithm. Unlike 

traditional methods, metaheuristic algorithms have a stochastic and gradient-free mechanism, require 

minimal mathematical analysis, and use only inputs and outputs to consider and solve the 

optimization problem [5]. This is one of the fundamental advantages of metaheuristic algorithms, 

giving them a high degree of flexibility in solving various problems. 

The metaheuristic optimization methods can be divided into three categories from the principle 

of algorithms: evolution-based, physics-based, and swarm intelligence-based [6]. Evolution-based 

algorithms are proposed to simulate Darwinian biological evolution and mainly include Genetic 

Algorithm (GA) [7] and Differential Evolution (DE) [8]. The physics-based algorithms are inspired 

by the laws of physics and mainly include Simulated Annealing (SA) [9], Quantum Search Algorithm 

(QSA) [10], Big Bang-Big Crunch (BBBC) [11], Artificial Chemical Reaction Optimization 

Algorithm (ACROA) [12], Lightning Search Algorithm (LSA) [13], Multi-Verse Optimizer 

(MVO) [14], Heat transfer search (HTS) [15], Atom Search Optimization (ASO) [16], and 

Equilibrium optimizer (EO) [17]. Swarm intelligence-based algorithms are proposed to simulate the 

collaborative behavior of natural biological swarms. Representative algorithms include Particle 

Swarm Optimization (PSO) [18], Artificial Bee Colony Algorithm (ABC) [19], Teaching-Learning 

Based Optimization (TLBO) [20], Gray Wolf Optimizer (GWO) [21], Whale Optimization Algorithm 

(WOA) [22], Salp Swarm Algorithm (SSA) [23], Social Spider Optimization (SSO) [24], Seagull 

Optimization Algorithm (SOA) [25], Marine Predators Algorithm (MPA) [26], Harris Hawks 

Optimization (HHO) [27], Bald Eagle Search (BES) [28], Slime Mould Algorithm (SMA) [29], 

Chameleon Swarm Algorithm (CSA) [30], and so on. 

It is worth noting that, according to the No Free Lunch (NFL) theorem [31], no algorithm 

performs well on all problems, and each algorithm has its own strengths and weaknesses, which are 

applied to different real-world problems to obtain better results. As a result, applying improved 

algorithms to specific problems has become a hot topic of current research. For example, Zhang 

et al. [32] proposed a state transition simulated annealing algorithm (STASA) that introduces a new 

elementary breakpoint operator and neighborhood search structure in SA to solve multiple traveling 

salesman problems, and experimental results show that the improved algorithm outperforms other 

state-of-the-art algorithms. Yu et al. [33] proposed a performance-guided JAYA (PGJAYA) algorithm 

for extracting parameters of different PV models, and the performance of PGJAYA was evaluated on 

a standard dataset of three PV models, and the results showed that PGJAYA has excellent 

performance. Fan et al. [34] proposed an improved Harris Hawk Optimization algorithm based on 
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domain centroid opposite-based learning (NCOHHO), which was applied to feedforward neural 

network training and achieved good results in classification applications. 

The Slime Mould Algorithm (SMA) is a metaheuristic algorithm inspired by slime mould 

oscillation proposed by Li et al. in 2020 [29]. It has been applied to many fields in less than two 

years because it simulates the unique oscillatory foraging behavior of the slime mould and has 

superior performance. For example, Ewees et al. [35] applied the firefly algorithm (FA) and SMA 

hybrid algorithm (SMAFA) to the feature selection (FS). Abdel-basset et al. [36] applied the binary 

SMA (BSMA) to the FS problem. Abdel-basset et al. [37] proposed a hybrid method based on 

threshold technology (HSMA_WOA) to overcome the image segmentation problem (ISP) of chest 

X-ray images of COVID-19. Zhao et al. [38] proposed a Renyi’s entropy multi-threshold image 

segmentation method based on improved slime mold algorithm (DASMA). Naik et al. [39] applied 

an improved SMA (LSMA) to the ISP. Yousri et al. [40] proposed a novel hybrid algorithm of marine 

predator algorithm (MPA) and SMA (HMPA) to solve the ISP. Mostafa et al. [41] applied SMA to the 

single-diode and dual-diode models of photovoltaic cells. El-Fergany [42] studied the performance of 

SMA and its improved version (ImSMA) in photovoltaic parameter extraction. Liu et al. [43] 

proposed a SMA that integrates Nelder-Mead simplex strategy and chaotic mapping to identify 

photovoltaic solar cell parameters. Kumar et al. [44] applied SMA to the parameter extraction of 

photovoltaic cells and proved the superiority of SMA. Agarwal et al. [45] applied SMA to path 

planning and obstacle avoidance problem of mobile robots. Rizk-Allah et al. [46] proposed a 

chaos-opposition-enhanced SMA (CO-SMA) to minimize the energy costs of wind turbines at 

high-altitude sites. Hassan et al. [47] proposed an improved version of the SMA (ISMA) and applied 

it to efficiently solve economic and emission dispatch (EED) problem with single and dual objectives, 

and compared it with five algorithms on five test systems. Wei et al. [48] proposed an improved 

SMA (ISMA) for optimal reactive power dispatch (ORPD) problem in power systems, and achieved 

better results than the well-known algorithms on power test systems with IEEE 57 bus, IEEE 118 bus 

and IEEE 300 bus. Abdollahzadeh et al. [49] proposed a binary version of SMA to solve the 0-1 

knapsack problem; Zubaidi et al. [50] combined SMA and artificial neural network for urban water 

demand prediction; Chen et al. [51] combined K-means clustering and chaotic SMA with support 

vector regression to obtain higher prediction accuracy. Ekinci et al. [52] applied SMA to the power 

system stabilizer design (PSSD); Wazery et al. [53]. Combined SMA and K-nearest neighbor for 

disease classification and diagnosis system. Premkumar et al. [54] proposed a multi-objective version 

of the SMA (MOSMA) for solving complex real-world multi-objective engineering optimization 

problems, which has better performance compared to other well-known multi-objective algorithms. 

Yu et al. [55] proposed an improved SMA (WQSMA), which used quantum rotation gate (QRG) and 

water cycle operator to improve the robustness of the original SMA, so as to balance the exploration 

and exploitation ability. The effectiveness of WQSMA on CEC2014 and three engineering problems 

was verified. Houssein et al. [56] proposed a hybrid SMA and adaptive guided differential evolution 

(AGDE) algorithm, namely SMA-AGDE, which makes a good combination of SMA's exploitation 

ability and AGDE's exploration ability, and verified the effectiveness of SM-AGDE through 

CEC2017 and three engineering design problems. 

As mentioned above, many scholars have only improved SMA for specific problems, and the 

generalization ability of the proposed algorithms has yet to be tested. Yu et al. [55] and Houssein 

et al. [56] respectively used QRG and AGDE to enhance the exploration ability of SMA to address 

the shortcomings of SMA and achieved good results. In this paper, a novel improved slime mould 
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algorithm DTSMA based on dominant swarm and nonlinear adaptive t-distribution mutation is 

proposed based on the improved experience of WQSMA and SMA-AGDE. The dominant swarm 

enhanced the exploitation ability of SMA, and the t-distribution mutation enhanced the exploration 

ability of SMA. In order to further improve the exploitation ability of SMA, a new exploitation 

formula is added to DTSMA. The main contributions of this paper are as follows. 

(1) It is verified that the dominant swarm strategy can improve the convergence rate of SMA. 

(2) The proposed nonlinear adaptive t-distribution mutation mechanism can expand the search 

range of SMA in the iterative process, increase the difference of search agents, improve the global 

search ability of SMA, and avoid falling into local optimal. 

(3) The proposed new exploitation mechanism is effectively combined with that of SMA. 

(4) The DTSMA is compared with other advanced metaheuristic algorithms on CEC2019, and 

the advantages of DTSMA in convergence speed and solution accuracy are verified. 

(5) The performance of DTSMA is tested on eight classical engineering application problems 

and the inverse kinematics problems of a 7-DOF robot manipulator. 

In this paper, the CEC2019 functions and eight constrained engineering design problems are 

selected as test cases and compared with twenty-two well-known algorithms on CEC2019 and with 

SMA and improved algorithms in the literature on engineering instances. Experimental results show 

that DTSMA has strong search ability and can obtain better solutions than most algorithms under the 

condition that constraints are satisfied. 

The rest of this paper is organized as follows: Section 2 briefly describes the principle and 

characteristics of SMA. Section 3 describes the principle of DTSMA and its difference from SMA in 

detail. Section 4 presents the experimental configuration, the comparative experimental results of the 

CEC2019 functions, and its statistical analysis. In section 5, DTSMA is used to optimize eight 

engineering problems, i.e., three-bar truss, cantilever beam, pressure vessel, tension/compression 

spring, welded beam, speed reducer, multi-disc clutch brake, and car side crash problem. In section 6, 

DTSMA is used to solve the inverse kinematics problems of a 7-DOF robot manipulator. Section 7 

presents the discussion, conclusions and future work. 

2. Slime mould algorithm (SMA) 

2.1. Inspiration 

SMA is an interesting swarm-based meta-heuristic algorithm proposed by Li et al. in 2020 [29]. 

It simulates the behavior and morphological changes of slime mould in foraging to find the best 

solution. The slime mould relies mainly on propagating waves generated by biological oscillators to 

modify the cytoplasmic flow in the veins to approach a higher food concentration, then surrounds it 

and secretes enzymes to digest. 

