
MBE, 19 (3): 2240–2285.

DOI: 10.3934/mbe.2022105

Received: 27 October 2021

Revised: 02 December 2021

Accepted: 16 December 2021

Published: 04 January 2022

http://www.aimspress.com/journal/MBE

Research article

DTSMA: Dominant Swarm with Adaptive T-distribution Mutation-based

Slime Mould Algorithm

Shihong Yin1,2,3, Qifang Luo1,2,3, Yanlian Du4,5 and Yongquan Zhou1,2,3

1 College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China
2 Key Laboratory of Guangxi High Schools Complex System and Computational Intelligence,

Nanning 530006, China
3 Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China
4 College of Information and Communication Engineering, Hainan University, Haikou 570228, China
5 State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou

570228, China

* Correspondence: Email: yongquanzhou@126.com; Tel: +8613607882594; Fax: +867713265523.

Abstract: The slime mould algorithm (SMA) is a metaheuristic algorithm recently proposed, which

is inspired by the oscillations of slime mould. Similar to other algorithms, SMA also has some

disadvantages such as insufficient balance between exploration and exploitation, and easy to fall into

local optimum. This paper, an improved SMA based on dominant swarm with adaptive t-distribution

mutation (DTSMA) is proposed. In DTSMA, the dominant swarm is used improved the SMA’s

convergence speed, and the adaptive t-distribution mutation balances is used enhanced the

exploration and exploitation ability. In addition, a new exploitation mechanism is hybridized to

increase the diversity of populations. The performances of DTSMA are verified on CEC2019

functions and eight engineering design problems. The results show that for the CEC2019 functions,

the DTSMA performances are best; for the engineering problems, DTSMA obtains better results than

SMA and many algorithms in the literature when the constraints are satisfied. Furthermore, DTSMA

is used to solve the inverse kinematics problem for a 7-DOF robot manipulator. The overall results

show that DTSMA has a strong optimization ability. Therefore, the DTSMA is a promising

metaheuristic optimization for global optimization problems.

Keywords: Slime mould algorithm; t-distribution mutation; functions optimization; engineering

problems; metaheuristic optimization

2241

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

1. Introduction

With the development of technology and society, more and more highly complex and

challenging practical optimization problems need to be solved. Most of the traditional optimization

methods are based on gradient or derivative information, such as Newton's method [1,2], conjugate

gradient method [3], which have the advantages of theoretical soundness and fast convergence and

can be used to solve optimization problems in some engineering fields. However, these methods tend

to be based on problem-specific characteristics, are difficult to meet the needs of a large number of

practical problems, and it easily becomes trapped into local optima when used to solve complex,

highly nonlinear, and multi-peak complex problems [4]. To overcome these problems, metaheuristic

optimization algorithms were introduced, which can help to solve optimal or near-optimal solutions

of complex functional and real-world problems with the iterative process of the algorithm. Unlike

traditional methods, metaheuristic algorithms have a stochastic and gradient-free mechanism, require

minimal mathematical analysis, and use only inputs and outputs to consider and solve the

optimization problem [5]. This is one of the fundamental advantages of metaheuristic algorithms,

giving them a high degree of flexibility in solving various problems.

The metaheuristic optimization methods can be divided into three categories from the principle

of algorithms: evolution-based, physics-based, and swarm intelligence-based [6]. Evolution-based

algorithms are proposed to simulate Darwinian biological evolution and mainly include Genetic

Algorithm (GA) [7] and Differential Evolution (DE) [8]. The physics-based algorithms are inspired

by the laws of physics and mainly include Simulated Annealing (SA) [9], Quantum Search Algorithm

(QSA) [10], Big Bang-Big Crunch (BBBC) [11], Artificial Chemical Reaction Optimization

Algorithm (ACROA) [12], Lightning Search Algorithm (LSA) [13], Multi-Verse Optimizer

(MVO) [14], Heat transfer search (HTS) [15], Atom Search Optimization (ASO) [16], and

Equilibrium optimizer (EO) [17]. Swarm intelligence-based algorithms are proposed to simulate the

collaborative behavior of natural biological swarms. Representative algorithms include Particle

Swarm Optimization (PSO) [18], Artificial Bee Colony Algorithm (ABC) [19], Teaching-Learning

Based Optimization (TLBO) [20], Gray Wolf Optimizer (GWO) [21], Whale Optimization Algorithm

(WOA) [22], Salp Swarm Algorithm (SSA) [23], Social Spider Optimization (SSO) [24], Seagull

Optimization Algorithm (SOA) [25], Marine Predators Algorithm (MPA) [26], Harris Hawks

Optimization (HHO) [27], Bald Eagle Search (BES) [28], Slime Mould Algorithm (SMA) [29],

Chameleon Swarm Algorithm (CSA) [30], and so on.

It is worth noting that, according to the No Free Lunch (NFL) theorem [31], no algorithm

performs well on all problems, and each algorithm has its own strengths and weaknesses, which are

applied to different real-world problems to obtain better results. As a result, applying improved

algorithms to specific problems has become a hot topic of current research. For example, Zhang

et al. [32] proposed a state transition simulated annealing algorithm (STASA) that introduces a new

elementary breakpoint operator and neighborhood search structure in SA to solve multiple traveling

salesman problems, and experimental results show that the improved algorithm outperforms other

state-of-the-art algorithms. Yu et al. [33] proposed a performance-guided JAYA (PGJAYA) algorithm

for extracting parameters of different PV models, and the performance of PGJAYA was evaluated on

a standard dataset of three PV models, and the results showed that PGJAYA has excellent

performance. Fan et al. [34] proposed an improved Harris Hawk Optimization algorithm based on

2242

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

domain centroid opposite-based learning (NCOHHO), which was applied to feedforward neural

network training and achieved good results in classification applications.

The Slime Mould Algorithm (SMA) is a metaheuristic algorithm inspired by slime mould

oscillation proposed by Li et al. in 2020 [29]. It has been applied to many fields in less than two

years because it simulates the unique oscillatory foraging behavior of the slime mould and has

superior performance. For example, Ewees et al. [35] applied the firefly algorithm (FA) and SMA

hybrid algorithm (SMAFA) to the feature selection (FS). Abdel-basset et al. [36] applied the binary

SMA (BSMA) to the FS problem. Abdel-basset et al. [37] proposed a hybrid method based on

threshold technology (HSMA_WOA) to overcome the image segmentation problem (ISP) of chest

X-ray images of COVID-19. Zhao et al. [38] proposed a Renyi’s entropy multi-threshold image

segmentation method based on improved slime mold algorithm (DASMA). Naik et al. [39] applied

an improved SMA (LSMA) to the ISP. Yousri et al. [40] proposed a novel hybrid algorithm of marine

predator algorithm (MPA) and SMA (HMPA) to solve the ISP. Mostafa et al. [41] applied SMA to the

single-diode and dual-diode models of photovoltaic cells. El-Fergany [42] studied the performance of

SMA and its improved version (ImSMA) in photovoltaic parameter extraction. Liu et al. [43]

proposed a SMA that integrates Nelder-Mead simplex strategy and chaotic mapping to identify

photovoltaic solar cell parameters. Kumar et al. [44] applied SMA to the parameter extraction of

photovoltaic cells and proved the superiority of SMA. Agarwal et al. [45] applied SMA to path

planning and obstacle avoidance problem of mobile robots. Rizk-Allah et al. [46] proposed a

chaos-opposition-enhanced SMA (CO-SMA) to minimize the energy costs of wind turbines at

high-altitude sites. Hassan et al. [47] proposed an improved version of the SMA (ISMA) and applied

it to efficiently solve economic and emission dispatch (EED) problem with single and dual objectives,

and compared it with five algorithms on five test systems. Wei et al. [48] proposed an improved

SMA (ISMA) for optimal reactive power dispatch (ORPD) problem in power systems, and achieved

better results than the well-known algorithms on power test systems with IEEE 57 bus, IEEE 118 bus

and IEEE 300 bus. Abdollahzadeh et al. [49] proposed a binary version of SMA to solve the 0-1

knapsack problem; Zubaidi et al. [50] combined SMA and artificial neural network for urban water

demand prediction; Chen et al. [51] combined K-means clustering and chaotic SMA with support

vector regression to obtain higher prediction accuracy. Ekinci et al. [52] applied SMA to the power

system stabilizer design (PSSD); Wazery et al. [53]. Combined SMA and K-nearest neighbor for

disease classification and diagnosis system. Premkumar et al. [54] proposed a multi-objective version

of the SMA (MOSMA) for solving complex real-world multi-objective engineering optimization

problems, which has better performance compared to other well-known multi-objective algorithms.

Yu et al. [55] proposed an improved SMA (WQSMA), which used quantum rotation gate (QRG) and

water cycle operator to improve the robustness of the original SMA, so as to balance the exploration

and exploitation ability. The effectiveness of WQSMA on CEC2014 and three engineering problems

was verified. Houssein et al. [56] proposed a hybrid SMA and adaptive guided differential evolution

(AGDE) algorithm, namely SMA-AGDE, which makes a good combination of SMA's exploitation

ability and AGDE's exploration ability, and verified the effectiveness of SM-AGDE through

CEC2017 and three engineering design problems.

As mentioned above, many scholars have only improved SMA for specific problems, and the

generalization ability of the proposed algorithms has yet to be tested. Yu et al. [55] and Houssein

et al. [56] respectively used QRG and AGDE to enhance the exploration ability of SMA to address

the shortcomings of SMA and achieved good results. In this paper, a novel improved slime mould

2243

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

algorithm DTSMA based on dominant swarm and nonlinear adaptive t-distribution mutation is

proposed based on the improved experience of WQSMA and SMA-AGDE. The dominant swarm

enhanced the exploitation ability of SMA, and the t-distribution mutation enhanced the exploration

ability of SMA. In order to further improve the exploitation ability of SMA, a new exploitation

formula is added to DTSMA. The main contributions of this paper are as follows.

(1) It is verified that the dominant swarm strategy can improve the convergence rate of SMA.

(2) The proposed nonlinear adaptive t-distribution mutation mechanism can expand the search

range of SMA in the iterative process, increase the difference of search agents, improve the global

search ability of SMA, and avoid falling into local optimal.

(3) The proposed new exploitation mechanism is effectively combined with that of SMA.

(4) The DTSMA is compared with other advanced metaheuristic algorithms on CEC2019, and

the advantages of DTSMA in convergence speed and solution accuracy are verified.

(5) The performance of DTSMA is tested on eight classical engineering application problems

and the inverse kinematics problems of a 7-DOF robot manipulator.

In this paper, the CEC2019 functions and eight constrained engineering design problems are

selected as test cases and compared with twenty-two well-known algorithms on CEC2019 and with

SMA and improved algorithms in the literature on engineering instances. Experimental results show

that DTSMA has strong search ability and can obtain better solutions than most algorithms under the

condition that constraints are satisfied.

The rest of this paper is organized as follows: Section 2 briefly describes the principle and

characteristics of SMA. Section 3 describes the principle of DTSMA and its difference from SMA in

detail. Section 4 presents the experimental configuration, the comparative experimental results of the

CEC2019 functions, and its statistical analysis. In section 5, DTSMA is used to optimize eight

engineering problems, i.e., three-bar truss, cantilever beam, pressure vessel, tension/compression

spring, welded beam, speed reducer, multi-disc clutch brake, and car side crash problem. In section 6,

DTSMA is used to solve the inverse kinematics problems of a 7-DOF robot manipulator. Section 7

presents the discussion, conclusions and future work.

2. Slime mould algorithm (SMA)

2.1. Inspiration

SMA is an interesting swarm-based meta-heuristic algorithm proposed by Li et al. in 2020 [29].

It simulates the behavior and morphological changes of slime mould in foraging to find the best

solution. The slime mould relies mainly on propagating waves generated by biological oscillators to

modify the cytoplasmic flow in the veins to approach a higher food concentration, then surrounds it

and secretes enzymes to digest.

2.2. Mathematical model

During the foraging process of slime mould, individuals can approach the food based on the

odor in the air. The greater the concentration of food odor, the stronger the bio-oscillator wave, the

faster the cytoplasmic flow, and the thicker the vein-like tubes formed by the slime mould. The

mathematical model for updating the location of slime mould is as Eq. (1).

2244

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

 ()
()

(1) () () ()

()

b A B

rand UB LB LB rand z

X t X t vb W X t X t r p

vc X t r p

  − + 


+ = +   − 


 

 (1)

where LB and UB denote the lower and upper bounds of the search range, rand and r denote

random numbers in [0,1], and z is a parameter that the original authors did a lot of experiments and

suggested to take 0.03, bX indicates the location where the highest concentration of food odor is

currently found, vb and vc are parameters, vb takes values in [,]a a− , vc decreases linearly

from 1 to 0 with the number of iterations t , W indicates the thickness of the vein-like vessels

formed by the slime mould, AX and BX are two randomly selected agents positions in the

population, X indicates the current position of the slime mould.

The value of p is calculated as Eq. (2).

 tanh | () |p S i DF= − (2)

where 1,2,...,i n , ()S i denotes the fitness X , DF denotes the best fitness obtained so far.

The value of a in the range of vb is calculated as Eq. (3).

 ()arctanh 1 max_a t t= − (3)

where max_ t indicates the maximum number of iterations.

The formula of W is calculated as Eq. (4).

()
1 log 1

(())
()

1 log 1

bF S i
r condition

bF wF
W SmellIndex i

bF S i
r others

bF wF

 − 
+  +  −  

= 
−  −  +  − 

 (4)

 ()SmellIndex sort S= (5)

where condition represents that ()S i ranks first half of the population, r means a random

number in [0,1], bF represents the optimal fitness obtained in the iterative process currently, wF

represents the worst fitness obtained in the iterative process currently, SmellIndex denotes the result

of the ascending order of fitness values (in the minimization problem).

2.3. Characteristics of SMA

The slime mould approximation food behavior shown in Eq. (1), the individuals position X

can be updated according to the best position bX obtained so far, while the fine-tuning of

parameters vb , vc and W can change the individuals position and rand allows the search

agents to form a search vector of any angle.