2.2. Mathematical model 

During the foraging process of slime mould, individuals can approach the food based on the 

odor in the air. The greater the concentration of food odor, the stronger the bio-oscillator wave, the 

faster the cytoplasmic flow, and the thicker the vein-like tubes formed by the slime mould. The 

mathematical model for updating the location of slime mould is as Eq. (1). 
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

 

 (1) 

where LB  and UB  denote the lower and upper bounds of the search range, rand  and r  denote 

random numbers in [0,1], and z  is a parameter that the original authors did a lot of experiments and 

suggested to take 0.03, bX  indicates the location where the highest concentration of food odor is 

currently found, vb  and vc  are parameters, vb  takes values in [ , ]a a− , vc  decreases linearly 

from 1 to 0 with the number of iterations t , W  indicates the thickness of the vein-like vessels 

formed by the slime mould, AX  and BX  are two randomly selected agents positions in the 

population, X  indicates the current position of the slime mould. 

The value of p  is calculated as Eq. (2). 

 tanh | ( ) |p S i DF= −  (2) 

where 1,2,...,i n , ( )S i  denotes the fitness X , DF  denotes the best fitness obtained so far. 

The value of a  in the range of vb  is calculated as Eq. (3). 

 ( )arctanh 1 max_a t t= −  (3) 

where max_ t  indicates the maximum number of iterations. 

The formula of W  is calculated as Eq. (4). 
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( ( ))
( )

1 log 1

bF S i
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bF wF
W SmellIndex i

bF S i
r others

bF wF

 − 
+  +  −  

= 
−  −  +  − 

 (4) 

 ( )SmellIndex sort S=  (5) 

where condition  represents that ( )S i  ranks first half of the population, r  means a random 

number in [0,1], bF  represents the optimal fitness obtained in the iterative process currently, wF  

represents the worst fitness obtained in the iterative process currently, SmellIndex  denotes the result 

of the ascending order of fitness values (in the minimization problem). 

2.3. Characteristics of SMA 

The slime mould approximation food behavior shown in Eq. (1), the individuals position X  

can be updated according to the best position bX  obtained so far, while the fine-tuning of 

parameters vb , vc  and W  can change the individuals position and rand  allows the search 

agents to form a search vector of any angle. 
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Algorithm 1 Pseudo-code of SMA 

1. Initialize the parameters , , , _z n d max t ; 

2. Initialize the positions of slime mould ( 1, 2,..., )iX i n= ; 

3. While ( _t max t ) 

4.   Calculation the fitness S  of all slime mould; 

5.   Sort the fitness S ; 

6.   Update , , , bbF wF DF X ; 

7.   Calculate the W  by Eq. (4); 

8.   Update , , , ,p vb vc A B ; 

9.   For each search agents 

10.     Update positions by Eq. (1); 

11.   End For 

12.   1t t= + ; 

13. End While 

14. Return , bDF X ; 

 

Figure 1. Flow chart of the SMA [29]. 

At the beginning of the SMA, the individual positions are scattered, the value of p  tends to 1, 

and the slime mould is mainly explored by the second equation in Eq. (1). As the number of 

iterations increases, the individual positions are gradually close together, the vein-like vessels of the 

slime population are gradually formed, the individual fitness value ( )S i  is gradually approached 

with the current optimal fitness value DF , the value of p  tends to 0, and the slime mould are 

mainly exploited by the third equation in Eq. (1). In addition, a stochastic strategy was introduced 
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into the search process of SMA so that the algorithm maintains some exploration ability even during 

the exploitation phase. In SMA, there are no velocity settings for the agents of the slime mould and 

the population is not divided into hierarchies or subpopulations. All search agents are simply and 

equally selected close to or far from the current best location bX . Furthermore, the position is 

updated using only the best positions obtained so far and not using the historical best position 

information of individuals. The pseudo-code of the SMA is shown in Algorithm 1 [29], and the flow 

chart is expressed in Figure 1. 

3. Improved slime mould algorithm (DTSMA) 

3.1. Dominant swarm 

In the process of solving the optimization problem, SMA does not use the information of the 

individual optimal position of slime mould to update the solution, and may miss a good opportunity 

to find the global optimal. In DTSMA, in order to record the individual historical optimal position 

information, the dominant swarm goodX  and its fitness value goodS  are defined to store the 

historical optimal information. After the position is updated, the updated position X  is compared 

with the position in the dominant swarm goodX , and the greedy selection strategy is used to reserve 

the better position to the dominant swarm. In the exploration phase, DTSMA uses the individual 

historical optimal good good,  A BX X  and the population historical optimal goodbX  found so far to 

jointly update the search individual position X . The formula for updating the position of slime 

mould is as Eq. (6). 

 
good good good( 1) ( ) ( ( ) ( ))b A BX t X t vb W X t X t+ = +   −  (6) 

where goodbX  is the best solution for the fitness value in the dominant swarm, goodAX  and goodBX  

are two randomly selected position vectors from the dominant swarm, vb  is the random number 

vector with the value in [ , ]a a− , a  is calculated by Eq. (3), W  represents the adaptive weight of 

the slime mould individual. 

SMA sorts the individual fitness value in each iteration in order to find the optimal and the 

worst fitness. The sorting process is time-consuming, and to make better use of the sorted individual 

positions and fitness values, DTSMA divides the sorted population into two subpopulations, goodAX  

from the population ranked in the top half of fitness values and goodBX  from the other population. 

The values of A  and B  are taken as Eq. (7) and Eq. (8). 

 
2

N
A round rand

 
=  

 
 (7) 

 
2 2

N N
B round rand

 
= +  

 
 (8) 

where N  denotes the population size, rand  denotes a random number in [0,1], round  indicates 

the rounding function. 

After adding the dominant swarm, the convergence speed and solution accuracy of SMA have 

been greatly improved, but the problem of easily falling into local optimum is still severe. 
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3.2. Mutation mechanism 

SMA has strong exploitation ability, but weak exploration ability. The algorithm is easy to fall 

into local optimum and appear premature convergence phenomenon. To balance exploration and 

exploitation, mutation mechanism is added after the regeneration of dominant swarm. There are 

many probabilistic mutation mechanisms, such as Levy flight [57,58], Gaussian mutation [49,59,60] 

and Cauchy mutation [61], all of which can enhance the search ability of the algorithm. Levy flight 

can enhance the exploration and exploitation ability of the algorithm at the same time, but mainly 

enhance the exploitation ability. SMA needs to improve the exploration ability, so it is not suitable to 

use Levy flight mechanism. For algorithms with strong exploitation ability, Gaussian mutation can 

enhance its exploration ability, while for algorithms with strong exploration ability, Gaussian 

mutation can enhance its exploitation ability. In literature [49], SMA based on Gaussian mutation is 

used to solve the 0-1 knapsack problem. Since knapsack problem is NP hard discrete optimization 

problem, it is necessary to improve the exploration ability of SMA. But for more general 

optimization problems, the later exploitation ability of the algorithm needs to be concerned. Cauchy 

mutation also enhanced SMA's exploration ability, but not as much as Gaussian mutation. Therefore, 

inspired by the above literature, this paper applies the t-distribution mutation switching between 

Gaussian mutation and Cauchy mutation to SMA. The degree of freedom of t-distribution mutation 

adaptively changes with the number of iterations, which can well balance the exploration and 

exploitation of SMA. When the degree of freedom is large, the t-distribution is close to the Gaussian 

distribution, and when the degree of freedom is equal to 1, it is the Cauchy distribution, as clearly 

shown in Eq. (9) and Figure 2. 

 
(0,1)

( )
(0,1) 1

Norm tn
trnd tn

Cauchy tn

→
= 

=
 (9) 

where ( )trnd tn  denotes the t-distribution with degrees of freedom tn . 

In DTSMA, the position of each slime mould of the dominant swarm goodX  is perturbed using 

t-distribution mutation with adaptive parameters. t-distribution mutation operator is mathematically 

formulated as Eq. (10). 

 
good good ( )TX X X trnd tn= +   (10) 

where TX  denotes the position vector of slime mould after t-distribution mutation, and tn  denotes 

the degree of freedom parameter of the t-distribution. 

In DTSMA, the degree of freedom parameter tn  grows nonlinearly with the number of 

iterations t . The value of tn  is calculated as Eq. (11). 

 ( )( )2
exp 4 max_tn t t=   (11) 

The degree of freedom parameter tn  enables DTSMA to approximate the use of the Cauchy 

mutation in the early iteration to enhance the exploration ability, and to approximate the use of the 

Gaussian mutation in the late iteration to focus on the exploitation ability. During the iteration of 

DTSMA, with the increase of the degree of freedom tn , the algorithm gradually transforms from 

focusing on the global exploration ability to the local exploitation ability. The t-distribution 
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mutational operator combines the advantages of Gaussian mutational and Cauchy mutational 

operators, allowing DTSMA to achieve an excellent balance between exploration and exploitation. 

 

Figure 2. Probability density curves for Gaussian, Cauchy, and T-distribution. 

3.3. Greedy strategy 

SMA does not use greedy selection, and a greedy strategy is utilized in DTSMA to retain search 

agents of slime mould with better fitness than the current ones and eliminate those with worse fitness 

in each iteration, expressed in the mathematical formula as Eq. (12). 

 good

good

good

( 1) ( ( 1)) ( ( ))
( 1)

( )

X t S X t S X t
X t

X t others

 + + 
+ = 



 (12) 

where ( )S X  denotes the fitness of X , goodX  represents the position in the dominant swarm. 

The use of a greedy strategy seems to weaken the exploration performance of the algorithm, but 

the mutation mechanism incorporated in each iteration of DTSMA constantly performs exploration, 

and greedy selection simply discards the fraction of individuals that fail in exploration and prepares 

them more adequately for the next exploration. 

3.4. Exploitation operator 

Finally, a search operator was added in the exploitation phase of DTSMA to increase the 

population diversity of slime mould, and the exploitation operator was formulated as Eq. (13). 

 
good good( 1) ( ) ( )X t X t vc X t+ = +   (13) 

where goodX  represents the position in the dominant swarm, vc  is a random number vector with 

the value in [ , ]b b− , and b  decreases linearly from 1 to 0 with the number of iterations. 
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This operator donates that the search agents of the slime mould will eventually stop at the 

optimal position it currently finds, and in some cases, the individual optimal may converge beyond 

the current global optimal position 
goodbX . Based on the above principles, the mathematical formula 

for the position update can be organized as Eq. (14). 

 
good good good

good

good good

( )

( ) ( ( ) ( ))
( 1)

( )  and 

( ) ( )

b A B

rand UB LB LB rand z

X t vb W X t X t r p
X t

vc X t r p r q

X t vc X t others

 − + 


+   − 
+ = 

  
 + 

 (14) 

where q  is a parameter that can be adjusted to the specific problem and takes values in [0,1]. 

3.5. Sensitivity analysis of parameters 

When using DTSMA, it is necessary to determine two adjustable parameters z  and q , among 

which the adjustment method of parameter z  is consistent with that of SMA, which can be referred 

to [29]. To illustrate the impact of q  on solving optimization problems and to facilitate users to 

adjust on specific problems, the value of q  was compared on the CEC2019 functions, and the 

interval between 0 and 1 is 0.1. The test results are shown in Table 1. The data presented in the table 

are the average optimal fitness obtained by the algorithm running 30 times on each function and their 

rank among the other values taken by q . As can be seen from Table 1, the Friedman mean rank best 

when q  is 0.9 and obtained the best results on the five functions. It shows that the searching ability 

of DTSMA is improved significantly when q  is taken as 0.9. Therefore, considering the 

generalization ability of the DTSMA algorithm, q  is taken as 0.9 for the next test. In addition, for 

most optimization problems, the value of q  should be taken in [0.7,0.9]. 

Table 1. Comparison of parameter q of DTSMA on CEC2019 functions. 

Functions 
q  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

F1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

F2 4.2512 4.2500 4.2475 4.2559 4.2751 4.2583 4.3347 4.3351 4.3725 4.5199 4.5303 

F3 2.6640 2.5785 2.5607 3.0614 2.3024 2.0508 2.3376 2.3145 2.0807 1.9740 2.6250 

F4 13.734 13.502 14.127 14.663 13.933 14.331 14.398 14.265 14.133 14.100 14.663 

F5 1.3057 1.2905 1.2724 1.2592 1.2849 1.2519 1.2704 1.2395 1.2635 1.2385 1.3039 

F6 2.5919 2.6585 2.6508 2.8353 2.6663 2.6223 2.6432 2.6485 2.4341 2.3836 2.6009 

F7 606.12 589.35 600.74 606.12 606.12 617.14 588.10 580.54 577.53 576.87 579.22 

F8 3.4369 3.5183 3.5882 3.2536 3.2650 3.4407 3.4934 3.3356 3.4767 3.2166 3.4208 

F9 1.1659 1.1824 1.1650 1.1700 1.1550 1.1569 1.1706 1.1651 1.1734 1.1460 1.1388 

F10 19.041 20.556 19.545 19.937 20.647 20.127 21.235 20.052 18.799 18.835 18.718 

Mean rank 5.64 6.45 5.64 6.55 5.55 5.36 6.73 5.09 4.82 2.73 5.45 

Ranking 7.5 9 7.5 10 6 4 11 3 2 1 5 

The optimal values are shown in bold. 
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The pseudo-code of DTSMA is presented in Algorithm 2, and the flow chart is shown in Figure 3. 

 

Algorithm 2 Pseudo-code of DTSMA 

1. Initialize the parameters , , , , _z q n d max t ; 

2. Initialize the positions of slime mould ( 1, 2,..., )iX i n= ; 

3. While ( _t max t ) 

4.   Calculation the fitness S  of all slime mould; 

5.   Update 
good good,X S  by Eq. (12); 

6.   Perturbation 
goodX  by Eq. (10); 

7.   Update good good,X S  by Eq. (12); 

8.   Sort the fitness goodS ; 

9.   Update good, , , bbF wF DF X ; 

10.   Calculate the W  by Eq. (4); 

11.   Update , , , ,p vb vc A B ; 

12.   For each search agents 

13.     Update positions by Eq. (14); 

14.   End For 

15.   1t t= + ; 

16. End While 

17. Return good, bDF X ; 

3.6. Computational complexity analysis 

DTSMA mainly consists of the subsequent components: initialization, fitness evaluation, 

dominant swarm update, t-distribution mutation, sorting, weight update, and location update. Among 

them, N  donates the number of agents of slime mould, Dim  donates the dimension of the 

variable, and max_ t  donates the maximum number of iterations. The computation complexity of 

initialization is ( )O N Dim , the computation complexity of dominant swarm update and 

t-distribution mutation are ( )O N , the computation complexity of sorting is ( log )O N N , the 

computation complexity of weight update is ( )O N Dim , the computation complexity of location 

update is ( )O N Dim . Therefore, assuming that the time complexity of fitness evaluation is ( )O F , 

the total computation complexity is ( )( )max_ logO t N Dim N N F  +  + , which is the same as 

SMA. The space complexity of DTSMA is ( )O N Dim . 
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Figure 3. Flow chart of the DTSMA. 

4. Experimental results on benchmark functions 

To verify the improvement, the performance of DTSMA was evaluated using the average best 

fitness value and its standard deviation, the results of the test functions were ranked, and the 

Friedman rank of each algorithm on the different test functions was counted. Then, the Wilcoxon 

rank-sum test was used to evaluate the differences between DTSMA and comparison algorithms. For 

a fair comparison, all algorithms were set with the same common parameters, the population size to 

30, and the maximum number of iterations to 1000. All experiments were executed on Windows 10 

OS and all algorithm codes were run in MATLAB R2019a with hardware details: Intel(R) Core (TM) 

i7-9700 CPU (3.00GHz) and 16GB RAM. 

4.1. Benchmark functions 

In this study, the test functions for the DTSMA comparison experiment are the CEC2019 

functions. The search ranges and minimum values are shown in Table 2, and the 3-D map for 2-D 

function are shown in Figure 4. 
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Table 2. Characteristics of CEC2019 benchmark functions. 

Functions Dim Range Optimal 

F1: Storn’s Chebyshev Polynomial Fitting Problem 9 [-8192,8192] 1 

F2: Inverse Hilbert Matrix 16 [-16384,16384] 1 

F3: Lennard-Jones Minimum Energy Cluster 18 [-4,4] 1 

F4: Rastrigin’s Function 10 [-100,100] 1 

F5: Griewank’s Function 10 [-100,100] 1 

F6: Weierstrass Function 10 [-100,100] 1 

F7: Modified Schwefel’s Function 10 [-100,100] 1 

F8: Expanded Schaffer’s F6 Function 10 [-100,100] 1 

F9: Happy Cat Function 10 [-100,100] 1 

F10: Ackley Function 10 [-100,100] 1 

 

Figure 4. Two-dimensional perspective view of CEC2019 benchmark functions. 

4.2. Comparison algorithm parameter setting 

To test the effectiveness and efficiency, DTSMA was compared with twenty-two algorithms, 

including the original SMA [29], classical algorithms (i.e., PSO [18], DE [8], TLBO [20], GWO [21], 

WOA [22], SSA [23], MVO [14], MFO [62], ALO [63], DA [64], SCA [65]), novel algorithms (i.e., 

Equilibrium Optimizer (EO) [17], Bald Eagle Search (BES) [28], Harris Hawks Optimization 

(HHO) [27], Pathfinder Algorithm (PFA) [66], Seagull Optimization Algorithm (SOA) [25]), 
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improved algorithms (i.e., Autonomous Groups Particle Swarm Optimization (AGPSO) [67], 

Gaussian Quantum-behaved Particle Swarm Optimization (GQPSO) [68], hybrid Particle Swarm 

Optimization and Gravitational Search Algorithm (PSOGSA) [69], Centroid Opposition-based 

Differential Evolution (CODE) [70]), and superior performance algorithms (i.e., Multi-trial 

Vector-based Differential Evolution (MTDE) [71]). The adjustable parameter settings of comparison 

algorithms are shown in Table 3. 

Table 3. Parameter settings of the optimization algorithms. 