2245

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

Algorithm 1 Pseudo-code of SMA

1. Initialize the parameters , , , _z n d max t ;

2. Initialize the positions of slime mould (1, 2,...,)iX i n= ;

3. While (_t max t)

4. Calculation the fitness S of all slime mould;

5. Sort the fitness S ;

6. Update , , , bbF wF DF X ;

7. Calculate the W by Eq. (4);

8. Update , , , ,p vb vc A B ;

9. For each search agents

10. Update positions by Eq. (1);

11. End For

12. 1t t= + ;

13. End While

14. Return , bDF X ;

Figure 1. Flow chart of the SMA [29].

At the beginning of the SMA, the individual positions are scattered, the value of p tends to 1,

and the slime mould is mainly explored by the second equation in Eq. (1). As the number of

iterations increases, the individual positions are gradually close together, the vein-like vessels of the

slime population are gradually formed, the individual fitness value ()S i is gradually approached

with the current optimal fitness value DF , the value of p tends to 0, and the slime mould are

mainly exploited by the third equation in Eq. (1). In addition, a stochastic strategy was introduced

2246

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

into the search process of SMA so that the algorithm maintains some exploration ability even during

the exploitation phase. In SMA, there are no velocity settings for the agents of the slime mould and

the population is not divided into hierarchies or subpopulations. All search agents are simply and

equally selected close to or far from the current best location bX . Furthermore, the position is

updated using only the best positions obtained so far and not using the historical best position

information of individuals. The pseudo-code of the SMA is shown in Algorithm 1 [29], and the flow

chart is expressed in Figure 1.

3. Improved slime mould algorithm (DTSMA)

3.1. Dominant swarm

In the process of solving the optimization problem, SMA does not use the information of the

individual optimal position of slime mould to update the solution, and may miss a good opportunity

to find the global optimal. In DTSMA, in order to record the individual historical optimal position

information, the dominant swarm goodX and its fitness value goodS are defined to store the

historical optimal information. After the position is updated, the updated position X is compared

with the position in the dominant swarm goodX , and the greedy selection strategy is used to reserve

the better position to the dominant swarm. In the exploration phase, DTSMA uses the individual

historical optimal good good, A BX X and the population historical optimal goodbX found so far to

jointly update the search individual position X . The formula for updating the position of slime

mould is as Eq. (6).

good good good(1) () (() ())b A BX t X t vb W X t X t+ = +   − (6)

where goodbX is the best solution for the fitness value in the dominant swarm, goodAX and goodBX

are two randomly selected position vectors from the dominant swarm, vb is the random number

vector with the value in [,]a a− , a is calculated by Eq. (3), W represents the adaptive weight of

the slime mould individual.

SMA sorts the individual fitness value in each iteration in order to find the optimal and the

worst fitness. The sorting process is time-consuming, and to make better use of the sorted individual

positions and fitness values, DTSMA divides the sorted population into two subpopulations, goodAX

from the population ranked in the top half of fitness values and goodBX from the other population.

The values of A and B are taken as Eq. (7) and Eq. (8).

2

N
A round rand

 
=  

 
 (7)

2 2

N N
B round rand

 
= +  

 
 (8)

where N denotes the population size, rand denotes a random number in [0,1], round indicates

the rounding function.

After adding the dominant swarm, the convergence speed and solution accuracy of SMA have

been greatly improved, but the problem of easily falling into local optimum is still severe.

2247

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

3.2. Mutation mechanism

SMA has strong exploitation ability, but weak exploration ability. The algorithm is easy to fall

into local optimum and appear premature convergence phenomenon. To balance exploration and

exploitation, mutation mechanism is added after the regeneration of dominant swarm. There are

many probabilistic mutation mechanisms, such as Levy flight [57,58], Gaussian mutation [49,59,60]

and Cauchy mutation [61], all of which can enhance the search ability of the algorithm. Levy flight

can enhance the exploration and exploitation ability of the algorithm at the same time, but mainly

enhance the exploitation ability. SMA needs to improve the exploration ability, so it is not suitable to

use Levy flight mechanism. For algorithms with strong exploitation ability, Gaussian mutation can

enhance its exploration ability, while for algorithms with strong exploration ability, Gaussian

mutation can enhance its exploitation ability. In literature [49], SMA based on Gaussian mutation is

used to solve the 0-1 knapsack problem. Since knapsack problem is NP hard discrete optimization

problem, it is necessary to improve the exploration ability of SMA. But for more general

optimization problems, the later exploitation ability of the algorithm needs to be concerned. Cauchy

mutation also enhanced SMA's exploration ability, but not as much as Gaussian mutation. Therefore,

inspired by the above literature, this paper applies the t-distribution mutation switching between

Gaussian mutation and Cauchy mutation to SMA. The degree of freedom of t-distribution mutation

adaptively changes with the number of iterations, which can well balance the exploration and

exploitation of SMA. When the degree of freedom is large, the t-distribution is close to the Gaussian

distribution, and when the degree of freedom is equal to 1, it is the Cauchy distribution, as clearly

shown in Eq. (9) and Figure 2.

(0,1)

()
(0,1) 1

Norm tn
trnd tn

Cauchy tn

→
= 

=
 (9)

where ()trnd tn denotes the t-distribution with degrees of freedom tn .

In DTSMA, the position of each slime mould of the dominant swarm goodX is perturbed using

t-distribution mutation with adaptive parameters. t-distribution mutation operator is mathematically

formulated as Eq. (10).

good good ()TX X X trnd tn= +  (10)

where TX denotes the position vector of slime mould after t-distribution mutation, and tn denotes

the degree of freedom parameter of the t-distribution.

In DTSMA, the degree of freedom parameter tn grows nonlinearly with the number of

iterations t . The value of tn is calculated as Eq. (11).

 ()()2
exp 4 max_tn t t=  (11)

The degree of freedom parameter tn enables DTSMA to approximate the use of the Cauchy

mutation in the early iteration to enhance the exploration ability, and to approximate the use of the

Gaussian mutation in the late iteration to focus on the exploitation ability. During the iteration of

DTSMA, with the increase of the degree of freedom tn , the algorithm gradually transforms from

focusing on the global exploration ability to the local exploitation ability. The t-distribution

2248

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

mutational operator combines the advantages of Gaussian mutational and Cauchy mutational

operators, allowing DTSMA to achieve an excellent balance between exploration and exploitation.

Figure 2. Probability density curves for Gaussian, Cauchy, and T-distribution.

3.3. Greedy strategy

SMA does not use greedy selection, and a greedy strategy is utilized in DTSMA to retain search

agents of slime mould with better fitness than the current ones and eliminate those with worse fitness

in each iteration, expressed in the mathematical formula as Eq. (12).

 good

good

good

(1) ((1)) (())
(1)

()

X t S X t S X t
X t

X t others

 + + 
+ = 



 (12)

where ()S X denotes the fitness of X , goodX represents the position in the dominant swarm.

The use of a greedy strategy seems to weaken the exploration performance of the algorithm, but

the mutation mechanism incorporated in each iteration of DTSMA constantly performs exploration,

and greedy selection simply discards the fraction of individuals that fail in exploration and prepares

them more adequately for the next exploration.

3.4. Exploitation operator

Finally, a search operator was added in the exploitation phase of DTSMA to increase the

population diversity of slime mould, and the exploitation operator was formulated as Eq. (13).

good good(1) () ()X t X t vc X t+ = +  (13)

where goodX represents the position in the dominant swarm, vc is a random number vector with

the value in [,]b b− , and b decreases linearly from 1 to 0 with the number of iterations.

2249

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

This operator donates that the search agents of the slime mould will eventually stop at the

optimal position it currently finds, and in some cases, the individual optimal may converge beyond

the current global optimal position
goodbX . Based on the above principles, the mathematical formula

for the position update can be organized as Eq. (14).

good good good

good

good good

()

() (() ())
(1)

() and

() ()

b A B

rand UB LB LB rand z

X t vb W X t X t r p
X t

vc X t r p r q

X t vc X t others

 − + 


+   − 
+ = 

  
 + 

 (14)

where q is a parameter that can be adjusted to the specific problem and takes values in [0,1].

3.5. Sensitivity analysis of parameters

When using DTSMA, it is necessary to determine two adjustable parameters z and q , among

which the adjustment method of parameter z is consistent with that of SMA, which can be referred

to [29]. To illustrate the impact of q on solving optimization problems and to facilitate users to

adjust on specific problems, the value of q was compared on the CEC2019 functions, and the

interval between 0 and 1 is 0.1. The test results are shown in Table 1. The data presented in the table

are the average optimal fitness obtained by the algorithm running 30 times on each function and their

rank among the other values taken by q . As can be seen from Table 1, the Friedman mean rank best

when q is 0.9 and obtained the best results on the five functions. It shows that the searching ability

of DTSMA is improved significantly when q is taken as 0.9. Therefore, considering the

generalization ability of the DTSMA algorithm, q is taken as 0.9 for the next test. In addition, for

most optimization problems, the value of q should be taken in [0.7,0.9].

Table 1. Comparison of parameter q of DTSMA on CEC2019 functions.

Functions
q

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

F2 4.2512 4.2500 4.2475 4.2559 4.2751 4.2583 4.3347 4.3351 4.3725 4.5199 4.5303

F3 2.6640 2.5785 2.5607 3.0614 2.3024 2.0508 2.3376 2.3145 2.0807 1.9740 2.6250

F4 13.734 13.502 14.127 14.663 13.933 14.331 14.398 14.265 14.133 14.100 14.663

F5 1.3057 1.2905 1.2724 1.2592 1.2849 1.2519 1.2704 1.2395 1.2635 1.2385 1.3039

F6 2.5919 2.6585 2.6508 2.8353 2.6663 2.6223 2.6432 2.6485 2.4341 2.3836 2.6009

F7 606.12 589.35 600.74 606.12 606.12 617.14 588.10 580.54 577.53 576.87 579.22

F8 3.4369 3.5183 3.5882 3.2536 3.2650 3.4407 3.4934 3.3356 3.4767 3.2166 3.4208

F9 1.1659 1.1824 1.1650 1.1700 1.1550 1.1569 1.1706 1.1651 1.1734 1.1460 1.1388

F10 19.041 20.556 19.545 19.937 20.647 20.127 21.235 20.052 18.799 18.835 18.718

Mean rank 5.64 6.45 5.64 6.55 5.55 5.36 6.73 5.09 4.82 2.73 5.45

Ranking 7.5 9 7.5 10 6 4 11 3 2 1 5

The optimal values are shown in bold.

2250

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

The pseudo-code of DTSMA is presented in Algorithm 2, and the flow chart is shown in Figure 3.

Algorithm 2 Pseudo-code of DTSMA

1. Initialize the parameters , , , , _z q n d max t ;

2. Initialize the positions of slime mould (1, 2,...,)iX i n= ;

3. While (_t max t)

4. Calculation the fitness S of all slime mould;

5. Update
good good,X S by Eq. (12);

6. Perturbation
goodX by Eq. (10);

7. Update good good,X S by Eq. (12);

8. Sort the fitness goodS ;

9. Update good, , , bbF wF DF X ;

10. Calculate the W by Eq. (4);

11. Update , , , ,p vb vc A B ;

12. For each search agents

13. Update positions by Eq. (14);

14. End For

15. 1t t= + ;

16. End While

17. Return good, bDF X ;

3.6. Computational complexity analysis

DTSMA mainly consists of the subsequent components: initialization, fitness evaluation,

dominant swarm update, t-distribution mutation, sorting, weight update, and location update. Among

them, N donates the number of agents of slime mould, Dim donates the dimension of the

variable, and max_ t donates the maximum number of iterations. The computation complexity of

initialization is ()O N Dim , the computation complexity of dominant swarm update and

t-distribution mutation are ()O N , the computation complexity of sorting is (log)O N N , the

computation complexity of weight update is ()O N Dim , the computation complexity of location

update is ()O N Dim . Therefore, assuming that the time complexity of fitness evaluation is ()O F ,

the total computation complexity is ()()max_ logO t N Dim N N F  +  + , which is the same as

SMA. The space complexity of DTSMA is ()O N Dim .

2251

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

Figure 3. Flow chart of the DTSMA.

4. Experimental results on benchmark functions

To verify the improvement, the performance of DTSMA was evaluated using the average best

fitness value and its standard deviation, the results of the test functions were ranked, and the

Friedman rank of each algorithm on the different test functions was counted. Then, the Wilcoxon

rank-sum test was used to evaluate the differences between DTSMA and comparison algorithms. For

a fair comparison, all algorithms were set with the same common parameters, the population size to

30, and the maximum number of iterations to 1000. All experiments were executed on Windows 10

OS and all algorithm codes were run in MATLAB R2019a with hardware details: Intel(R) Core (TM)

i7-9700 CPU (3.00GHz) and 16GB RAM.

4.1. Benchmark functions

In this study, the test functions for the DTSMA comparison experiment are the CEC2019

functions. The search ranges and minimum values are shown in Table 2, and the 3-D map for 2-D

function are shown in Figure 4.

2252

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

Table 2. Characteristics of CEC2019 benchmark functions.

Functions Dim Range Optimal

F1: Storn’s Chebyshev Polynomial Fitting Problem 9 [-8192,8192] 1

F2: Inverse Hilbert Matrix 16 [-16384,16384] 1

F3: Lennard-Jones Minimum Energy Cluster 18 [-4,4] 1

F4: Rastrigin’s Function 10 [-100,100] 1

F5: Griewank’s Function 10 [-100,100] 1

F6: Weierstrass Function 10 [-100,100] 1

F7: Modified Schwefel’s Function 10 [-100,100] 1

F8: Expanded Schaffer’s F6 Function 10 [-100,100] 1

F9: Happy Cat Function 10 [-100,100] 1

F10: Ackley Function 10 [-100,100] 1

Figure 4. Two-dimensional perspective view of CEC2019 benchmark functions.

4.2. Comparison algorithm parameter setting

To test the effectiveness and efficiency, DTSMA was compared with twenty-two algorithms,

including the original SMA [29], classical algorithms (i.e., PSO [18], DE [8], TLBO [20], GWO [21],

WOA [22], SSA [23], MVO [14], MFO [62], ALO [63], DA [64], SCA [65]), novel algorithms (i.e.,

Equilibrium Optimizer (EO) [17], Bald Eagle Search (BES) [28], Harris Hawks Optimization

(HHO) [27], Pathfinder Algorithm (PFA) [66], Seagull Optimization Algorithm (SOA) [25]),

2253

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

improved algorithms (i.e., Autonomous Groups Particle Swarm Optimization (AGPSO) [67],

Gaussian Quantum-behaved Particle Swarm Optimization (GQPSO) [68], hybrid Particle Swarm

Optimization and Gravitational Search Algorithm (PSOGSA) [69], Centroid Opposition-based

Differential Evolution (CODE) [70]), and superior performance algorithms (i.e., Multi-trial

Vector-based Differential Evolution (MTDE) [71]). The adjustable parameter settings of comparison

algorithms are shown in Table 3.

Table 3. Parameter settings of the optimization algorithms.

Algorithms Parameters Values Algorithms Parameters Values

DTSMA Constant z 0.03 TLBO Teaching factor TF {1, 2}

 Constant q 0.9 PFA Parameter less NA

SMA Constant z 0.03 PSO Inertia weight w 1

HHO Constant β 1.5 Cognitive coefficient c1 2

GWO Convergence factor a [2, 0] Social coefficient c2 2

WOA Convergence factor a [2, 0] Maximum velocity v 6

 Logarithmic spiral b 1 AGPSO Inertia weight w [0.9, 0.4]

 Random number l [-1, 1] Cognitive coefficient c1 2

MVO Wormhole existence probability [0.2, 1] Social coefficient c2 2

 Traveling distance rate TDR [0.6, 1] GQPSO Inertia weight w [1, 0.5]

MFO Convergence factor a [-1, -2] Cognitive coefficient c1 1.5

 Logarithmic spiral b 1 Social coefficient c2 1.5

 Random number t [-1, 1] PSOGSA Inertia weight w [1, 0]

ALO Parameter less NA Cognitive coefficient c1 0.5

DA Convergence factor w [0.9, 0.4] Social coefficient c2 1.5

 Constant s 0.1 Gravitational constant G0 1

 Constant a 0.1 Constant α 23

 Constant c 0.7 DE Mutation factor F 0.5

SCA Constant a 2 Crossover rate Cr 0.9

SOA Convergence factor fc [2, 0] CODE Mutation factor F 0.5

SSA Convergence factor c1 [2, 0] Crossover rate Cr 0.9

 Random number c2 [0, 1] Generation jumping rate Jr 0.3

 Random number c3 [0, 1] MTDE Constant WinIter 20

EO Control volume V 1 Constant H 5

 Generation probability GP 0.5 Constant initial 0.001

 Constant a1 2 Constant final 2

 Constant a2 1 Parameter Mu log(Dim)

BES Constant α 2 Constant μf 0.5

 Spiral parameter a 10 Constant σ 0.2

 Spiral parameter R 1.5

For all algorithms, N=30, Max_t=1000.

2254

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

4.3. Experimental results and analysis

The results were reported in Table 4 and Table 5, where Table 4 exhibits the average best fitness

obtained by running the algorithm for 30 times, and Table 5 exhibits the standard deviation of the 30

best fitness values. As can be seen from Table 4, DTSMA achieves the best results on F1-2 and F10,

and is significantly superior to other comparison algorithms in terms of convergence accuracy. In

addition, MTDE obtained the best solution on F5-7, EO showed a clear advantage on F8-9, and PFA

performed best on F3. But in general, DTSMA ranks first in average performance among 23

comparison algorithms, and can obtain better solutions, and is far better than SMA, which indicates

that the performance of proposed DTSMA is significant.

Table 4. Comparison of the fitness values of the optimized results on the CEC2019 functions.

Algorithms
Functions Mean

rank
Rank

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

DTSMA 1.00E+00 4.52E+00 1.9740 14.1003 1.2385 2.3836 5.77E+02 3.2166 1.1460 18.8351 1.78 1

SMA 1.00E+00 4.98E+00 4.3983 15.5960 1.2864 4.2854 7.06E+02 3.7392 1.2237 20.4424 3.57 8

HHO 1.00E+00 4.99E+00 4.4340 47.2977 1.9456 7.1446 1.21E+03 4.8260 1.4232 21.1185 6.30 15

GWO 2.21E+04 3.63E+02 2.3769 16.1127 1.6048 2.6925 8.18E+02 3.6554 1.1865 21.4486 4.61 10

WOA 8.20E+06 6.70E+03 4.6371 57.7068 2.1331 8.9500 1.38E+03 4.6022 1.3726 20.8007 8.00 20

MVO 1.34E+06 4.68E+02 7.6377 19.5270 1.2984 3.2522 7.38E+02 3.8942 1.2143 21.0478 5.13 12

MFO 1.35E+07 1.21E+03 7.4254 28.2234 2.3360 5.0370 1.04E+03 4.3095 1.3662 21.1609 7.09 17

ALO 1.72E+06 1.88E+03 3.4462 26.6147 1.2077 5.0212 1.11E+03 4.3382 1.3086 20.3639 5.52 14

DA 1.80E+07 5.43E+03 9.6797 54.6155 2.4107 7.3037 1.32E+03 4.5528 1.3616 21.3550 8.74 22

SCA 1.77E+06 3.06E+03 9.2544 45.4784 8.3053 7.6132 1.46E+03 4.4275 1.5651 21.4495 8.91 23

SOA 3.89E+03 1.48E+02 9.2135 28.4609 3.5890 7.3025 1.05E+03 4.3820 1.3520 21.4066 6.87 16

SSA 1.71E+06 9.87E+02 3.6506 25.6377 1.2731 4.0937 9.10E+02 4.1329 1.3158 21.0355 5.35 13

EO 2.46E+02 8.42E+01 1.6587 12.5181 1.0457 1.4470 5.84E+02 3.2097 1.0714 21.2241 2.17 3

BES 1.49E+00 7.10E+00 3.4173 14.5653 1.2038 2.3826 8.28E+02 3.2594 1.1128 20.3191 2.48 4

TLBO 1.13E+04 3.09E+02 1.7333 10.8442 1.0972 1.9704 6.96E+02 3.4395 1.1487 20.8363 2.61 5

PFA 1.61E+05 6.37E+02 1.5436 27.9839 1.2161 5.0069 1.02E+03 3.9178 1.2428 21.1618 4.96 11

PSO 8.00E+07 1.82E+04 9.4677 42.7568 1.9978 4.8771 1.14E+03 4.0256 1.2283 21.4468 7.65 19

AGPSO 1.91E+05 3.94E+02 3.9437 16.3787 1.4541 2.6212 6.65E+02 3.6565 1.2064 21.0567 4.35 9

GQPSO 1.00E+00 4.93E+00 6.6126 60.9991 27.3784 7.6309 1.66E+03 4.6306 1.7226 21.2928 7.57 18

PSOGSA 1.47E+07 2.87E+03 6.7206 51.0280 5.9787 6.1109 1.15E+03 4.8314 1.5481 21.0608 8.17 21

DE 4.59E+04 1.52E+02 3.6217 9.0607 1.0330 1.5816 4.58E+02 3.5361 1.1434 21.3024 3.00 6

CODE 4.02E+05 7.12E+02 4.2384 5.3583 1.1457 1.4039 2.95E+02 4.3878 1.1045 19.3490 3.13 7

MTDE 1.00E+00 8.34E+01 2.1171 6.7722 1.0126 1.1680 1.03E+02 3.2895 1.1538 21.1915 2.04 2

The optimal values are shown in bold.

It can be summarized from Table 5 that the stability of MTDE is better than DTSMA on the

CEC2019 functions, and it is also inferior to EO and GQPSO in terms of robustness, but the

robustness of DTSMA is much better than the original SMA. Therefore, the proposed DTSMA is

2255

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

superior to SMA in convergence accuracy and robustness, which verifies the effectiveness and

efficiency of DTSMA. In conclusion, the Friedman mean rank shows DTSMA as a powerful

optimization algorithm with good performance not only in the search ability of the optimal solution

but also in most functions, which is very competitive with MTDE and EO. Therefore, DTSMA can

provide a high-level candidate solution for complex function optimization problems with strong

generalization ability.

Table 5. Comparison of the standard deviation of the fitness values of the optimized results.

Algorithm
Functions Mean

rank
Rank

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

DTSMA 0.00E+00 3.72E-01 1.3323 6.6519 0.1015 1.3082 272.906 0.4676 0.0460 5.8242 3.91 4

SMA 0.00E+00 9.75E-02 2.4525 7.9251 0.1117 1.6918 239.462 0.4720 0.0877 3.6532 5.22 13.5

HHO 0.00E+00 3.46E-02 1.3755 17.7759 0.2214 1.6247 378.685 0.2044 0.1461 0.1002 5.00 10

GWO 5.68E+04 2.58E+02 1.1658 7.2606 0.4893 1.0755 328.711 0.4717 0.0894 0.1019 5.13 12

WOA 9.31E+06 3.59E+03 1.6751 19.4379 0.4902 1.6476 348.194 0.3436 0.2181 2.2460 7.65 21

MVO 1.23E+06 1.25E+02 2.1286 7.9015 0.1325 1.3980 291.478 0.5071 0.0850 0.0483 5.26 15

MFO 1.19E+07 1.90E+03 2.5007 12.2410 3.1002 2.0649 267.218 0.4505 0.1932 0.1549 7.78 22

ALO 1.79E+06 1.18E+03 1.7404 10.9068 0.0970 1.7245 300.774 0.3597 0.1399 3.6584 6.70 19

DA 1.64E+07 3.12E+03 1.2699 22.4050 2.3606 1.8155 348.975 0.3223 0.1403 0.1316 7.43 20

SCA 3.09E+06 1.17E+03 1.5328 7.2385 3.5911 1.3884 212.128 0.1744 0.1134 0.0838 5.09 11

SOA 2.09E+04 2.08E+02 1.4258 10.5959 1.2344 1.2177 298.096 0.3580 0.1012 0.1173 5.22 13.5

SSA 1.83E+06 6.19E+02 2.0938 9.4445 0.1589 1.3869 253.190 0.4795 0.1403 0.0747 5.83 18

EO 9.02E+02 9.89E+01 0.6993 4.6354 0.0278 0.6651 262.494 0.5480 0.0347 0.1044 3.04 2

BES 2.62E+00 7.76E+00 1.4614 7.0637 0.1427 1.1426 297.048 0.5116 0.0359 3.8863 4.74 8

TLBO 2.57E+04 1.33E+02 0.4779 3.9135 0.0620 0.9021 346.690 0.4583 0.0625 2.9572 4.09 5

PFA 2.64E+05 7.46E+02 0.4472 10.8316 0.1061 1.6349 276.130 0.3301 0.0868 1.3630 4.91 9

PSO 5.00E+07 6.79E+03 0.8635 9.2252 0.0900 1.6462 307.838 0.4587 0.0877 0.0750 5.78 17

AGPSO 2.54E+05 1.10E+02 2.2718 7.1966 1.6605 1.4331 267.269 0.4819 0.0838 0.0909 5.43 16

GQPSO 1.12E-08 1.03E-01 0.7154 6.7416 4.3359 0.2477 166.489 0.1493 0.1034 0.3075 3.22 3

PSOGSA 2.53E+07 3.02E+03 3.1301 22.3074 10.7717 1.7938 335.219 0.3501 0.3823 0.1051 8.26 23

DE 9.02E+04 8.17E+01 2.2019 4.7660 0.0234 0.7731 331.394 0.4103 0.0588 0.1179 4.17 6

CODE 4.73E+05 2.08E+02 2.0383 1.7357 0.1720 0.5976 236.436 0.4352 0.0340 6.1610 4.35 7

MTDE 7.09E-03 5.58E+01 1.2621 2.4686 0.0138 0.4680 126.141 0.4102 0.0479 0.0543 1.78 1

The optimal values are shown in bold.

The convergence curves of algorithms on CEC2019 functions are given in Figure 5 and Figure 6.

The results show that DTSMA outperforms most of the compared algorithms, especially the classical

metaheuristic, in terms of convergence speed and solution accuracy. In Figure 5, DTSMA achieves

the best performance on all tested functions. In Figure 6, DTSMA achieves optimal performance on

F1–2 and F10, and is less competitive on F4–7 and F9, especially on F7, where MTDE shows its

superiority. Because F7 has many locally optimal solutions, making the algorithm easily fall into

local optima and premature convergence, which indicates that MTDE outperforms DTSMA in terms

2256

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

of exploration ability. On F1–2, DTSMA still has the fastest convergence speed and best solution

accuracy, which indicates that DTSMA is obviously superior to MTDE in terms of exploitation

ability. Therefore, DTSMA and MTDE can be considered as complementary algorithms, which can

be applied to different real-world optimization problems to obtain more satisfactory results.

Figure 5. Convergence curve of classical algorithms on the CEC2019 functions.

2257

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

Figure 6. Convergence curves of advanced algorithms on the CEC2019 functions.

Since boxplots illustrate the data distribution, they are excellent graphs for describing the

consistency between data. To further compare the distribution states of the optimization results of

DTSMA and other algorithms, the best fitness values obtained by 23 algorithms run 30 times

independently on each test function are presented in the form of box plots in Figure 7. The results

2258

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

show that DTSMA has the smallest median, upper quartile and lower quartile, the fewest outliers,

and the narrowest distribution frame in the comparison of classical algorithms.

Figure 7. Comparison results of algorithms executed 30 times on CEC2019 functions.