Algorithms Parameters Values Algorithms Parameters Values 

DTSMA Constant z 0.03 TLBO Teaching factor TF {1, 2} 

 Constant q 0.9 PFA Parameter less NA 

SMA Constant z 0.03 PSO Inertia weight w 1 

HHO Constant β 1.5  Cognitive coefficient c1 2 

GWO Convergence factor a [2, 0]  Social coefficient c2 2 

WOA Convergence factor a [2, 0]  Maximum velocity v 6 

 Logarithmic spiral b 1 AGPSO Inertia weight w [0.9, 0.4] 

 Random number l [-1, 1]  Cognitive coefficient c1 2 

MVO Wormhole existence probability [0.2, 1]  Social coefficient c2 2 

 Traveling distance rate TDR [0.6, 1] GQPSO Inertia weight w [1, 0.5] 

MFO Convergence factor a [-1, -2]  Cognitive coefficient c1 1.5 

 Logarithmic spiral b 1  Social coefficient c2 1.5 

 Random number t [-1, 1] PSOGSA Inertia weight w [1, 0] 

ALO Parameter less NA  Cognitive coefficient c1 0.5 

DA Convergence factor w [0.9, 0.4]  Social coefficient c2 1.5 

 Constant s 0.1  Gravitational constant G0 1 

 Constant a 0.1  Constant α 23 

 Constant c 0.7 DE Mutation factor F 0.5 

SCA Constant a 2  Crossover rate Cr 0.9 

SOA Convergence factor fc [2, 0] CODE Mutation factor F 0.5 

SSA Convergence factor c1 [2, 0]  Crossover rate Cr 0.9 

 Random number c2 [0, 1]  Generation jumping rate Jr 0.3 

 Random number c3 [0, 1] MTDE Constant WinIter 20 

EO Control volume V 1  Constant H 5 

 Generation probability GP 0.5  Constant initial 0.001 

 Constant a1 2  Constant final 2 

 Constant a2 1  Parameter Mu log(Dim) 

BES Constant α 2  Constant μf 0.5 

 Spiral parameter a 10  Constant σ 0.2 

 Spiral parameter R 1.5    

For all algorithms, N=30, Max_t=1000. 
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4.3. Experimental results and analysis 

The results were reported in Table 4 and Table 5, where Table 4 exhibits the average best fitness 

obtained by running the algorithm for 30 times, and Table 5 exhibits the standard deviation of the 30 

best fitness values. As can be seen from Table 4, DTSMA achieves the best results on F1-2 and F10, 

and is significantly superior to other comparison algorithms in terms of convergence accuracy. In 

addition, MTDE obtained the best solution on F5-7, EO showed a clear advantage on F8-9, and PFA 

performed best on F3. But in general, DTSMA ranks first in average performance among 23 

comparison algorithms, and can obtain better solutions, and is far better than SMA, which indicates 

that the performance of proposed DTSMA is significant. 

Table 4. Comparison of the fitness values of the optimized results on the CEC2019 functions. 

Algorithms 
Functions Mean 

rank 
Rank 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

DTSMA 1.00E+00 4.52E+00 1.9740 14.1003 1.2385 2.3836 5.77E+02 3.2166 1.1460 18.8351 1.78 1 

SMA 1.00E+00 4.98E+00 4.3983 15.5960 1.2864 4.2854 7.06E+02 3.7392 1.2237 20.4424 3.57 8 

HHO 1.00E+00 4.99E+00 4.4340 47.2977 1.9456 7.1446 1.21E+03 4.8260 1.4232 21.1185 6.30 15 

GWO 2.21E+04 3.63E+02 2.3769 16.1127 1.6048 2.6925 8.18E+02 3.6554 1.1865 21.4486 4.61 10 

WOA 8.20E+06 6.70E+03 4.6371 57.7068 2.1331 8.9500 1.38E+03 4.6022 1.3726 20.8007 8.00 20 

MVO 1.34E+06 4.68E+02 7.6377 19.5270 1.2984 3.2522 7.38E+02 3.8942 1.2143 21.0478 5.13 12 

MFO 1.35E+07 1.21E+03 7.4254 28.2234 2.3360 5.0370 1.04E+03 4.3095 1.3662 21.1609 7.09 17 

ALO 1.72E+06 1.88E+03 3.4462 26.6147 1.2077 5.0212 1.11E+03 4.3382 1.3086 20.3639 5.52 14 

DA 1.80E+07 5.43E+03 9.6797 54.6155 2.4107 7.3037 1.32E+03 4.5528 1.3616 21.3550 8.74 22 

SCA 1.77E+06 3.06E+03 9.2544 45.4784 8.3053 7.6132 1.46E+03 4.4275 1.5651 21.4495 8.91 23 

SOA 3.89E+03 1.48E+02 9.2135 28.4609 3.5890 7.3025 1.05E+03 4.3820 1.3520 21.4066 6.87 16 

SSA 1.71E+06 9.87E+02 3.6506 25.6377 1.2731 4.0937 9.10E+02 4.1329 1.3158 21.0355 5.35 13 

EO 2.46E+02 8.42E+01 1.6587 12.5181 1.0457 1.4470 5.84E+02 3.2097 1.0714 21.2241 2.17 3 

BES 1.49E+00 7.10E+00 3.4173 14.5653 1.2038 2.3826 8.28E+02 3.2594 1.1128 20.3191 2.48 4 

TLBO 1.13E+04 3.09E+02 1.7333 10.8442 1.0972 1.9704 6.96E+02 3.4395 1.1487 20.8363 2.61 5 

PFA 1.61E+05 6.37E+02 1.5436 27.9839 1.2161 5.0069 1.02E+03 3.9178 1.2428 21.1618 4.96 11 

PSO 8.00E+07 1.82E+04 9.4677 42.7568 1.9978 4.8771 1.14E+03 4.0256 1.2283 21.4468 7.65 19 

AGPSO 1.91E+05 3.94E+02 3.9437 16.3787 1.4541 2.6212 6.65E+02 3.6565 1.2064 21.0567 4.35 9 

GQPSO 1.00E+00 4.93E+00 6.6126 60.9991 27.3784 7.6309 1.66E+03 4.6306 1.7226 21.2928 7.57 18 

PSOGSA 1.47E+07 2.87E+03 6.7206 51.0280 5.9787 6.1109 1.15E+03 4.8314 1.5481 21.0608 8.17 21 

DE 4.59E+04 1.52E+02 3.6217 9.0607 1.0330 1.5816 4.58E+02 3.5361 1.1434 21.3024 3.00 6 

CODE 4.02E+05 7.12E+02 4.2384 5.3583 1.1457 1.4039 2.95E+02 4.3878 1.1045 19.3490 3.13 7 

MTDE 1.00E+00 8.34E+01 2.1171 6.7722 1.0126 1.1680 1.03E+02 3.2895 1.1538 21.1915 2.04 2 

The optimal values are shown in bold. 

It can be summarized from Table 5 that the stability of MTDE is better than DTSMA on the 

CEC2019 functions, and it is also inferior to EO and GQPSO in terms of robustness, but the 

robustness of DTSMA is much better than the original SMA. Therefore, the proposed DTSMA is 
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superior to SMA in convergence accuracy and robustness, which verifies the effectiveness and 

efficiency of DTSMA. In conclusion, the Friedman mean rank shows DTSMA as a powerful 

optimization algorithm with good performance not only in the search ability of the optimal solution 

but also in most functions, which is very competitive with MTDE and EO. Therefore, DTSMA can 

provide a high-level candidate solution for complex function optimization problems with strong 

generalization ability. 

Table 5. Comparison of the standard deviation of the fitness values of the optimized results. 

Algorithm 
Functions Mean 

rank 
Rank 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

DTSMA 0.00E+00 3.72E-01 1.3323 6.6519 0.1015 1.3082 272.906 0.4676 0.0460 5.8242 3.91 4 

SMA 0.00E+00 9.75E-02 2.4525 7.9251 0.1117 1.6918 239.462 0.4720 0.0877 3.6532 5.22 13.5 

HHO 0.00E+00 3.46E-02 1.3755 17.7759 0.2214 1.6247 378.685 0.2044 0.1461 0.1002 5.00 10 

GWO 5.68E+04 2.58E+02 1.1658 7.2606 0.4893 1.0755 328.711 0.4717 0.0894 0.1019 5.13 12 

WOA 9.31E+06 3.59E+03 1.6751 19.4379 0.4902 1.6476 348.194 0.3436 0.2181 2.2460 7.65 21 

MVO 1.23E+06 1.25E+02 2.1286 7.9015 0.1325 1.3980 291.478 0.5071 0.0850 0.0483 5.26 15 

MFO 1.19E+07 1.90E+03 2.5007 12.2410 3.1002 2.0649 267.218 0.4505 0.1932 0.1549 7.78 22 

ALO 1.79E+06 1.18E+03 1.7404 10.9068 0.0970 1.7245 300.774 0.3597 0.1399 3.6584 6.70 19 

DA 1.64E+07 3.12E+03 1.2699 22.4050 2.3606 1.8155 348.975 0.3223 0.1403 0.1316 7.43 20 

SCA 3.09E+06 1.17E+03 1.5328 7.2385 3.5911 1.3884 212.128 0.1744 0.1134 0.0838 5.09 11 

SOA 2.09E+04 2.08E+02 1.4258 10.5959 1.2344 1.2177 298.096 0.3580 0.1012 0.1173 5.22 13.5 

SSA 1.83E+06 6.19E+02 2.0938 9.4445 0.1589 1.3869 253.190 0.4795 0.1403 0.0747 5.83 18 

EO 9.02E+02 9.89E+01 0.6993 4.6354 0.0278 0.6651 262.494 0.5480 0.0347 0.1044 3.04 2 

BES 2.62E+00 7.76E+00 1.4614 7.0637 0.1427 1.1426 297.048 0.5116 0.0359 3.8863 4.74 8 

TLBO 2.57E+04 1.33E+02 0.4779 3.9135 0.0620 0.9021 346.690 0.4583 0.0625 2.9572 4.09 5 

PFA 2.64E+05 7.46E+02 0.4472 10.8316 0.1061 1.6349 276.130 0.3301 0.0868 1.3630 4.91 9 

PSO 5.00E+07 6.79E+03 0.8635 9.2252 0.0900 1.6462 307.838 0.4587 0.0877 0.0750 5.78 17 

AGPSO 2.54E+05 1.10E+02 2.2718 7.1966 1.6605 1.4331 267.269 0.4819 0.0838 0.0909 5.43 16 

GQPSO 1.12E-08 1.03E-01 0.7154 6.7416 4.3359 0.2477 166.489 0.1493 0.1034 0.3075 3.22 3 

PSOGSA 2.53E+07 3.02E+03 3.1301 22.3074 10.7717 1.7938 335.219 0.3501 0.3823 0.1051 8.26 23 

DE 9.02E+04 8.17E+01 2.2019 4.7660 0.0234 0.7731 331.394 0.4103 0.0588 0.1179 4.17 6 

CODE 4.73E+05 2.08E+02 2.0383 1.7357 0.1720 0.5976 236.436 0.4352 0.0340 6.1610 4.35 7 

MTDE 7.09E-03 5.58E+01 1.2621 2.4686 0.0138 0.4680 126.141 0.4102 0.0479 0.0543 1.78 1 

The optimal values are shown in bold. 