2259

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

In the comparison of advanced algorithms, DTSMA outperforms most algorithms and has

strong robustness. In general, the performance of DTSMA and MTDE is the best, and the two

algorithms have their own advantages for different functions respectively, which are far better than

the other algorithms. Therefore, DTSMA is a good optimization algorithm in the terms of

convergence accuracy and robustness.

The Wilcoxon rank-sum test [72] is used to verify whether there is a significant difference

between the two data sets, i.e., the test evaluates whether the obtained performance is not random.

Due to the random nature of the metaheuristic algorithm, a similar comparison of statistical

experiments is necessary to ensure the validity of the data. The p-value is an indicator of decreasing

confidence that there is a significant difference between the two data sets, the smaller the p-value, the

higher the confidence level. When p<0.05, it indicates that there is a significant difference between

the data considered for the two algorithms at a confidence interval of 95%. The results of the

Wilcoxon p-value test of DTSMA and well-known algorithms are shown in Table 6.

The results of the Wilcoxon p-value test show that there are fewer cases (shown in bold) without

significant differences and that DTSMA significantly outperforms the original SMA on six functions.

DTSMA has a strong competitive performance with EO, BES and TLBO, demonstrating the

algorithm's advantages on different functions for different optimization problems. In conclusion

DTSMA is significantly different from and outperforms SMA, and the results are statistically

meaningful, verifying that the performance of DTSMA is not random.

Table 6. Wilcoxon p-value test results (two-tailed).

Paired algorithms F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

DTSMA

SMA NA 3.28E-05 1.02E-05 4.55E-01 7.98E-02 2.43E-05 1.15E-01 2.01E-04 2.13E-04 2.71E-02

HHO NA 1.78E-05 1.31E-08 1.29E-09 3.69E-11 8.99E-11 3.96E-08 3.02E-11 1.07E-09 8.31E-03

GWO 1.21E-12 2.63E-11 2.62E-03 2.23E-01 1.49E-06 8.50E-02 6.38E-03 1.30E-03 7.98E-02 4.18E-09

WOA 1.21E-12 2.63E-11 1.85E-08 3.69E-11 3.69E-11 3.02E-11 1.07E-09 1.33E-10 6.05E-07 5.69E-01

MVO 1.21E-12 2.63E-11 5.07E-10 5.83E-03 4.68E-02 1.99E-02 9.33E-02 1.87E-05 2.39E-04 3.16E-05

MFO 1.21E-12 2.63E-11 1.85E-08 3.57E-06 1.22E-02 1.61E-06 1.07E-07 3.82E-09 2.20E-07 1.96E-01

ALO 1.21E-12 2.63E-11 4.71E-04 1.17E-05 2.46E-01 4.11E-07 4.31E-08 8.89E-10 5.19E-07 1.11E-04

DA 1.21E-12 2.63E-11 4.08E-11 3.69E-11 7.12E-09 1.33E-10 2.23E-09 1.46E-10 3.50E-09 1.41E-04

SCA 1.21E-12 2.63E-11 6.07E-11 3.02E-11 3.02E-11 3.34E-11 3.69E-11 7.39E-11 3.02E-11 1.29E-09

SOA 1.21E-12 3.43E-09 3.34E-11 4.44E-07 3.02E-11 4.50E-11 8.20E-07 4.20E-10 1.96E-10 7.60E-07

SSA 1.21E-12 2.63E-11 2.75E-03 1.25E-05 6.00E-01 1.53E-05 1.75E-05 7.69E-08 1.87E-07 8.15E-05

EO 2.93E-05 6.55E-10 8.42E-01 3.33E-01 5.49E-11 2.25E-04 8.30E-01 3.71E-01 3.65E-08 9.59E-01

BES 3.45E-07 2.47E-02 6.74E-06 9.47E-01 6.79E-02 9.82E-01 2.62E-03 1.71E-01 7.96E-03 1.95E-03

TLBO 1.21E-12 2.63E-11 4.06E-02 7.48E-02 1.36E-07 3.18E-01 2.46E-01 3.78E-02 7.62E-01 3.09E-06

PFA 1.21E-12 2.63E-11 5.30E-01 7.60E-07 3.48E-01 2.38E-07 1.39E-06 4.80E-07 4.74E-06 2.57E-07

PSO 1.21E-12 2.63E-11 3.02E-11 4.50E-11 3.02E-11 5.19E-07 9.26E-09 2.03E-07 6.77E-05 8.89E-10

AGPSO 1.21E-12 2.63E-11 2.27E-03 2.58E-01 1.77E-03 6.52E-01 2.34E-01 1.52E-03 6.97E-03 2.84E-04

GQPSO 1.21E-12 7.64E-02 5.57E-10 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.34E-11 3.02E-11 1.41E-04

PSOGSA 1.21E-12 2.63E-11 1.87E-07 1.09E-10 4.92E-01 1.55E-09 5.53E-08 6.07E-11 1.61E-10 7.30E-04

DE 1.21E-12 2.63E-11 1.78E-04 1.17E-03 3.34E-11 4.43E-03 1.19E-01 2.75E-03 9.35E-01 3.27E-02

CODE 1.21E-12 2.63E-11 4.44E-07 4.69E-08 3.99E-04 4.94E-05 1.78E-04 1.41E-09 2.68E-04 9.03E-04

MTDE 1.21E-12 2.63E-11 4.68E-02 5.46E-06 2.98E-11 1.56E-08 2.23E-09 1.81E-01 6.00E-01 1.49E-01

No significant differences are shown in bold.

2260

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

5. Applicability of DTSMA for solving engineering problems

To test the generalization ability of DTSMA, the DTSMA was tested in eight well-known

constrained engineering design problems, i.e., three-bar truss, cantilever beam, pressure vessel,

tension compression spring, welded beam, speed reducer, multiple-disc clutch brake and car side

impact design problem. The optimization results of SMA and DTSMA given in tables are the optimal

results obtained from 30 independent runs of the algorithm with 1000 iterations with 30 individuals.

These engineering design problems have various constraints and need to be optimized using

constraint handling methods.

5.1. Constraint processing method

In constraint processing techniques, penalty functions are simple and easy to implement. There

are different types of penalty functions, such as static, dynamic, annealing, and adaptive penalties,

and these methods transform the constrained problem into an unconstrained one by adding a certain

penalty value [73]. In this paper, a static penalty function was used to deal with the constraints of the

engineering problem. The mathematical model of the penalty function is expressed as Eq. (15).

 () ()
1 1

() () max 0, () max 0, ()
m n

i i

i i

O x f x w g x h x 
= =

 
= +  + − 

 
  (15)

where ()O x denotes the objective function, ()f x denotes the objective function without

considering the constraints, m and n denote the number of equation constraints and inequality

constraints, respectively, ()ig x and ()ih x denote the inequality constraints and equation

constraints, respectively, w denotes the penalty factor.

In this study, the penalty factor was set to 1015. The array-indexed mapping approach was used

to solve for discrete and integer variables.

5.2. Three-bar truss design problem

Three-bar truss design optimization is a non-linear fraction optimization [74]. This problem has

only two decision parameters A1 and A2. The structure of the three-bar truss is presented in Figure 8.

The mathematical formulation is defined as Eq. (16).

Figure 8. Three-bar truss structure and design variables.

2261

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

()
1 2 1 2

1 2

1 2
1 2

1 1 2

2
2 2

1 1 2

3

2 1

2

Consider [,] [,]

Minimize () 2 2

2
subject to: () 0

2 2

 () 0
2 2

1
 () 0

2

where 100cm; 2KN/cm ; 2

x x x A A

f x x x l

x x
g x P

x x x

x
g x P

x x x

g x P
x x

l P









= =

= + 

+
= − 

+

= − 
+

= − 
+

= = = 2

1 2

KN/cm .

with 0 , 1.x x 

 (16)

Table 7 shows the optimal results obtained by DTSMA and other algorithms in the literature. It

can be observed that DTSMA outperforms the original SMA and other comparative algorithms.

Table 7. Optimal results and comparison for the three-bar truss design problem.

Algorithms A1 A2 Optimal weight

CS [75] 0.78867 0.40902 263.9716

AOA [76] 0.79369 0.39426 263.9154

MG-SCA [77] 1.00000 0.42715 263.8986

MGWO [78] 0.7885845 0.4085071 263.8961

IGWO [72] 0.78846 0.40884 263.8959

GOA [79] 0.788897555578973 0.407619570115153 263.895881496069

HHOSCA [80] 0.788498 0.40875 263.8958665

MBA [81] 0.7885650 0.4085597 263.8958522

SMA 0.794012414405404 0.408964522611830 265.477077290129

DTSMA 0.788669196092446 0.408265091531002 263.895843821065

5.3. Cantilever beam design problem

The second engineering optimization problem is the cantilever beam design problem, where the

main goal of this type of optimization is to reduce the weight of the beam. The structure of the

cantilever beam is presented in Figure 9. The mathematical model is defined as Eq. (17) [60].

Figure 9. Cantilever beam structure and design variables.

2262

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

()
1 2 3 4 5

1 2 3 4 5

3 3 3 3 3

1 2 3 4 5

1 2 3 4 5

Consider [, , , ,]

Minimize () 0.06224

61 37 19 7 1
subject to: () 1

with 0.01 , , , , 100.

x x x x x x

f x x x x x x

g x
x x x x x

x x x x x

=

= + + + +

= + + + + 

 

 (17)

The comparative results of the different algorithms solved in the literature are shown in Table 8.

It can be concluded that DTSMA and SMA are superior to the well-known comparison algorithms,

and DTSMA is superior to SMA.

Table 8. Optimal results and comparison for the cantilever beam design problem.

Algorithms x1 x2 x3 x4 x5 Optimum

IMPFA [73] 6.0162 5.3077 4.5034 3.5013 2.1451 1.34

GOA [79] 6.011674 5.31297 4.48307 3.50279 2.16333 1.33996

GCHHO [60] 6.01666788 5.31103898 4.49365848 3.50048281 2.15181437 1.339956541

SSA [23] 6.01513453 5.30930468 4.49500672 3.50142629 2.15278791 1.3399563910

PFA [66] 6.0154633 5.30902227 4.49463146 3.5017851 2.15275783 1.33995638

ALO [63] 6.01812 5.31142 4.48836 3.49751 2.158329 1.33995

WLSSA [57] 6.134865 5.360400 4.439038 3.510499 2.010312 1.338799

SMA 6.01766887 5.29094735 4.50052997 3.51084173 2.15406757 1.3365452138

DTSMA 6.01568509 5.31010010 4.49565207 3.50247159 2.14976144 1.3365212385

5.4. Pressure vessel design problem

The third engineering design problem used is the pressure vessel design problem [56]. The

objective is to minimize the cost of cylindrical pressure vessels, including the material cost, welding

and forming cost of cylindrical vessels. The problem has four decision variables: shell thickness (Ts),

head thickness (Th), radius (R), and cylindrical length (L). This problem is presented in Figure 10.

The mathematical model is described as Eq. (18).

Figure 10. Design variables of pressure vessel problem.

2263

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

1 2 3 4

2 2 2

1 3 4 2 3 1 4 1 3

1 1 3

2 2 3

2

3 3

Consider [, , ,] [, , ,]

Minimize () 0.6224 1.7781 3.1661 19.84

subject to: () 0.0193 0

 () 0.00954 0

 ()

s hx x x x x T T R L

f x x x x x x x x x x

g x x x

g x x x

g x x

= =

= + + +

= − + 

= − + 

= − 3

4 3

4 4

1 2 3 4

4 3 1296000 0

 () 240 0

with 0 , 99,10 , 200.

x x

g x x

x x x x

− + 

= − 

   

 (18)

The optimization results are shown in Table 9, from which it can be concluded that the DTSMA

algorithm has better performance than SMA and other comparative algorithms in solving the pressure

vessel problem.

Table 9. Optimal results and comparison for the pressure vessel design problem.

Algorithms Ts Th R L Optimal cost

HHOSCA [80] 0.945909 0.447138 48.8513 125.4684 6393.092794

AOA [76] 0.8303737 0.4162057 42.75127 169.3454 6048.7844

HHO [27] 0.81758383 0.4072927 42.09174576 176.7196352 6000.46259

POA [82] 0.8291528106 0.4098782427 42.960558426 167.09725713 5999.4001110

GCLPSO [83] 0.784508 0.387656 40.6289 195.8892 5989.654

AO [84] 1.0540 0.182806 59.6219 38.8050 5949.2258

MSCA [85] 0.779256 0.399600 40.325450 199.9213 5935.7161

NM-PSO [86] 0.8036 0.3927 41.6392 182.4120 5930.3137

IHHO [74] 0.8002 0.3955 41.4705 184.5767 5923.5

MALO [87] 0.779889 0.385340 40.35586 199.4961 5894.9214

EFOA [88] 0.78095518361 0.38602688210 40.463958486 198.00039607 5890.1193927

MBA [81] 0.7802 0.3856 40.4292 198.4964 5889.3216

IGWO [72] 0.7784458 0.3854034 40.33393 199.8019 5888.6000

TLPFA [6] 0.7785 0.3848 40.3281 199.8996 5885.8372

SMA 0.78163950498 0.38636499004 40.499442917 197.51182965 5891.2957232

DTSMA 0.77816984767 0.38464982998 40.319661250 199.99941966 5885.3379777

Continuous variables version.

5.5. Tension/compression spring design problem

The fourth application is the tension/compression spring design problem, which requires

minimizing the weight of the spring by considering constraints on minimum deflection, shear stress

and surge frequency, as well as limitations on geometry [89]. This problem has three continuous

2264

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

variables: diameter of the wire (d), diameter of the mean coil (D) and the active coils number (N).

This problem is presented in Figure 11. The mathematical model is described as Eq. (19).

Figure 11. Design variables of tension/compression spring problem.

1 2 3

2

3 2 1

3

2 3
1 4

1

2

2 1 2
2 3 4 2

2 1 1 1

1
3 2

2 3

Consider [, ,] [, ,]

Minimize () (2)

subject to: () 1 0
71785

4 1
 () 1 0

12566() 5108

140.45
 () 1 0

x x x x d D N

f x x x x

x x
g x

x

x x x
g x

x x x x

x
g x

x x

= =

= +

= − 

−
= + − 

−

= − 

1 2
4

1 2 3

 () 1 0
1.5

with 0.05 2,0.25 1.3,2 15.

x x
g x

x x x

+
= − 

     

 (19)

The optimization results are shown in Table 10, the results show that DTSMA obtains better

optimal weights than SMA.

Table 10. Optimal results and comparison for the tension/compression spring design problem.

Algorithms d D N Optimal weight

HHOSCA [80] 0.054693 0.433378 7.891402 0.012822904

IGWO [72] 0.05159 0.354337 11.4301 0.012700

SSA [23] 0.051207 0.345215 12.004032 0.0126763

RW-GWO [90] 0.05167 0.35613 11.33056 0.012674

PVS [91] 0.05169 0.35680 11.28442 0.01267

MGWO [78] 0.051640 0.355530 11.36064 0.012668

MSCA [85] 0.051668 0.356199 11.3207 0.0126670

QISCA [92] 0.051425 0.350404 11.669237 0.012667

SGLSCA [93] 0.05179 0.3591 11.1490 0.0126669

MALO [87] 0.051759 0.358411 11.191500 0.0126660

Continued on next page

2265

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

Algorithms d D N Optimal weight

GWO [21] 0.05169 0.356737 11.28885 0.012666

EO [17] 0.0516199100 0.355054381 11.38796759 0.012666

HHO [27] 0.051796393 0.359305355 11.138859 0.012665443

CSA [30] 0.051178 0.358851 11.164981 0.012665370

PFA [66] 0.05172695 0.33576296 11.235724 0.01266528

SMA 0.051042782273 0.341367881985 12.24907263821 0.012672956271

DTSMA 0.051682558573 0.356560684570 11.29820387501 0.012665270005

5.6. Welded beam design problem

Another engineering design problem is the welded beam problem, which is often used as a

benchmark case for testing different optimization algorithms [62]. The problem contains nearly 3.5%

of the feasible region in the search space. The structure and design variables are illustrated in Figure

12. The objective of this problem is to minimize fabricating cost subjected to shear stress (τ), bending

stress (σ), buckling load (Pc), deflection (δ), and other constraints [17]. This problem has four

parameters: thickness of the weld (h), length of welded part of the beam (l), height of the beam (t),

and width of the beam (b). The mathematical model is as Eq. (20).

()
1 2 3 4

2

1 2 3 4 2

1 max 2 max

3 max 4 1 4

Consider [, , ,] [, , ,]

Minimize () 1.10471 0.04811 14.0

subject to: () () 0; () () 0

 () () 0; () 0

x x x x x h l t b

f x x x x x x

g x x g x x

g x x g x x x

   

 

= =

= + +

= −  = − 

= −  = − 

()
5 6 1

2

7 1 3 4 2

2 22

1 2

2

1 32 2

 () () 0; () 0.125 0

 () 1.10471 0.04811 14.0 5.0 0

where ()= (') 2 ' '' ('') ; ' ; '' ;
2 2

 ;
2 4 2

cg x P P x g x x

g x x x x x

x P MR
x

R Jx x

x xx x
M P L R

      

= −  = − 

= + + − 

+ + = =

+ 
= + = + 

 

2

22

1 32
1 2 2

4 3

2 63
3 4 3

2 2

3 4

max

;

6
 2 2 ; () ;

4 2

4.013 366
 () ; () 1 ;

2 4

 6000 lb; 14 inch; 0.25

c

x xx PL
J x x x

x x

E x x xPL E
x P x

Ex x L L G

P L







 
 
 

  +  
= + =   

     

 
= = −  

 

= = = 6

6

max max

1 4 2 3

inch; 30 10 psi;

 12 10 psi; 13600 psi; 30000 psi.

with 0.1 , 2,0.1 , 10.

E

G

x x x x

 

= 

=  = =

   

 (20)

2266

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

Figure 12. Welded beam structure and design variables.

Table 11 presents the optimization results of DTSMA and other well-known algorithms in the

literature. The results demonstrated that DTSMA excelled in solving the welded beam problem,

outperforming many improved algorithms and recently proposed metaheuristic algorithms.

Table 11. Optimal results and comparison for the welded beam design problem.

Algorithms h l t b Optimal cost

HHOSCA [80] 0.190086 3.696496 9.386343 0.204157 1.779032249

POA [82] 0.202511 3.542971 9.033488 0.206170 1.732394281

HHO [27] 0.204039 3.531061 9.027463 0.206147 1.73199057

GWO [21] 0.205676 3.478377 9.03681 0.205778 1.72624

IGWO [72] 0.20496 3.4872 9.0366 0.20573 1.7254

SSA [23] 0.2057 3.4714 9.0366 0.2057 1.72491

EO [17] 0.2057 3.4705 9.03664 0.2057 1.7249

PFA [66] 0.2057295 3.470495 9.036624 0.2057297 1.7248530

MBA [81] 0.205729 3.470493 9.036626 0.205729 1.724853

CSA [30] 0.205730 3.470489 9.036624 0.205730 1.724852

CLSOBBOA [94] 0.205729 3.470488 9.036622 0.205729 1.724852

TLMPA [95] 0.20572964 3.470488666 9.03662391 0.20572964 1.724852

MTDE [71] 0.205730 3.470489 9.036624 0.205730 1.724852

MBFPA [96] 0.205730 3.470473 9.036623 0.205729 1.72485185

NM-PSO [86] 0.205830 3.468338 9.036624 0.205730 1.724717

BBSCA [97] 0.2057 3.4705 9.0373 0.2057 1.7247

IHHO [74] 0.20533 3.47226 9.0364 0.2010 1.7238

SOA [25] 0.205408 3.472316 9.035208 0.201141 1.723485

WQSMA [55] 0.18850 3.56850 9.10685 0.20542 1.72129

AOA [76] 0.194475 2.57092 10.000 0.201827 1.7164

GCLPSO [83] 0.20799 3.25802 9.02820 0.208064 1.715355

WDDA [98] 0.1803 3.5925 9.6537 0.2028 1.6997

Continued on next page

2267

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

Algorithms h l t b Optimal cost

MALO [87] 0.205670 3.247600 9.060900 0.20567 1.698100

MSCA [85] 0.20545 3.252400 9.057600 0.20568 1.697900

TLPFA [6] 0.2051 3.2679 9.0366 0.2059 1.6961

WLSSA [57] 0.205387 3.25923 9.036633 0.205730 1.695573

IMPFA [73] 0.2057 3.2539 9.0375 0.2057 1.6953

GCHHO [60] 0.20572287 3.25324354 9.03661412 0.20573009 1.695255645

SMA 0.205730609 3.253178392 9.036345969 0.205742741 1.695307346

DTSMA 0.205728772 3.253133196 9.036632844 0.205729603 1.695248922

5.7. Speed reducer design problem

Another important engineering design problem is the speed reducer design problem, which is a

challenging design problem since it is correlated to seven variables [30]. A graphical illustration of

this problem is shown in Figure 13. The objective of this problem is to minimize the weight

subjected to different constraints of bending stress, surface stress, lateral deflection of the shaft and

stress in the shaft. The seven design variables considered are: face width (B), number of tooth

modules (M), number of teeth in the pinion (N), length of the first shaft between bearings (L1), length

of the second shaft between bearings (L2), and diameters of the first and second shafts (D1, D2). The

third variable is an integer, while the other variables are continuous, and the problem comprises

nearly 0.4% of the feasible region. The mathematical formulation of this problem is as Eq. (21).

Figure 13. Design variables of speed reducer problem.

2268

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

()

() () ()

1 2 3 4 5 6 7 1 2 1 2

2 2

1 2 3 3

2 2 3 3 2 2

1 6 7 6 7 4 6 5 7

1 2

1 2 3

Consider [, , , , , ,] [, , , , , ,]

Minimize () 0.7854 14.9334 3.3333 43.0934

 1.508 7.4777 0.7854

27
subject to: ()

x x x x x x x x B M N L L D D

f x x x x x

x x x x x x x x x

g x
x x x

= =

= + −

− + + + + +

= 

()()

()()

2 2 2

1 2 3

33

54
3 44 4

2 3 6 2 3 7

2 6

4 2 3

5 3

6

2 6

5 2 3

6 3

7

397.5
1; () 1

1.931.9
 () 1; () 1

745 () 16.9 10
 () 1

110

745 () 157.5 10
 () 1

85

g x
x x x

xx
g x g x

x x x x x x

x x x
g x

x

x x x
g x

x

= 

=  = 

+ 
= 

+ 
= 

2 3 2
7 8

1

61
9 10

2 4

7
11

5

1 2 3

4 5

5
 () 1; () 1

40

1.5 1.9
 () 1; () 1

12

1.1 1.9
 () 1

with 2.6 3.6,0.7 0.8, {17,18, , 28},

 7.3 , 8.3,2.9

x x x
g x g x

x

xx
g x g x

x x

x
g x

x

x x x

x x x

=  = 

+
=  = 

+
= 

    

   6 73.9,5 5.5.x  

 (21)

The optimization results for DTSMA, SMA and several other algorithms are given in Table 12.

The results show that the performance of DTSMA is better than that of SMA.

Table 12. Optimal results and comparison for the speed reducer design problem.

Variables HHOSCA [80] HEAACT [99] MBA [81] PVS [91] SMA DTSMA

B 3.506119 3.50002290 3.5 3.5 3.500000600 3.500000000

M 0.7 0.70000039 0.7 0.7 0.700000000 0.700000000

N 17 17.0000129 17 17 17 17

L1 7.3 7.30042774 7.300033 7.3 7.300001858 7.300000000

L2 7.99141 7.71537745 7.715772 7.71532 7.715354167 7.715319916

D1 3.452569 3.35023097 3.350218 3.35021 3.350214698 3.350214666

D2 5.286749 5.28666370 5.286654 5.28665 5.286655037 5.286654465

Optimum 3029.873076 2994.49911 2994.482453 2994.47107 2994.472442 2994.471066

5.8. Multiple-disc clutch brake design problem

The multi-disc clutch brake problem is a well-known problem in engineering constrained

optimization, as shown in Figure 14 [89]. Five discrete design variables are considered to minimize

2269

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

the weight of the multi-disc clutch brake: the inner radius (Ri), the outer radius (Ro), the thickness of

the disc (Th), the driving force (F), and the number of friction surfaces (Z). There are eight different

constraints based on geometry and operating conditions. The mathematical model of this

optimization problem is described as Eq. (22).

Figure 14. Design variables of multi-disc clutch brake problem.

() ()

()()

1 2 3 4 5

2 2

1 2 max

3 max 4 max max

Consider [, , , ,] [, , , ,]

Minimize () 1

subject to: () 0; () 1 0

 () 0; () 0

i o h

o i h

o i h

rz sr rz sr

x x x x x x R R T F Z

f x R R T Z

g x R R r g x l Z T

g x p p g x p v p v

 



= =

= − +

= − −  = − + + 

= −  = − 

()

()
() ()

5 max 6 max

7 8

3 3

2 2 2 2

3 3

2 2

 () 0; () 0

 () 0; () 0

2
where = ; ;

3

2
 ; ;

3090

 20 m

sr sr

h s

o i
h rz

o i o i

o i z
sr

h fo i

g x v v g x T T

g x M sM g x T

R R F
M FZ p

R R R R

n R R I n
v T

M MR R

r




 

= −  = − 

= −  = 

−
=

− −

−
= =

+−

 = max max

2 6 3

max max

m; 30 mm; 10 m s; 0.5;

 0.5 mm; 40 Nm; 3 Nm; 250 rpm; 1.5;

 1 MPa; 55 kg mm ; 15 s; 7.8 10 kg mm .

with {60,61, ,80}, {90,91,

sr

s f

z

i o

l v

M M n s

p I T

R R





 −

= = =

= = = = =

= = = = 

  ,110}, {1,1.5,2,2.5,3};

 {600,610,620, ,1000}, {2,3,4,5,6,7,8,9}.

hT

F Z



 

 (22)

Table 13 shows the results of DTSMA and other algorithms in the literature for optimizing

multiple-disc clutch brakes. Both DTSMA and SMA find better results than other algorithms,

indicating that DTSMA has good performance in solving discrete constraint problems.

2270

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

Table 13. Optimal results and comparison for the multiple-disc clutch brake design problem.

Algorithms Ri Ro Th F Z Optimal weight

GOA [89] 71 92 1 835 3 0.3355146

EOBL-GOA [89] 70 90 1 984 3 0.31365661

PVS [91] 70 90 1 980 3 0.31366

FSO [100] 70 90 1 870 3 0.3136566105

TLBO [20] 70 90 1 810 3 0.31365661

WCA [101] 70 90 1 910 3 0.3136566

SMA 70 90 1 1000 3 0.3136566105

DTSMA 70 90 1 980 3 0.3136566105

5.9. Car side crash design problem

The car side crash optimization design problem was originally proposed by Gu et al. [102]. This

optimization problem is specified as minimizing an objective function with eleven mixed design

variables with ten constraint limits, as shown in Figure 15. The simplified mathematical model of the

problem can be written in the following Eq. (23).

The optimization results of different algorithms are given in Table 14. The results show that

DTSMA outperforms PSO, GA, GOA, ABC, GWO, CODE and SMA algorithms in optimizing the

car side impact design problem and can obtain satisfactory results.

Table 14. Optimal results and comparison for the car side crash design problem.