The convergence curves of algorithms on CEC2019 functions are given in Figure 5 and Figure 6. 

The results show that DTSMA outperforms most of the compared algorithms, especially the classical 

metaheuristic, in terms of convergence speed and solution accuracy. In Figure 5, DTSMA achieves 

the best performance on all tested functions. In Figure 6, DTSMA achieves optimal performance on 

F1–2 and F10, and is less competitive on F4–7 and F9, especially on F7, where MTDE shows its 

superiority. Because F7 has many locally optimal solutions, making the algorithm easily fall into 

local optima and premature convergence, which indicates that MTDE outperforms DTSMA in terms 
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of exploration ability. On F1–2, DTSMA still has the fastest convergence speed and best solution 

accuracy, which indicates that DTSMA is obviously superior to MTDE in terms of exploitation 

ability. Therefore, DTSMA and MTDE can be considered as complementary algorithms, which can 

be applied to different real-world optimization problems to obtain more satisfactory results. 

 

Figure 5. Convergence curve of classical algorithms on the CEC2019 functions. 
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Figure 6. Convergence curves of advanced algorithms on the CEC2019 functions. 

Since boxplots illustrate the data distribution, they are excellent graphs for describing the 

consistency between data. To further compare the distribution states of the optimization results of 

DTSMA and other algorithms, the best fitness values obtained by 23 algorithms run 30 times 

independently on each test function are presented in the form of box plots in Figure 7. The results 
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show that DTSMA has the smallest median, upper quartile and lower quartile, the fewest outliers, 

and the narrowest distribution frame in the comparison of classical algorithms. 

 

 

Figure 7. Comparison results of algorithms executed 30 times on CEC2019 functions. 
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In the comparison of advanced algorithms, DTSMA outperforms most algorithms and has 

strong robustness. In general, the performance of DTSMA and MTDE is the best, and the two 

algorithms have their own advantages for different functions respectively, which are far better than 

the other algorithms. Therefore, DTSMA is a good optimization algorithm in the terms of 

convergence accuracy and robustness. 

The Wilcoxon rank-sum test [72] is used to verify whether there is a significant difference 

between the two data sets, i.e., the test evaluates whether the obtained performance is not random. 

Due to the random nature of the metaheuristic algorithm, a similar comparison of statistical 

experiments is necessary to ensure the validity of the data. The p-value is an indicator of decreasing 

confidence that there is a significant difference between the two data sets, the smaller the p-value, the 

higher the confidence level. When p<0.05, it indicates that there is a significant difference between 

the data considered for the two algorithms at a confidence interval of 95%. The results of the 

Wilcoxon p-value test of DTSMA and well-known algorithms are shown in Table 6. 

The results of the Wilcoxon p-value test show that there are fewer cases (shown in bold) without 

significant differences and that DTSMA significantly outperforms the original SMA on six functions. 

DTSMA has a strong competitive performance with EO, BES and TLBO, demonstrating the 

algorithm's advantages on different functions for different optimization problems. In conclusion 

DTSMA is significantly different from and outperforms SMA, and the results are statistically 

meaningful, verifying that the performance of DTSMA is not random. 

Table 6. Wilcoxon p-value test results (two-tailed). 

Paired algorithms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

DTSMA 

SMA NA 3.28E-05 1.02E-05 4.55E-01 7.98E-02 2.43E-05 1.15E-01 2.01E-04 2.13E-04 2.71E-02 

HHO NA 1.78E-05 1.31E-08 1.29E-09 3.69E-11 8.99E-11 3.96E-08 3.02E-11 1.07E-09 8.31E-03 

GWO 1.21E-12 2.63E-11 2.62E-03 2.23E-01 1.49E-06 8.50E-02 6.38E-03 1.30E-03 7.98E-02 4.18E-09 

WOA 1.21E-12 2.63E-11 1.85E-08 3.69E-11 3.69E-11 3.02E-11 1.07E-09 1.33E-10 6.05E-07 5.69E-01 

MVO 1.21E-12 2.63E-11 5.07E-10 5.83E-03 4.68E-02 1.99E-02 9.33E-02 1.87E-05 2.39E-04 3.16E-05 

MFO 1.21E-12 2.63E-11 1.85E-08 3.57E-06 1.22E-02 1.61E-06 1.07E-07 3.82E-09 2.20E-07 1.96E-01 

ALO 1.21E-12 2.63E-11 4.71E-04 1.17E-05 2.46E-01 4.11E-07 4.31E-08 8.89E-10 5.19E-07 1.11E-04 

DA 1.21E-12 2.63E-11 4.08E-11 3.69E-11 7.12E-09 1.33E-10 2.23E-09 1.46E-10 3.50E-09 1.41E-04 

SCA 1.21E-12 2.63E-11 6.07E-11 3.02E-11 3.02E-11 3.34E-11 3.69E-11 7.39E-11 3.02E-11 1.29E-09 

SOA 1.21E-12 3.43E-09 3.34E-11 4.44E-07 3.02E-11 4.50E-11 8.20E-07 4.20E-10 1.96E-10 7.60E-07 

SSA 1.21E-12 2.63E-11 2.75E-03 1.25E-05 6.00E-01 1.53E-05 1.75E-05 7.69E-08 1.87E-07 8.15E-05 

EO 2.93E-05 6.55E-10 8.42E-01 3.33E-01 5.49E-11 2.25E-04 8.30E-01 3.71E-01 3.65E-08 9.59E-01 

BES 3.45E-07 2.47E-02 6.74E-06 9.47E-01 6.79E-02 9.82E-01 2.62E-03 1.71E-01 7.96E-03 1.95E-03 

TLBO 1.21E-12 2.63E-11 4.06E-02 7.48E-02 1.36E-07 3.18E-01 2.46E-01 3.78E-02 7.62E-01 3.09E-06 

PFA 1.21E-12 2.63E-11 5.30E-01 7.60E-07 3.48E-01 2.38E-07 1.39E-06 4.80E-07 4.74E-06 2.57E-07 

PSO 1.21E-12 2.63E-11 3.02E-11 4.50E-11 3.02E-11 5.19E-07 9.26E-09 2.03E-07 6.77E-05 8.89E-10 

AGPSO 1.21E-12 2.63E-11 2.27E-03 2.58E-01 1.77E-03 6.52E-01 2.34E-01 1.52E-03 6.97E-03 2.84E-04 

GQPSO 1.21E-12 7.64E-02 5.57E-10 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.34E-11 3.02E-11 1.41E-04 

PSOGSA 1.21E-12 2.63E-11 1.87E-07 1.09E-10 4.92E-01 1.55E-09 5.53E-08 6.07E-11 1.61E-10 7.30E-04 

DE 1.21E-12 2.63E-11 1.78E-04 1.17E-03 3.34E-11 4.43E-03 1.19E-01 2.75E-03 9.35E-01 3.27E-02 

CODE 1.21E-12 2.63E-11 4.44E-07 4.69E-08 3.99E-04 4.94E-05 1.78E-04 1.41E-09 2.68E-04 9.03E-04 

MTDE 1.21E-12 2.63E-11 4.68E-02 5.46E-06 2.98E-11 1.56E-08 2.23E-09 1.81E-01 6.00E-01 1.49E-01 

No significant differences are shown in bold. 
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5. Applicability of DTSMA for solving engineering problems 

To test the generalization ability of DTSMA, the DTSMA was tested in eight well-known 

constrained engineering design problems, i.e., three-bar truss, cantilever beam, pressure vessel, 

tension compression spring, welded beam, speed reducer, multiple-disc clutch brake and car side 

impact design problem. The optimization results of SMA and DTSMA given in tables are the optimal 

results obtained from 30 independent runs of the algorithm with 1000 iterations with 30 individuals. 

These engineering design problems have various constraints and need to be optimized using 

constraint handling methods. 

5.1. Constraint processing method 

In constraint processing techniques, penalty functions are simple and easy to implement. There 

are different types of penalty functions, such as static, dynamic, annealing, and adaptive penalties, 

and these methods transform the constrained problem into an unconstrained one by adding a certain 

penalty value [73]. In this paper, a static penalty function was used to deal with the constraints of the 

engineering problem. The mathematical model of the penalty function is expressed as Eq. (15). 

 ( ) ( )
1 1

( ) ( ) max 0, ( ) max 0, ( )
m n

i i

i i

O x f x w g x h x 
= =

 
= +  + − 

 
   (15) 

where ( )O x  denotes the objective function, ( )f x  denotes the objective function without 

considering the constraints, m  and n  denote the number of equation constraints and inequality 

constraints, respectively, ( )ig x  and ( )ih x  denote the inequality constraints and equation 

constraints, respectively, w  denotes the penalty factor. 

In this study, the penalty factor was set to 1015. The array-indexed mapping approach was used 

to solve for discrete and integer variables. 

5.2. Three-bar truss design problem 

Three-bar truss design optimization is a non-linear fraction optimization [74]. This problem has 

only two decision parameters A1 and A2. The structure of the three-bar truss is presented in Figure 8. 