Variables PSO [104] GA [104] GOA [89] ABC [105] GWO CODE SMA DTSMA

x1 0.50000 0.50005 0.50000 0.50000 0.50043 0.50001 0.50000 0.50000

x2 1.11670 1.28017 1.11670 1.06240 1.11516 1.11678 1.11975 1.11610

x3 0.50000 0.50001 0.50000 0.51480 0.50000 0.50000 0.50000 0.50000

x4 1.30208 1.03302 1.30208 1.44910 1.30518 1.30160 1.29678 1.30264

x5 0.50000 0.50001 0.50000 0.50000 0.50109 0.50000 0.50000 0.50000

x6 1.50000 0.50000 1.50000 1.50000 1.50000 1.49996 1.50000 1.50000

x7 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000 0.50000

x8 0.34500 0.34994 0.34500 0.34500 0.34500 0.34500 0.34500 0.34500

x9 0.19200 0.19200 0.19200 0.19200 0.34500 0.34500 0.19200 0.34500

x10 -19.54935 10.3119 -19.54935 -29.34000 -19.78034 -19.49082 -18.95652 -19.60863

x11 -0.00431 0.00167 -0.00431 0.74109 0.65129 -0.14707 0.25926 0.06832

Optimum 22.84474 22.85653 22.84474 23.17500 22.85094 22.84339 22.84380 22.84301

2271

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 7

1 2 4 2 10 3 9 6 10

Consider [, , , , , , , , , ,]

Minimize () 1.98 4.90 6.67 6.98 4.01 1.78 2.73

subject to: () 1.16 0.3717 0.00931 0.484 0.01343 1

x x x x x x x x x x x x

f x x x x x x x

g x x x x x x x x x

g

=

= + + + + + +

= − − − + 

2 1 2 1 8 2 7 3 5

5 10 6 9 8 11

10 11

3

() 0.261 0.0159 0.188 0.019 0.0144

 0.0008757 0.080405 0.00139

 0.00001575 0.32

 () 0.214 0

x x x x x x x x x

x x x x x x

x x

g x

= − − − +

+ + +

+ 

= + 5 1 8 1 9 2 6

2 7 3 8 3 9 5 6

5 10 6 10 8 11

.00817 0.131 0.0704 0.03099

 0.018 0.0208 0.121 0.00364

 0.0007715 0.0005354 0.00121 0.32

x x x x x x x

x x x x x x x x

x x x x x x

− − +

− + + −

+ − + 

4 2 3 8 3 10

2

7 9 2

5 3 1 2 5 10

6 9 7 8

 () 0.074 0.061 0.163 0.001232

 0.166 0.227 0.32

 () 28.98 3.818 4.2 0.0207

 6.63 7.7 0.

g x x x x x x

x x x

g x x x x x x

x x x x

= − − +

− + 

= + − +

+ − + 9 10

6 3 10 1 2 2 8

5 10 7 8 8 9

7 2 1 8 3 10

32 32

 () 33.86 2.95 0.1792 5.057 11

 0.0215 9.98 22 32

 () 46.36 9.9 12.9 0.1107 32

x x

g x x x x x x x

x x x x x x

g x x x x x x



= + + − −

− − + 

= − − + 

8 4 2 3 4 10

2

6 10 11

9 1 2 2 8 3 10

4 10

 () 4.72 0.5 0.19 0.0122

 0.009325 0.000191 4

 () 10.58 0.674 1.95 0.02054

 0.0198 0.

g x x x x x x

x x x

g x x x x x x x

x x

= − − −

+ + 

= − − +

− + 6 10

10 3 7 5 6 9 10

2

9 11 11

1 2 3 4 5 6 7 8 9 10 11

028 9.9

 () 16.45 0.489 0.843 0.0432

 0.0556 0.000786 15.7

with 0.5 , , , , , , 1.5, , {0.192,0.345}, 30 , 30.

x x

g x x x x x x x

x x x

x x x x x x x x x x x



= − − +

− − 

   −  

 (23)

5.10. Statistics analysis of engineering problems

In order to observe the distribution of the best fitness when solving engineering problems by

DTSMA and SMA, the results of 30 runs are presented in the form of box plots, as shown in Figure

16. The corresponding Wilcoxon p-value test results are shown in Figure 17, where the number 1

represents three-bar truss problem, the number 2 represents cantilever beam problem, and so on.

2272

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

Figure 15. Box plots of the DTSMA and SMA in solving engineering problems.

Figure 16. Statistical test of the DTSMA and SMA for eight engineering problems.

It can be summarized that as follows from Figure 16 and Figure 17.

(1) For the three-bar truss, cantilever beam, tension/compression spring, and welded beam

engineering design problems, the boxes of DTSMA are significantly lower than those of SMA, and

2273

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

the Wilcoxon p-value test results are much less than 0.05, indicating that the solution accuracy and

robustness of DTSMA for these four engineering problems are significantly better than SMA.

(2) DTSMA performs better than SMA but not significantly enough for the pressure vessel,

speed reducer, and car side crash engineering design problems. Although DTSMA obtains better

results, it also produces more outliers and is less stable. For the multi-disc clutch brake problem, both

DTSMA and SMA find the same optimal solution because it is a discrete numerical problem and the

difference in feasible solutions is smaller.

(3) On the whole, DTSMA still outperforms SMA, and according to the NFL theorem [31], no

single algorithm can be applied to all problems. DTSMA outperforms SMA for most engineering

problems, which indicates that the improvement is meaningful.

6. Inverse kinematics solution of 7-DOF robot manipulator

Seven-degree-of-freedom (7-DOF) robot manipulators are widely used in industry for their

ability to easily avoid obstacles, move flexibly, and work in larger spaces. The inverse kinematics of

a robotic arm is defined as finding the joint angle by using the kinematics equations of the desired

end-effector position. Due to its complex nonlinear structure, the inverse kinematics problem can be

considered as a challenging optimization problem [106].

The most used method for kinematics modeling of robotic arms is the Denavit-Hartenberg (DH)

coordinate parameter method. The robot manipulator model solved in this paper is proposed by

Serkan et al. in [107], and its DH parameter table is listed in Table 15, where , , ,i i i ia d  refer to

link length, link twist, link offset and joint angle, respectively. The model structure of a robotic arm

can be determined according to the DH parameter table, as shown in Figure 18.

Figure 17. 7-DOF robot manipulator link structure.

2274

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

Table 15. DH parameters for 7-DOF robot manipulator.

Joint ai (m) αi (°) di (m) θi (°)

1 0 −90 l1=0.5 −180<θ1<180

2 l2=0.2 90 0 −90<θ2<30

3 l3=0.25 −90 0 −90<θ3<120

4 l4=0.3 90 0 −90<θ4<90

5 l5=0.2 −90 0 −90<θ5<90

6 l6=0.2 0 0 −90<θ6<90

7 l7=0.1 0 d7=0.05 −30<θ7<90

The general homogeneous transformation matrix can be expressed as Eq. (24).

1

0

0 0 0 1

i i i i i i i

i i i i i i ii

i

i i i

c c s s s a c

s c c c s a s
T

s c d

     

     

 
−

−    
 

 −  
 =
 
 
 

 (24)

where 1

i

i T− is the transformation matrix relating joint 1i − to joint i , s and c denote sine and

cosine functions, respectively.

The kinematics equations of the serial robot manipulator can be obtained by substituting the

values of the DH parameter in Table 15 into Eq. (24) and then multiplying them successively, as

shown in Eq. (25).

7 1 2 3 4 5 6 7

end-effector 0 0 1 2 3 4 5 6

1 1 2 2 2 2 3 3 3

1 1 2 2 2 21 2 3

0 1 2

1

0 0 0 1

0 0 0 0

0 0 0
= ; = ; =

0 1 0 0 1 0 0

0 0 0 1 0 0 0 1

x x x x

y y y y

z z z z

n s a P

n s a P
T T T T T T T T T

n s a P

c s c s l c c s l c

s c s c l s
T T T

l

       

    

 
 
 = =       =
 
 
 

− −   
   

−
   
   −
   
   

3

3 3 3 3

4 4 4 4 5 5 5 5

4 4 4 4 5 5 5 54 5

3 4

6 6 6 6 7

6 6 6 66 7

5 6

0
;

0 1 0 0

0 0 0 1

0 0

0 0
= ; = ;

0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1

0

0
= ; =

0 0 1 0

0 0 0 1

s c l s

c s l c c s l c

s c l s s c l s
T T

c s l c c s

s c l s
T T

  

     

     

    

  

 
 
 
 −
 
 

−   
   

−
   
   −
   
   

− − 
 
 
 
 
 

7 7 7

7 7 7 7

7

0

0
.

0 0 1

0 0 0 1

l c

s c l s

d



  

 
 
 
 
 
 

 (25)

2275

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

where Tend-effector is the homogeneous transformation matrix of the end-effector with respect to the

base frame, , , , , , , , ,x y z x y z x y zn n n s s s a a a denote the rotational elements of the transformation matrix,

, ,x y zP P P denote the elements of the position vector of end-effector.

The main task of the inverse kinematics problem is to determine the corresponding joint angles

based on the desired position of the end-effector in the Cartesian coordinate system. Thus, the

objective function can be defined as minimizing the Euclidean distance between the desired position

and the predicted position, as shown in Eq. (26).

desired predictedMinimize ()Error P P = − (26)

where Pdesired represents the desired position vector of end-effector of robot manipulator, Ppredicted

represents the predicted position vector.

Table 16. Comparative results for the robot manipulator inverse kinematics problem.

Case DTSMA SMA PSO DE GQPSO CODE GWO HHO

P1

Px(m) -0.250000 -0.249993 -0.249914 -0.250243 -0.250220 -0.249936 -0.249992 -0.249963

Py(m) 1.000000 0.999992 0.999774 0.999946 0.997496 0.999968 1.000030 0.999873

Pz(m) 0.500000 0.500006 0.499520 0.499851 0.500095 0.500034 0.500024 0.500016

θ1(°) 98.1094 -180.0000 129.2701 179.9137 13.4544 121.8851 180.0000 93.0924

θ2(°) 27.5052 29.1515 -47.3514 -33.5445 1.5614 0.7168 -24.5950 -32.6298

θ3(°) 10.2280 -89.9894 -55.9539 -85.6810 97.7035 7.8961 -90.0000 50.0495

θ4(°) -20.5711 4.9214 71.7076 11.4524 -0.0844 10.3278 1.8493 63.6740

θ5(°) -13.4537 -4.1895 7.4930 -14.2824 2.4710 -74.2812 -2.8740 -54.3151

θ6(°) -76.2966 -41.7951 -26.4275 -22.2372 0.2848 -39.2841 -1.7651 -8.6285

θ7(°) 18.1857 10.2074 7.0484 61.8365 -0.0596 55.8021 61.0002 0.7233

Best 3.41E-07 1.21E-05 5.37E-04 2.90E-04 2.52E-03 7.89E-05 3.93E-05 1.33E-04

Worst 3.24E-05 3.82E-04 4.22E-03 8.56E-03 2.97E-02 8.95E-04 8.31E-03 2.35E-02

Mean 8.86E-06 1.19E-04 2.04E-03 3.60E-03 1.09E-02 3.41E-04 4.77E-04 2.22E-03

Std. 9.68E-06 1.12E-04 7.63E-04 2.52E-03 5.85E-03 2.11E-04 1.49E-03 5.28E-03

Time(s) 41.19 16.64 16.13 18.73 16.36 22.55 15.97 43.15

P2

Px(m) 0.500001 0.500097 0.499959 0.500008 0.490452 0.500182 0.499986 0.500000

Py(m) -0.249998 -0.250043 -0.249860 -0.249966 -0.261733 -0.249910 -0.250022 -0.250000

Pz(m) 0.750000 0.750026 0.750104 0.750018 0.743542 0.749790 0.750040 0.750000

θ1(°) -180.0000 -118.4679 180.0000 -90.2388 180.0000 -175.9374 -72.7182 -34.4058

θ2(°) -67.6761 0.0001 -90.0000 28.8407 5.9500 -83.5671 -90.0000 27.6332

θ3(°) 119.9737 90.4584 1.8322 112.9309 120.0000 27.3226 -0.9113 -79.8749

θ4(°) -54.0772 9.9188 -90.0000 -85.6953 -18.4606 -81.3090 90.0000 -89.8656

θ5(°) -12.2186 86.5447 42.1089 -86.3252 75.2238 45.4308 70.8576 34.9869

Continued on next page

2276

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

 Case DTSMA SMA PSO DE GQPSO CODE GWO HHO

θ6(°) -85.9133 -87.8100 -85.6967 90.0000 -13.7060 -87.2805 52.1677 -80.1758

θ7(°) -29.3020 0.0000 90.0000 75.1437 -2.9405 87.4752 -23.2101 0.3696

Best 2.41E-06 1.09E-04 1.80E-04 3.94E-05 1.64E-02 1.97E-05 4.79E-05 5.48E-08

Worst 9.24E-05 5.59E-02 3.44E-02 1.10E-02 1.30E-01 5.82E-04 1.57E-02 2.05E-01

Mean 3.30E-05 7.14E-03 2.13E-03 3.22E-03 6.22E-02 1.45E-04 9.18E-04 9.55E-03

Std. 2.42E-05 1.53E-02 6.11E-03 3.06E-03 2.33E-02 1.08E-04 3.03E-03 3.76E-02

Time(s) 41.49 15.67 16.68 18.49 16.70 22.96 16.46 42.56

The optimal values are shown in bold.

To verify the performance of the proposed DTSMA, two different desired position vectors i.e.,
T

1 [0.25,1.00,0.50]P = − and T

2 [0.50, 0.25,0.75]P = − were selected for testing. DTSMA was

compared with SMA, PSO, DE, GQPSO [68], CODE [70], GWO, and HHO, and each algorithm was

run independently for 30 times with 30 individual populations and 1000 iterations. Table 16

illustrates the numerical optimization results of DTSMA and the other compared algorithms for the

inverse kinematics problem with two different desired position coordinates of the end-effector.

From the optimization results in Table 16, it can be seen that the solution accuracy of the

DTSMA is better than the comparison algorithm for the inverse kinematics problem, but the

computation time is longer. The optimal solution of the HHO algorithm for Case2 optimization is

better than DTSMA, but its average solution is poorer and less stable. The convergence history of the

algorithm is shown in Figure 19. It can be seen that DTSMA converges faster than the other

comparison algorithms. The statistical results of the comparison algorithms are shown in Figure 20

and Figure 21.

It can be seen that the performance of DTSMA is significantly better than SMA and the other

six comparison algorithms in optimizing the inverse kinematics problem of the robot manipulator,

which reflects the applicability of DTSMA to practical problems.

Figure 18. Convergence curves of the algorithms for inverse kinematics problems.

2277

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

Figure 19. Box plots of the algorithms for inverse kinematics problems.

Figure 20. Statistical test of the DTSMA and compare algorithms for inverse kinematics problems.

7. Conclusions and future works

In this paper, an improved slime mould algorithm, DTSMA, is proposed for the shortcomings of

slow convergence, weak exploration ability, and easy to fall into local optimal of the SMA. In

DTSMA, the dominant swarm strategy is firstly introduced to retain the historical optimal position of

each slime mould individual. In the position updating formula of exploration stage, both the

historical optimal position of the population and the historical optimal position of the individual are

used to make the population look for places with high probability of the optimal solution as much as

possible. Secondly, by making full use of SMA's fitness ranking information, the dominant

population is further divided into dominant and inferior population, and the two sub-populations

cooperate with each other to make the population search more extensive in the exploration stage.

Then, a nonlinear adaptive t-distribution mutation strategy is introduced to perturb the dominant

swarm to avoid premature convergence. Finally, the exploitation mechanism for convergence to

2278

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

individual historical optimal is added to improve the diversity of the population and the robustness

and generalization ability of DTSMA. The effectiveness and efficiency of DTSMA in solving

numerical optimization problems were tested on CEC2019 functions. Then, DTSMA was applied to

eight classical engineering application problems and the inverse kinematics problem of a 7-DOF

robot manipulator. Experimental results show that the solution accuracy of DTSMA on CEC2019

ranks first overall among 23 algorithms, significantly outperforming SMA and numerous

comparative algorithms. In eight engineering instances, DTSMA obtains better optimal solutions, far

outperforming SMA for the three-bar truss, cantilever beam, tension/compression spring, and welded

beam problems, and slightly outperforming SMA for the remaining four problems. In the inverse

kinematics of the robot manipulator, DTSMA significantly outperforms SMA, PSO, DE, GQPSO,

CODE, GWO and HHO in terms of solution accuracy and stability. The statistical results

demonstrate that DTSMA has the following superiority.

(1) The test function results show that DTSMA converges quickly and accurately, has the ability

to escape from local optimum, and has a good balance between exploration and exploitation. The

convergence curve shows that the proposed method has fast convergence speed and avoids premature

convergence and local optimal stagnation.

(2) Friedman and Wilcoxon rank test illustrate that DTSMA has better performance compared to

SMA and well-known algorithms and there are significant differences.

(3) Experimental results of DTSMA in engineering problems show that it is an ideal choice for

solving continuous and discrete constrained optimization problems as well as inverse kinematics

problems of robot manipulator.

Although DTSMA overcomes many drawbacks of the original SMA, its long running time

makes it unsuitable for real-time control systems. More in-depth study on how to reduce the time

complexity of DTSMA will be conducted in the future. Then, DTSMA will be applied to the inverse

kinematics of robot manipulator with comprehensive consideration of position and posture of

end-effector. In addition, DTSMA has stronger scalability and can also be applied to solve high or

ultra-high dimensional problems, such as the traveling salesman problem, the job shop scheduling

problem, and the time series forecasting problem, etc.

Acknowledgments

This work was supported by the National Science Foundation of China under Grant No.

62066005, and Project supported by Hainan Provincial Natural Science Foundation of China,

No.620QN237, and Project supported by the Education Department of Hainan Province, No.

Hnky2020-5.

Conflict of interests

The authors declare no conflict of interest.

References

1. J. Fliege, L. M. G. Drummond, B. F. Svaiter, Newton’s method for multiobjective optimization,

SIAM J. Optim., 20 (2009), 602–626. doi: 10.1137/08071692X.

2279

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

2. Ž. Povalej, Quasi-Newton’s method for multiobjective optimization, J. Comput. Appl. Math.,

255 (2013), 765–777. doi: 10.1016/j.cam.2013.06.045.

3. J. Zhang, Y. Xiao, Z. Wei, Nonlinear conjugate gradient methods with sufficient descent

condition for large-scale unconstrained optimization, Math. Probl. Eng., 2009 (2009), 1–16. doi:

10.1155/2009/243290.

4. M.-W. Li, Y.-T. Wang, J. Geng, W.-C. Hong, Chaos cloud quantum bat hybrid optimization

algorithm, Nonlinear Dyn., 103 (2021), 1167–1193. doi: 10.1007/s11071-020-06111-6.

5. D. Izci, S. Ekinci, Comparative performance analysis of slime mould algorithm for efficient

design of proportional–integral–derivative controller, Electrica, 21 (2021), 151–159. doi:

10.5152/electrica.2021.20077.

6. C. Tang, Y. Zhou, Z. Tang, Q. Luo, Teaching-learning-based pathfinder algorithm for function

and engineering optimization problems, Appl. Intell., (2020). doi: 10.1007/s10489-020-02071-x.

7. J. J. Grefenstette, Genetic algorithms and machine learning, Mach. Learn., 3 (1988), 95–99. doi:

10.1023/A:1022602019183.

8. R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global

optimization over continuous spaces, J. Glob. Optim., 11 (1997), 341–359. doi:

10.1023/A:1008202821328.

9. S. Kirkpatrick, Optimization by simulated annealing: Quantitative studies, J. Stat. Phys., 34

(1984), 975–986. doi: 10.1007/BF01009452.

10. L. K. Grover, A fast quantum mechanical algorithm for database search, Proceedings of the

twenty-eighth annual ACM symposium on Theory of computing - STOC ’96, (1996), 212–219.

doi: 10.1145/237814.237866.

11. O. K. Erol, I. Eksin, A new optimization method: Big Bang–Big Crunch, Adv. Eng. Softw., 37

(2005), 106–111. doi: 10.1016/j.advengsoft.2005.04.005.

12. B. Alatas, ACROA: Artificial Chemical Reaction Optimization Algorithm for global

optimization, Expert Syst. Appl., 38 (2011), 13170–13180. doi: 10.1016/j.eswa.2011.04.126.

13. H. Shareef, A. A. Ibrahim, A. H. Mutlag, Lightning search algorithm, Appl. Soft Comput., 36

(2015), 315–333. doi: 10.1016/j.asoc.2015.07.028.

14. S. Mirjalili, S. M. Mirjalili, A. Hatamlou, Multi-Verse Optimizer: A nature-inspired algorithm for

global optimization, Neural Comput. Appl., 27 (2015), 495–513. doi:

10.1007/s00521-015-1870-7.

15. V. K. Patel, V. J. Savsani, Heat transfer search (HTS): A novel optimization algorithm, Inf. Sci.,

324 (2015), 217–246. doi: 10.1016/j.ins.2015.06.044.

16. W. Zhao, L. Wang, Z. Zhang, A novel atom search optimization for dispersion coefficient

estimation in groundwater, Future Gener. Comput. Syst., 91 (2018), 601–610. doi:

10.1016/j.future.2018.05.037.

17. A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili, Equilibrium optimizer: A novel

optimization algorithm, Knowl.-Based Syst., 191 (2020), 105190. doi:

10.1016/j.knosys.2019.105190.

18. R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, MHS’95. Proceedings of

the Sixth International Symposium on Micro Machine and Human Science, (1995), 39–43. doi:

10.1109/MHS.1995.494215.

19. D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization:

artificial bee colony (ABC) algorithm, J. Glob. Optim., 39 (2007), 459–471. doi:

2280

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

10.1007/s10898-007-9149-x.

20. R. V. Rao, V. J. Savsani, D. P. Vakharia, Teaching-learning-based optimization: A novel method

for constrained mechanical design optimization problems, Comput.-Aided Des., 43 (2011),

303–315. doi: 10.1016/j.cad.2010.12.015.

21. S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey Wolf Optimizer, Adv. Eng. Softw., 69 (2014), 46–61.

doi: 10.1016/j.advengsoft.2013.12.007.

22. S. Mirjalili, A. Lewis, The Whale Optimization Algorithm, Adv. Eng. Softw., 95 (2016), 51–67.

doi: 10.1016/j.advengsoft.2016.01.008.

23. S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili, Salp Swarm

Algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Softw., 114

(2017), 163–191. doi: 10.1016/j.advengsoft.2017.07.002.

24. E. Cuevas, M. Cienfuegos, D. Zaldívar, M. Pérez-Cisneros, A swarm optimization algorithm

inspired in the behavior of the social-spider, Expert Syst. Appl., 40 (2013), 6374–6384. doi:

10.1016/j.eswa.2013.05.041.

25. G. Dhiman, V. Kumar, Seagull optimization algorithm: Theory and its applications for

large-scale industrial engineering problems, Knowl.-Based Syst., 165 (2018), 169–196. doi:

10.1016/j.knosys.2018.11.024.

26. A. Faramarzi, M. Heidarinejad, S. Mirjalili, A. H. Gandomi, Marine Predators Algorithm: A

nature-inspired metaheuristic, Expert Syst. Appl., 152 (2020), 113377. doi:

10.1016/j.eswa.2020.113377.

27. A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization:

Algorithm and applications, Future Gener. Comput. Syst., 97 (2019), 849–872. doi:

10.1016/j.future.2019.02.028.

28. H. A. Alsattar, A. A. Zaidan, B. B. Zaidan, Novel meta-heuristic bald eagle search optimisation

algorithm, Artif. Intell. Rev., 53 (2019), 2237–2264. doi: 10.1007/s10462-019-09732-5.

29. S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for

stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300–323. doi:

10.1016/j.future.2020.03.055.

30. M. S. Braik, Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering

design problems, Expert Syst. Appl., 174 (2021), 114685. doi: 10.1016/j.eswa.2021.114685.

31. D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol.

Comput., 1 (1996), 67–82. doi: 10.1109/4235.585893.

32. Y. Zhang, X. Han, Y. Dong, J. Xie, G. Xie, X. Xu, A novel state transition simulated annealing

algorithm for the multiple traveling salesmen problem, J. Supercomput., (2021). doi:

10.1007/s11227-021-03744-1.

33. K. Yu, B. Qu, C. Yue, S. Ge, X. Chen, J. Liang, A performance-guided JAYA algorithm for

parameters identification of photovoltaic cell and module, Appl. Energy, 237 (2019), 241–257.

doi: 10.1016/j.apenergy.2019.01.008.

34. C. Fan, Y. Zhou, Z. Tang, Neighborhood centroid opposite-based learning Harris Hawks

optimization for training neural networks, Evol. Intell., (2020). doi:

10.1007/s12065-020-00465-x.

35. A. A. Ewees, L. Abualigah, D. Yousri, Z. Y. Algamal, M. A. A. AI-qaness, R. A. Ibrahim, et al.,

Improved Slime Mould Algorithm based on Firefly Algorithm for feature selection: A case study

on QSAR model, Eng. Comput., (2021). doi: 10.1007/s00366-021-01342-6.

2281

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

36. M. Abdel-Basset, R. Mohamed, R. K. Chakrabortty, M. J. Ryan, S. Mirjalili, An efficient binary

slime mould algorithm integrated with a novel attacking-feeding strategy for feature selection,

Comput. Ind. Eng., 153 (2021), 107078. doi: 10.1016/j.cie.2020.107078.

37. M. Abdel-Basset, V. Chang, R. Mohamed, HSMA_WOA: A hybrid novel Slime mould

algorithm with whale optimization algorithm for tackling the image segmentation problem of

chest X-ray images, Appl. Soft Comput., 95 (2020), 106642. doi: 10.1016/j.asoc.2020.106642.

38. S. Zhao, P. Wang, A. A. Heidari, H. Chen, H. Turabieh, M. Mafarja, et al., Multilevel threshold

image segmentation with diffusion association slime mould algorithm and Renyi’s entropy for

chronic obstructive pulmonary disease, Comput. Biol. Med., 134 (2021), 104427. doi:

10.1016/j.compbiomed.2021.104427.

39. M. K. Naik, R. Panda, A. Abraham, Normalized square difference based multilevel thresholding

technique for multispectral images using leader slime mould algorithm, J. King Saud Univ. -

Comput. Inf. Sci., (2020). doi: 10.1016/j.jksuci.2020.10.030.

40. D. Yousri, A. Fathy, H. Rezk, T. S. Babu, M. R. Berber, A reliable approach for modeling the

photovoltaic system under partial shading conditions using three diode model and hybrid marine

predators-slime mould algorithm, Energy Convers. Manag., 243 (2021), 114269. doi:

10.1016/j.enconman.2021.114269.

41. M. Mostafa, H. Rezk, M. Aly, E. M. Ahmed, A new strategy based on slime mould algorithm to

extract the optimal model parameters of solar PV panel, Sustain. Energy Technol. Assess., 42

(2020), 100849. doi: 10.1016/j.seta.2020.100849.

42. A. A. El-Fergany, Parameters identification of PV model using improved slime mould optimizer

and Lambert W-function, Energy Rep., 7 (2021), 875–887. doi: 10.1016/j.egyr.2021.01.093.

43. Y. Liu, A. A. Heidari, X. Ye, G. Liang, H. Chen, C. He, Boosting slime mould algorithm for

parameter identification of photovoltaic models, Energy, 234 (2021), 121164. doi:

10.1016/j.energy.2021.121164.

44. C. Kumar, T. D. Raj, M. Premkumar, T. D. Raj, A new stochastic slime mould optimization

algorithm for the estimation of solar photovoltaic cell parameters, Optik, 223 (2020), 165277.

doi: 10.1016/j.ijleo.2020.165277.

45. D. Agarwal, P. S. Bharti, Implementing modified swarm intelligence algorithm based on Slime

moulds for path planning and obstacle avoidance problem in mobile robots, Appl. Soft Comput.,

107 (2021), 107372. doi: 10.1016/j.asoc.2021.107372.