The mathematical formulation is defined as Eq. (16). 

 

Figure 8. Three-bar truss structure and design variables. 
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Table 7 shows the optimal results obtained by DTSMA and other algorithms in the literature. It 

can be observed that DTSMA outperforms the original SMA and other comparative algorithms. 

Table 7. Optimal results and comparison for the three-bar truss design problem. 

Algorithms A1 A2 Optimal weight 

CS [75] 0.78867 0.40902 263.9716 

AOA [76] 0.79369 0.39426 263.9154 

MG-SCA [77] 1.00000 0.42715 263.8986 

MGWO [78] 0.7885845 0.4085071 263.8961 

IGWO [72] 0.78846 0.40884 263.8959 

GOA [79] 0.788897555578973 0.407619570115153 263.895881496069 

HHOSCA [80] 0.788498 0.40875 263.8958665 

MBA [81] 0.7885650 0.4085597 263.8958522 

SMA 0.794012414405404 0.408964522611830 265.477077290129 

DTSMA 0.788669196092446 0.408265091531002 263.895843821065 

5.3. Cantilever beam design problem 

The second engineering optimization problem is the cantilever beam design problem, where the 

main goal of this type of optimization is to reduce the weight of the beam. The structure of the 

cantilever beam is presented in Figure 9. The mathematical model is defined as Eq. (17) [60]. 

 

Figure 9. Cantilever beam structure and design variables. 
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The comparative results of the different algorithms solved in the literature are shown in Table 8. 

It can be concluded that DTSMA and SMA are superior to the well-known comparison algorithms, 

and DTSMA is superior to SMA. 

Table 8. Optimal results and comparison for the cantilever beam design problem. 

Algorithms x1 x2 x3 x4 x5 Optimum 

IMPFA [73] 6.0162 5.3077 4.5034 3.5013 2.1451 1.34 

GOA [79] 6.011674 5.31297 4.48307 3.50279 2.16333 1.33996 

GCHHO [60] 6.01666788 5.31103898 4.49365848 3.50048281 2.15181437 1.339956541 

SSA [23] 6.01513453 5.30930468 4.49500672 3.50142629 2.15278791 1.3399563910 

PFA [66] 6.0154633 5.30902227 4.49463146 3.5017851 2.15275783 1.33995638 

ALO [63] 6.01812 5.31142 4.48836 3.49751 2.158329 1.33995 

WLSSA [57] 6.134865 5.360400 4.439038 3.510499 2.010312 1.338799 

SMA 6.01766887 5.29094735 4.50052997 3.51084173 2.15406757 1.3365452138 

DTSMA 6.01568509 5.31010010 4.49565207 3.50247159 2.14976144 1.3365212385 

5.4. Pressure vessel design problem 

The third engineering design problem used is the pressure vessel design problem [56]. The 

objective is to minimize the cost of cylindrical pressure vessels, including the material cost, welding 

and forming cost of cylindrical vessels. The problem has four decision variables: shell thickness (Ts), 

head thickness (Th), radius (R), and cylindrical length (L). This problem is presented in Figure 10. 

The mathematical model is described as Eq. (18). 

 

Figure 10. Design variables of pressure vessel problem. 
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The optimization results are shown in Table 9, from which it can be concluded that the DTSMA 

algorithm has better performance than SMA and other comparative algorithms in solving the pressure 

vessel problem. 

Table 9. Optimal results and comparison for the pressure vessel design problem. 

Algorithms Ts Th R L Optimal cost 

HHOSCA [80] 0.945909 0.447138 48.8513 125.4684 6393.092794 

AOA [76] 0.8303737 0.4162057 42.75127 169.3454 6048.7844 

HHO [27] 0.81758383 0.4072927 42.09174576 176.7196352 6000.46259 

POA [82] 0.8291528106 0.4098782427 42.960558426 167.09725713 5999.4001110 

GCLPSO [83] 0.784508 0.387656 40.6289 195.8892 5989.654 

AO [84] 1.0540 0.182806 59.6219 38.8050 5949.2258 

MSCA [85] 0.779256 0.399600 40.325450 199.9213 5935.7161 

NM-PSO [86] 0.8036 0.3927 41.6392 182.4120 5930.3137 

IHHO [74] 0.8002 0.3955 41.4705 184.5767 5923.5 

MALO [87] 0.779889 0.385340 40.35586 199.4961 5894.9214 

EFOA [88] 0.78095518361 0.38602688210 40.463958486 198.00039607 5890.1193927 

MBA [81] 0.7802 0.3856 40.4292 198.4964 5889.3216 

IGWO [72] 0.7784458 0.3854034 40.33393 199.8019 5888.6000 

TLPFA [6] 0.7785 0.3848 40.3281 199.8996 5885.8372 

SMA 0.78163950498 0.38636499004 40.499442917 197.51182965 5891.2957232 

DTSMA 0.77816984767 0.38464982998 40.319661250 199.99941966 5885.3379777 

Continuous variables version. 

5.5. Tension/compression spring design problem 

The fourth application is the tension/compression spring design problem, which requires 

minimizing the weight of the spring by considering constraints on minimum deflection, shear stress 

and surge frequency, as well as limitations on geometry [89]. This problem has three continuous 
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variables: diameter of the wire (d), diameter of the mean coil (D) and the active coils number (N). 

This problem is presented in Figure 11. The mathematical model is described as Eq. (19). 

 

Figure 11. Design variables of tension/compression spring problem. 
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The optimization results are shown in Table 10, the results show that DTSMA obtains better 

optimal weights than SMA. 

Table 10. Optimal results and comparison for the tension/compression spring design problem. 

Algorithms d D N Optimal weight 

HHOSCA [80] 0.054693 0.433378 7.891402 0.012822904 

IGWO [72] 0.05159 0.354337 11.4301 0.012700 

SSA [23] 0.051207 0.345215 12.004032 0.0126763 

RW-GWO [90] 0.05167 0.35613 11.33056 0.012674 

PVS [91] 0.05169 0.35680 11.28442 0.01267 

MGWO [78] 0.051640 0.355530 11.36064 0.012668 

MSCA [85] 0.051668 0.356199 11.3207 0.0126670 

QISCA [92] 0.051425 0.350404 11.669237 0.012667 

SGLSCA [93] 0.05179 0.3591 11.1490 0.0126669 

MALO [87] 0.051759 0.358411 11.191500 0.0126660 

Continued on next page 
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Algorithms d D N Optimal weight 

GWO [21] 0.05169 0.356737 11.28885 0.012666 

EO [17] 0.0516199100 0.355054381 11.38796759 0.012666 

HHO [27] 0.051796393 0.359305355 11.138859 0.012665443 

CSA [30] 0.051178 0.358851 11.164981 0.012665370 

PFA [66] 0.05172695 0.33576296 11.235724 0.01266528 

SMA 0.051042782273 0.341367881985 12.24907263821 0.012672956271 

DTSMA 0.051682558573 0.356560684570 11.29820387501 0.012665270005 

5.6. Welded beam design problem 

Another engineering design problem is the welded beam problem, which is often used as a 

benchmark case for testing different optimization algorithms [62]. The problem contains nearly 3.5% 

of the feasible region in the search space. The structure and design variables are illustrated in Figure 

12. The objective of this problem is to minimize fabricating cost subjected to shear stress (τ), bending 

stress (σ), buckling load (Pc), deflection (δ), and other constraints [17]. This problem has four 

parameters: thickness of the weld (h), length of welded part of the beam (l), height of the beam (t), 

and width of the beam (b). The mathematical model is as Eq. (20). 
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Figure 12. Welded beam structure and design variables. 

Table 11 presents the optimization results of DTSMA and other well-known algorithms in the 

literature. The results demonstrated that DTSMA excelled in solving the welded beam problem, 

outperforming many improved algorithms and recently proposed metaheuristic algorithms. 

Table 11. Optimal results and comparison for the welded beam design problem. 

Algorithms h l t b Optimal cost 

HHOSCA [80] 0.190086 3.696496 9.386343 0.204157 1.779032249 

POA [82] 0.202511 3.542971 9.033488 0.206170 1.732394281 

HHO [27] 0.204039 3.531061 9.027463 0.206147 1.73199057 

GWO [21] 0.205676 3.478377 9.03681 0.205778 1.72624 

IGWO [72] 0.20496 3.4872 9.0366 0.20573 1.7254 

SSA [23] 0.2057 3.4714 9.0366 0.2057 1.72491 

EO [17] 0.2057 3.4705 9.03664 0.2057 1.7249 

PFA [66] 0.2057295 3.470495 9.036624 0.2057297 1.7248530 

MBA [81] 0.205729 3.470493 9.036626 0.205729 1.724853 

CSA [30] 0.205730 3.470489 9.036624 0.205730 1.724852 

CLSOBBOA [94] 0.205729 3.470488 9.036622 0.205729 1.724852 

TLMPA [95] 0.20572964 3.470488666 9.03662391 0.20572964 1.724852 

MTDE [71] 0.205730 3.470489 9.036624 0.205730 1.724852 

MBFPA [96] 0.205730 3.470473 9.036623 0.205729 1.72485185 

NM-PSO [86] 0.205830 3.468338 9.036624 0.205730 1.724717 

BBSCA [97] 0.2057 3.4705 9.0373 0.2057 1.7247 

IHHO [74] 0.20533 3.47226 9.0364 0.2010 1.7238 

SOA [25] 0.205408 3.472316 9.035208 0.201141 1.723485 

WQSMA [55] 0.18850 3.56850 9.10685 0.20542 1.72129 

AOA [76] 0.194475 2.57092 10.000 0.201827 1.7164 

GCLPSO [83] 0.20799 3.25802 9.02820 0.208064 1.715355 

WDDA [98] 0.1803 3.5925 9.6537 0.2028 1.6997 

Continued on next page 
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Algorithms h l t b Optimal cost 

MALO [87] 0.205670 3.247600 9.060900 0.20567 1.698100 

MSCA [85] 0.20545 3.252400 9.057600 0.20568 1.697900 

TLPFA [6] 0.2051 3.2679 9.0366 0.2059 1.6961 

WLSSA [57] 0.205387 3.25923 9.036633 0.205730 1.695573 

IMPFA [73] 0.2057 3.2539 9.0375 0.2057 1.6953 

GCHHO [60] 0.20572287 3.25324354 9.03661412 0.20573009 1.695255645 

SMA 0.205730609 3.253178392 9.036345969 0.205742741 1.695307346 

DTSMA 0.205728772 3.253133196 9.036632844 0.205729603 1.695248922 

5.7. Speed reducer design problem 

Another important engineering design problem is the speed reducer design problem, which is a 

challenging design problem since it is correlated to seven variables [30]. A graphical illustration of 

this problem is shown in Figure 13. The objective of this problem is to minimize the weight 

subjected to different constraints of bending stress, surface stress, lateral deflection of the shaft and 

stress in the shaft. The seven design variables considered are: face width (B), number of tooth 

modules (M), number of teeth in the pinion (N), length of the first shaft between bearings (L1), length 

of the second shaft between bearings (L2), and diameters of the first and second shafts (D1, D2). The 

third variable is an integer, while the other variables are continuous, and the problem comprises 

nearly 0.4% of the feasible region. The mathematical formulation of this problem is as Eq. (21). 

 

Figure 13. Design variables of speed reducer problem. 
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The optimization results for DTSMA, SMA and several other algorithms are given in Table 12. 

The results show that the performance of DTSMA is better than that of SMA. 

Table 12. Optimal results and comparison for the speed reducer design problem. 

Variables HHOSCA [80] HEAACT [99] MBA [81] PVS [91] SMA DTSMA 

B 3.506119 3.50002290 3.5 3.5 3.500000600 3.500000000 

M 0.7 0.70000039 0.7 0.7 0.700000000 0.700000000 

N 17 17.0000129 17 17 17 17 

L1 7.3 7.30042774 7.300033 7.3 7.300001858 7.300000000 

L2 7.99141 7.71537745 7.715772 7.71532 7.715354167 7.715319916 

D1 3.452569 3.35023097 3.350218 3.35021 3.350214698 3.350214666 

D2 5.286749 5.28666370 5.286654 5.28665 5.286655037 5.286654465 

Optimum 3029.873076 2994.49911 2994.482453 2994.47107 2994.472442 2994.471066 

5.8. Multiple-disc clutch brake design problem 

The multi-disc clutch brake problem is a well-known problem in engineering constrained 

optimization, as shown in Figure 14 [89]. Five discrete design variables are considered to minimize 
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the weight of the multi-disc clutch brake: the inner radius (Ri), the outer radius (Ro), the thickness of 

the disc (Th), the driving force (F), and the number of friction surfaces (Z). There are eight different 

constraints based on geometry and operating conditions. The mathematical model of this 

optimization problem is described as Eq. (22). 

 

Figure 14. Design variables of multi-disc clutch brake problem. 
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Table 13 shows the results of DTSMA and other algorithms in the literature for optimizing 

multiple-disc clutch brakes. Both DTSMA and SMA find better results than other algorithms, 

indicating that DTSMA has good performance in solving discrete constraint problems. 
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Table 13. Optimal results and comparison for the multiple-disc clutch brake design problem. 

Algorithms Ri Ro Th F Z Optimal weight 

GOA [89] 71 92 1 835 3 0.3355146 

EOBL-GOA [89] 70 90 1 984 3 0.31365661 

PVS [91] 70 90 1 980 3 0.31366 

FSO [100] 70 90 1 870 3 0.3136566105 

TLBO [20] 70 90 1 810 3 0.31365661 

WCA [101] 70 90 1 910 3 0.3136566 

SMA 70 90 1 1000 3 0.3136566105 

DTSMA 70 90 1 980 3 0.3136566105 

5.9. Car side crash design problem 

The car side crash optimization design problem was originally proposed by Gu et al. [102]. This 

optimization problem is specified as minimizing an objective function with eleven mixed design 

variables with ten constraint limits, as shown in Figure 15. The simplified mathematical model of the 

problem can be written in the following Eq. (23). 

The optimization results of different algorithms are given in Table 14. The results show that 

DTSMA outperforms PSO, GA, GOA, ABC, GWO, CODE and SMA algorithms in optimizing the 

car side impact design problem and can obtain satisfactory results. 

Table 14. Optimal results and comparison for the car side crash design problem. 

Variables PSO [104] GA [104] GOA [89] ABC [105] GWO CODE SMA DTSMA 

x1 0.50000 0.50005 0.50000 0.50000 0.50043 0.50001 0.50000 0.50000 

x2 1.11670 1.28017 1.11670 1.06240 1.11516 1.11678 1.11975 1.11610 

x3 0.50000 0.50001 0.50000 0.51480 0.50000 0.50000 0.50000 0.50000 

x4 1.30208 1.03302 1.30208 1.44910 1.30518 1.30160 1.29678 1.30264 

x5 0.50000 0.50001 0.50000 0.50000 0.50109 0.50000 0.50000 0.50000 

x6 1.50000 0.50000 1.50000 1.50000 1.50000 1.49996 1.50000 1.50000 

x7 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 

x8 0.34500 0.34994 0.34500 0.34500 0.34500 0.34500 0.34500 0.34500 

x9 0.19200 0.19200 0.19200 0.19200 0.34500 0.34500 0.19200 0.34500 

x10 -19.54935 10.3119 -19.54935 -29.34000 -19.78034 -19.49082 -18.95652 -19.60863 

x11 -0.00431 0.00167 -0.00431 0.74109 0.65129 -0.14707 0.25926 0.06832 

Optimum 22.84474 22.85653 22.84474 23.17500 22.85094 22.84339 22.84380 22.84301 
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 (23) 

5.10. Statistics analysis of engineering problems 

In order to observe the distribution of the best fitness when solving engineering problems by 

DTSMA and SMA, the results of 30 runs are presented in the form of box plots, as shown in Figure 

16. The corresponding Wilcoxon p-value test results are shown in Figure 17, where the number 1 

represents three-bar truss problem, the number 2 represents cantilever beam problem, and so on. 
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Figure 15. Box plots of the DTSMA and SMA in solving engineering problems. 

 

Figure 16. Statistical test of the DTSMA and SMA for eight engineering problems. 

It can be summarized that as follows from Figure 16 and Figure 17. 

(1) For the three-bar truss, cantilever beam, tension/compression spring, and welded beam 

engineering design problems, the boxes of DTSMA are significantly lower than those of SMA, and 
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the Wilcoxon p-value test results are much less than 0.05, indicating that the solution accuracy and 

robustness of DTSMA for these four engineering problems are significantly better than SMA. 

(2) DTSMA performs better than SMA but not significantly enough for the pressure vessel, 

speed reducer, and car side crash engineering design problems. Although DTSMA obtains better 

results, it also produces more outliers and is less stable. For the multi-disc clutch brake problem, both 

DTSMA and SMA find the same optimal solution because it is a discrete numerical problem and the 

difference in feasible solutions is smaller. 

(3) On the whole, DTSMA still outperforms SMA, and according to the NFL theorem [31], no 

single algorithm can be applied to all problems. DTSMA outperforms SMA for most engineering 

problems, which indicates that the improvement is meaningful. 

6. Inverse kinematics solution of 7-DOF robot manipulator 

Seven-degree-of-freedom (7-DOF) robot manipulators are widely used in industry for their 

ability to easily avoid obstacles, move flexibly, and work in larger spaces. The inverse kinematics of 

a robotic arm is defined as finding the joint angle by using the kinematics equations of the desired 

end-effector position. Due to its complex nonlinear structure, the inverse kinematics problem can be 

considered as a challenging optimization problem [106]. 

The most used method for kinematics modeling of robotic arms is the Denavit-Hartenberg (DH) 

coordinate parameter method. The robot manipulator model solved in this paper is proposed by 

Serkan et al. in [107], and its DH parameter table is listed in Table 15, where , , ,i i i ia d   refer to 

link length, link twist, link offset and joint angle, respectively. The model structure of a robotic arm 

can be determined according to the DH parameter table, as shown in Figure 18. 

 

Figure 17. 7-DOF robot manipulator link structure. 
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Table 15. DH parameters for 7-DOF robot manipulator. 

Joint ai (m) αi (°) di (m) θi (°) 

1 0 −90 l1=0.5 −180<θ1<180 

2 l2=0.2 90 0 −90<θ2<30 

3 l3=0.25 −90 0 −90<θ3<120 

4 l4=0.3 90 0 −90<θ4<90 

5 l5=0.2 −90 0 −90<θ5<90 

6 l6=0.2 0 0 −90<θ6<90 

7 l7=0.1 0 d7=0.05 −30<θ7<90 

 

The general homogeneous transformation matrix can be expressed as Eq. (24). 

 
1
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 (24) 

where 1

i

i T−  is the transformation matrix relating joint 1i −  to joint i , s  and c  denote sine and 

cosine functions, respectively. 

The kinematics equations of the serial robot manipulator can be obtained by substituting the 

values of the DH parameter in Table 15 into Eq. (24) and then multiplying them successively, as 

shown in Eq. (25). 
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where Tend-effector is the homogeneous transformation matrix of the end-effector with respect to the 

base frame, , , , , , , , ,x y z x y z x y zn n n s s s a a a  denote the rotational elements of the transformation matrix, 

, ,x y zP P P  denote the elements of the position vector of end-effector. 

The main task of the inverse kinematics problem is to determine the corresponding joint angles 

based on the desired position of the end-effector in the Cartesian coordinate system. Thus, the 

objective function can be defined as minimizing the Euclidean distance between the desired position 

and the predicted position, as shown in Eq. (26). 

 
desired predictedMinimize  ( )Error P P = −  (26) 

where Pdesired represents the desired position vector of end-effector of robot manipulator, Ppredicted 

represents the predicted position vector. 

Table 16. Comparative results for the robot manipulator inverse kinematics problem. 

Case DTSMA SMA PSO DE GQPSO CODE GWO HHO 

P1 

Px(m) -0.250000 -0.249993 -0.249914 -0.250243 -0.250220 -0.249936 -0.249992 -0.249963 

Py(m) 1.000000 0.999992 0.999774 0.999946 0.997496 0.999968 1.000030 0.999873 

Pz(m) 0.500000 0.500006 0.499520 0.499851 0.500095 0.500034 0.500024 0.500016 

θ1(°) 98.1094 -180.0000 129.2701 179.9137 13.4544 121.8851 180.0000 93.0924 

θ2(°) 27.5052 29.1515 -47.3514 -33.5445 1.5614 0.7168 -24.5950 -32.6298 

θ3(°) 10.2280 -89.9894 -55.9539 -85.6810 97.7035 7.8961 -90.0000 50.0495 

θ4(°) -20.5711 4.9214 71.7076 11.4524 -0.0844 10.3278 1.8493 63.6740 

θ5(°) -13.4537 -4.1895 7.4930 -14.2824 2.4710 -74.2812 -2.8740 -54.3151 

θ6(°) -76.2966 -41.7951 -26.4275 -22.2372 0.2848 -39.2841 -1.7651 -8.6285 

θ7(°) 18.1857 10.2074 7.0484 61.8365 -0.0596 55.8021 61.0002 0.7233 

Best 3.41E-07 1.21E-05 5.37E-04 2.90E-04 2.52E-03 7.89E-05 3.93E-05 1.33E-04 

Worst 3.24E-05 3.82E-04 4.22E-03 8.56E-03 2.97E-02 8.95E-04 8.31E-03 2.35E-02 

Mean 8.86E-06 1.19E-04 2.04E-03 3.60E-03 1.09E-02 3.41E-04 4.77E-04 2.22E-03 

Std. 9.68E-06 1.12E-04 7.63E-04 2.52E-03 5.85E-03 2.11E-04 1.49E-03 5.28E-03 

Time(s) 41.19 16.64 16.13 18.73 16.36 22.55 15.97 43.15 

P2 

Px(m) 0.500001 0.500097 0.499959 0.500008 0.490452 0.500182 0.499986 0.500000 

Py(m) -0.249998 -0.250043 -0.249860 -0.249966 -0.261733 -0.249910 -0.250022 -0.250000 

Pz(m) 0.750000 0.750026 0.750104 0.750018 0.743542 0.749790 0.750040 0.750000 

θ1(°) -180.0000 -118.4679 180.0000 -90.2388 180.0000 -175.9374 -72.7182 -34.4058 

θ2(°) -67.6761 0.0001 -90.0000 28.8407 5.9500 -83.5671 -90.0000 27.6332 

θ3(°) 119.9737 90.4584 1.8322 112.9309 120.0000 27.3226 -0.9113 -79.8749 

θ4(°) -54.0772 9.9188 -90.0000 -85.6953 -18.4606 -81.3090 90.0000 -89.8656 

θ5(°) -12.2186 86.5447 42.1089 -86.3252 75.2238 45.4308 70.8576 34.9869 

Continued on next page 

 



2276 

Mathematical Biosciences and Engineering  Volume 19, Issue 3, 2240–2285. 

 Case DTSMA SMA PSO DE GQPSO CODE GWO HHO 

 

θ6(°) -85.9133 -87.8100 -85.6967 90.0000 -13.7060 -87.2805 52.1677 -80.1758 

θ7(°) -29.3020 0.0000 90.0000 75.1437 -2.9405 87.4752 -23.2101 0.3696 

Best 2.41E-06 1.09E-04 1.80E-04 3.94E-05 1.64E-02 1.97E-05 4.79E-05 5.48E-08 

Worst 9.24E-05 5.59E-02 3.44E-02 1.10E-02 1.30E-01 5.82E-04 1.57E-02 2.05E-01 

Mean 3.30E-05 7.14E-03 2.13E-03 3.22E-03 6.22E-02 1.45E-04 9.18E-04 9.55E-03 

Std. 2.42E-05 1.53E-02 6.11E-03 3.06E-03 2.33E-02 1.08E-04 3.03E-03 3.76E-02 

Time(s) 41.49 15.67 16.68 18.49 16.70 22.96 16.46 42.56 

The optimal values are shown in bold. 

To verify the performance of the proposed DTSMA, two different desired position vectors i.e., 
T

1 [ 0.25,1.00,0.50]P = −  and T

2 [0.50, 0.25,0.75]P = −  were selected for testing. DTSMA was 

compared with SMA, PSO, DE, GQPSO [68], CODE [70], GWO, and HHO, and each algorithm was 

run independently for 30 times with 30 individual populations and 1000 iterations. Table 16 

illustrates the numerical optimization results of DTSMA and the other compared algorithms for the 

inverse kinematics problem with two different desired position coordinates of the end-effector. 

From the optimization results in Table 16, it can be seen that the solution accuracy of the 

DTSMA is better than the comparison algorithm for the inverse kinematics problem, but the 

computation time is longer. The optimal solution of the HHO algorithm for Case2 optimization is 

better than DTSMA, but its average solution is poorer and less stable. The convergence history of the 

algorithm is shown in Figure 19. It can be seen that DTSMA converges faster than the other 

comparison algorithms. The statistical results of the comparison algorithms are shown in Figure 20 

and Figure 21. 

It can be seen that the performance of DTSMA is significantly better than SMA and the other 

six comparison algorithms in optimizing the inverse kinematics problem of the robot manipulator, 

which reflects the applicability of DTSMA to practical problems. 

 

Figure 18. Convergence curves of the algorithms for inverse kinematics problems. 
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Figure 19. Box plots of the algorithms for inverse kinematics problems. 

 

Figure 20. Statistical test of the DTSMA and compare algorithms for inverse kinematics problems. 

7. Conclusions and future works 

In this paper, an improved slime mould algorithm, DTSMA, is proposed for the shortcomings of 

slow convergence, weak exploration ability, and easy to fall into local optimal of the SMA. In 

DTSMA, the dominant swarm strategy is firstly introduced to retain the historical optimal position of 

each slime mould individual. In the position updating formula of exploration stage, both the 

historical optimal position of the population and the historical optimal position of the individual are 

used to make the population look for places with high probability of the optimal solution as much as 

possible. Secondly, by making full use of SMA's fitness ranking information, the dominant 

population is further divided into dominant and inferior population, and the two sub-populations 

cooperate with each other to make the population search more extensive in the exploration stage. 

Then, a nonlinear adaptive t-distribution mutation strategy is introduced to perturb the dominant 

swarm to avoid premature convergence. Finally, the exploitation mechanism for convergence to 
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individual historical optimal is added to improve the diversity of the population and the robustness 

and generalization ability of DTSMA. The effectiveness and efficiency of DTSMA in solving 

numerical optimization problems were tested on CEC2019 functions. Then, DTSMA was applied to 

eight classical engineering application problems and the inverse kinematics problem of a 7-DOF 

robot manipulator. Experimental results show that the solution accuracy of DTSMA on CEC2019 

ranks first overall among 23 algorithms, significantly outperforming SMA and numerous 

comparative algorithms. In eight engineering instances, DTSMA obtains better optimal solutions, far 

outperforming SMA for the three-bar truss, cantilever beam, tension/compression spring, and welded 

beam problems, and slightly outperforming SMA for the remaining four problems. In the inverse 

kinematics of the robot manipulator, DTSMA significantly outperforms SMA, PSO, DE, GQPSO, 

CODE, GWO and HHO in terms of solution accuracy and stability. The statistical results 

demonstrate that DTSMA has the following superiority. 

(1) The test function results show that DTSMA converges quickly and accurately, has the ability 

to escape from local optimum, and has a good balance between exploration and exploitation. The 

convergence curve shows that the proposed method has fast convergence speed and avoids premature 

convergence and local optimal stagnation. 

(2) Friedman and Wilcoxon rank test illustrate that DTSMA has better performance compared to 

SMA and well-known algorithms and there are significant differences. 

(3) Experimental results of DTSMA in engineering problems show that it is an ideal choice for 

solving continuous and discrete constrained optimization problems as well as inverse kinematics 

problems of robot manipulator. 

Although DTSMA overcomes many drawbacks of the original SMA, its long running time 

makes it unsuitable for real-time control systems. More in-depth study on how to reduce the time 

complexity of DTSMA will be conducted in the future. Then, DTSMA will be applied to the inverse 

kinematics of robot manipulator with comprehensive consideration of position and posture of 

end-effector. In addition, DTSMA has stronger scalability and can also be applied to solve high or 

ultra-high dimensional problems, such as the traveling salesman problem, the job shop scheduling 

problem, and the time series forecasting problem, etc. 
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