46. R. M. Rizk-Allah, A. E. Hassanien, D. Song, Chaos-opposition-enhanced slime mould algorithm

for minimizing the cost of energy for the wind turbines on high-altitude sites, ISA Trans., (2020).

doi: 10.1016/j.isatra.2021.04.011.

47. M. H. Hassan, S. Kamel, L. Abualigah, A. Eid, Development and application of slime mould

algorithm for optimal economic emission dispatch, Expert Syst. Appl., 182 (2021), 115205. doi:

10.1016/j.eswa.2021.115205.

48. Y. Wei, Y. Zhou, Q. Luo, W. Deng, Optimal reactive power dispatch using an improved slime

mould algorithm, Energy Reports, 7 (2021), 8742–8759. doi: 10.1016/j.egyr.2021.11.138.

49. B. Abdollahzadeh, S. Barshandeh, H. Javadi, N. Epicoco, An enhanced binary slime mould

algorithm for solving the 0–1 knapsack problem, Eng. Comput., (2021). doi:

10.1007/s00366-021-01470-z.

50. S. L. Zubaidi, I. H. Abdulkareem, K. S. Hashim, H. Al-Bugharbee, H. M. Ridha, S. K. Gharghan,

et al., Hybridised Artificial Neural Network Model with Slime Mould Algorithm: A Novel

2282

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

Methodology for Prediction of Urban Stochastic Water Demand, Water, 12 (2020), 2692. doi:

10.3390/w12102692.

51. Z. Chen, W. Liu, An Efficient Parameter Adaptive Support Vector Regression Using K-Means

Clustering and Chaotic Slime Mould Algorithm, IEEE Access, 8 (2020), 156851–156862. doi:

10.1109/ACCESS.2020.3018866.

52. S. Ekinci, D. Izci, H. L. Zeynelgil, S. Orenc, An Application of Slime Mould Algorithm for

Optimizing Parameters of Power System Stabilizer, in 2020 4th International Symposium on

Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, (2020), 1–5.

doi: 10.1109/ISMSIT50672.2020.9254597.

53. Y. M. Wazery, E. Saber, E. H. Houssein, A. A. Ali, E. Amer, An Efficient Slime Mould

Algorithm Combined With K-Nearest Neighbor for Medical Classification Tasks, IEEE Access,

9 (2021), 113666–113682. doi: 10.1109/ACCESS.2021.3105485.

54. M. Premkumar, P. Jangir, R. Sowmya, H. H. Alhelou, A. A. Heidari, H. Chen, MOSMA:

Multi-Objective Slime Mould Algorithm Based on Elitist Non-Dominated Sorting, IEEE Access,

9 (2021), 3229–3248. doi: 10.1109/ACCESS.2020.3047936.

55. C. Yu, A. Asghar Heidari, X. Xue, L. Zhang, H. Chen, W. Chen, Boosting Quantum Rotation

Gate Embedded Slime Mould Algorithm, Expert Syst. Appl., (2021), 115082. doi:

10.1016/j.eswa.2021.115082.

56. E. H. Houssein, M. A. Mahdy, M. J. Blondin, D. Shebl, W. M. Mohamed, Hybrid slime mould

algorithm with adaptive guided differential evolution algorithm for combinatorial and global

optimization problems, Expert Syst. Appl., 174 (2021), 114689. doi:

10.1016/j.eswa.2021.114689.

57. H. Ren, J. Li, H. Chen, C. Li, Adaptive levy-assisted salp swarm algorithm: Analysis and

optimization case studies, Math. Comput. Simul., 181 (2020), 380–409. doi:

10.1016/j.matcom.2020.09.027.

58. J. Zhao, Z.-M. Gao, W. Sun, The improved slime mould algorithm with Levy flight, J. Phys.

Conf. Ser., 1617 (2020), 012033. doi: 10.1088/1742-6596/1617/1/012033.

59. X. Zhang, Y. Xu, C. Yu, A. A. Heidari, S. Li, H. Chen, et al., Gaussian mutational chaotic fruit

fly-built optimization and feature selection, Expert Syst. Appl., 141 (2019), 112976. doi:

10.1016/j.eswa.2019.112976.

60. S. Song, P. Wang, A. A. Heidari, M. Wang, X. Zhao, H. Chen, et al., Dimension decided Harris

hawks optimization with Gaussian mutation: Balance analysis and diversity patterns,

Knowl.-Based Syst., 215 (2020), 106425. doi: 10.1016/j.knosys.2020.106425.

61. N. Kumar, I. Hussain, B. Singh, B. Panigrahi, Single Sensor-Based MPPT of Partially Shaded

PV System for Battery Charging by Using Cauchy and Gaussian Sine Cosine Optimization,

IEEE Trans. Energy Convers., (2017), 983–992. doi: 10.1109/TEC.2017.2669518.

62. S. Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm,

Knowl.-Based Syst., 89 (2015), 228–249. doi: 10.1016/j.knosys.2015.07.006.

63. S. Mirjalili, The Ant Lion Optimizer, Adv. Eng. Softw., 83 (2015), 80–98. doi:

10.1016/j.advengsoft.2015.01.010.

64. S. Mirjalili, Dragonfly algorithm: A new meta-heuristic optimization technique for solving

single-objective, discrete, and multi-objective problems, Neural Comput. Appl., 27 (2016),

1053–1073. doi: 10.1007/s00521-015-1920-1.

65. S. Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems, Knowl.-Based

2283

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

Syst., 96 (2016), 120–133. doi: 10.1016/j.knosys.2015.12.022.

66. H. Yapici, N. Cetinkaya, A new meta-heuristic optimizer: Pathfinder algorithm, Appl. Soft

Comput., 78 (2019), 545–568. doi: 10.1007/s13369-014-1156-x.

67. S. Mirjalili, A. Lewis, A. S. Sadiq, Autonomous Particles Groups for Particle Swarm

Optimization, Arab. J. Sci. Eng., 39 (2014), 4683–4697. doi: 10.1007/s13369-014-1156-x.

68. L. dos S. Coelho, Gaussian quantum-behaved particle swarm optimization approaches for

constrained engineering design problems, Expert Syst. Appl., 37 (2010), 1676–1683. doi:

10.1016/j.eswa.2009.06.044.

69. S. Mirjalili, S. Z. M. Hashim, A new hybrid PSOGSA algorithm for function optimization, 2010

International Conference on Computer and Information Application, (2010), 374–377. doi:

10.1109/ICCIA.2010.6141614.

70. S. Rahnamayan, J. Jesuthasan, F. Bourennani, H. Salehinejad, G. F. Naterer, Computing

opposition by involving entire population, 2014 IEEE Congress on Evolutionary Computation

(CEC), (2014), 1800–1807. doi: 10.1109/CEC.2014.6900329.

71. M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, H. Faris, MTDE: An effective multi-trial

vector-based differential evolution algorithm and its applications for engineering design

problems, Appl. Soft Comput., 97 (2020), 106761. doi: 10.1016/j.asoc.2020.106761.

72. Y. Li, X. Lin, J. Liu, An Improved Gray Wolf Optimization Algorithm to Solve Engineering

Problems, Sustainability, 13 (2021), 3208. doi: 10.3390/su13063208.

73. C. Tang, Y. Zhou, Q. Luo, Z. Tang, An enhanced pathfinder algorithm for engineering

optimization problems, Eng. Comput., (2021). doi: 10.1007/s00366-021-01286-x.

74. A. G. Hussien, M. Amin, A self-adaptive Harris Hawks optimization algorithm with

opposition-based learning and chaotic local search strategy for global optimization and feature

selection, Int. J. Mach. Learn. Cybern., (2021). doi: 10.1007/s13042-021-01326-4.

75. A. H. Gandomi, X.-S. Yang, A. H. Alavi, Cuckoo search algorithm: a metaheuristic approach to

solve structural optimization problems, Eng. Comput., 29 (2011), 17–35. doi:

10.1007/s00366-011-0241-y.

76. L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, A. H. Gandomi, The Arithmetic

Optimization Algorithm, Comput. Methods Appl. Mech. Eng., 376 (2020), 113609. doi:

10.1016/j.cma.2020.113609.

77. S. Gupta, K. Deep, A. P. Engelbrecht, A memory guided sine cosine algorithm for global

optimization, Eng. Appl. Artif. Intell., 93 (2020), 103718. doi: 10.1016/j.engappai.2020.103718.

78. S. Gupta, K. Deep, A memory-based Grey Wolf Optimizer for global optimization tasks, Appl.

Soft Comput., 93 (2020), 106367. doi: 10.1016/j.asoc.2020.106367.

79. S. Saremi, S. Mirjalili, A. Lewis, Grasshopper Optimisation Algorithm: Theory and application,

Adv. Eng. Softw., 105 (2017), 30–47. doi: 10.1016/j.advengsoft.2017.01.004.

80. V. K. Kamboj, A. Nandi, A. Bhadoria, S. Sehgal, An intensify Harris Hawks optimizer for

numerical and engineering optimization problems, Appl. Soft Comput., 89 (2019), 106018. doi:

10.1016/j.asoc.2019.106018.

81. A. Sadollah, A. Bahreininejad, H. Eskandar, M. Hamdi, Mine blast algorithm: A new population

based algorithm for solving constrained engineering optimization problems, Appl. Soft Comput.,

13 (2013), 2592–2612. doi: 10.1016/j.asoc.2012.11.026.

82. D. Wei, Z. Wang, L. Si, C. Tan, Preaching-inspired swarm intelligence algorithm and its

applications, Knowl.-Based Syst., 211 (2020), 106552. doi: 10.1016/j.knosys.2020.106552.

2284

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

83. C. Chen, X. Wang, H. Yu, N. Zhao, M. Wang, H. Chen, An Enhanced Comprehensive Learning

Particle Swarm Optimizer with the Elite-Based Dominance Scheme, Complexity, 2020 (2020),

1–24. doi: 10.1155/2020/4968063.

84. L. Abualigah, D. Yousri, M. Abd Elaziz, A. A. Ewees, M. A. A. Al-qaness, A. H. Gandomi,

Aquila Optimizer: A novel meta-heuristic optimization algorithm, Comput. Ind. Eng., 157

(2021), 107250. doi: 10.1016/j.cie.2021.107250.

85. H. Chen, M. Wang, X. Zhao, A multi-strategy enhanced sine cosine algorithm for global

optimization and constrained practical engineering problems, Appl. Math. Comput., 369 (2019),

124872. doi: 10.1016/j.amc.2019.124872.

86. E. Zahara, Y.-T. Kao, Hybrid Nelder–Mead simplex search and particle swarm optimization for

constrained engineering design problems, Expert Syst. Appl., 36 (2009), 3880–3886. doi:

10.1016/j.eswa.2008.02.039.

87. M. Wang, A. A. Heidari, M. Chen, H. Chen, X. Zhao, X. Cai, Exploratory differential ant

lion-based optimization, Expert Syst. Appl., 159 (2020), 113548. doi:

10.1016/j.eswa.2020.113548.

88. X. Yang, W. Li, L. Su, Y. Wang, A. Yang, An improved evolution fruit fly optimization algorithm

and its application, Neural Comput. Appl., 32 (2019), 9897–9914. doi:

10.1007/s00521-019-04512-2.

89. B. S. Yildiz, N. Pholdee, S. Bureerat, A. R. Yildiz, S. M. Sait, Enhanced grasshopper

optimization algorithm using elite opposition-based learning for solving real-world engineering

problems, Eng. Comput., (2021). doi: 10.1007/s00366-021-01368-w.

90. S. Gupta, K. Deep, A novel Random Walk Grey Wolf Optimizer, Swarm Evol. Comput., 44

(2018), 101–112. doi: 10.1016/j.swevo.2018.01.001.

91. P. Savsani, V. Savsani, Passing vehicle search (PVS): A novel metaheuristic algorithm, Appl.

Math. Model., 40 (2016), 3951–3978. doi: 10.1016/j.apm.2015.10.040.

92. W. Guo, Y. Wang, F. Dai, P. Xu, Improved sine cosine algorithm combined with optimal

neighborhood and quadratic interpolation strategy, Eng. Appl. Artif. Intell., 94 (2020), 103779.

doi: 10.1016/j.engappai.2020.103779.

93. W. Zhou, P. Wang, A. A. Heidari, M. Wang, X. Zhao, H. Chen, Multi-core sine cosine

optimization: Methods and inclusive analysis, Expert Syst. Appl., 164 (2020), 113974. doi:

10.1016/j.eswa.2020.113974.

94. A. S. Assiri, On the performance improvement of Butterfly Optimization approaches for global

optimization and Feature Selection, PLOS ONE, 16 (2021), e0242612. doi:

10.1371/journal.pone.0242612.

95. K. Zhong, Q. Luo, Y. Zhou, M. Jiang, TLMPA: Teaching-learning-based Marine Predators

algorithm, AIMS Math., 6 (2020), 1395–1442. doi: 10.3934/math.2021087.

96. Z. Wang, Q. Luo, Y. Zhou, Hybrid metaheuristic algorithm using butterfly and flower pollination

base on mutualism mechanism for global optimization problems, Eng. Comput., (2020). doi:

10.1007/s00366-020-01025-8.

97. N. Li, L. Wang, Bare-Bones Based Sine Cosine Algorithm for global optimization, J. Comput.

Sci., 47 (2020), 101219. doi: 10.1016/j.jocs.2020.101219.

98. L. Zhong, Y. Zhou, Q. Luo, K. Zhong, Wind driven dragonfly algorithm for global optimization,

Concurr. Comput. Pract. Exp., 33 (2020), 1–31. doi: 10.1002/cpe.6054.

99. Y. Wang, Z. Cai, Y. Zhou, Z. Fan, Constrained optimization based on hybrid evolutionary

2285

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2240–2285.

algorithm and adaptive constraint-handling technique, Struct. Multidiscip. Optim., 37 (2009),

395–413. doi: 10.1007/s00158-008-0238-3.

100. G. Azizyan, F. Miarnaeimi, M. Rashki, N. Shabakhty, Flying Squirrel Optimizer (FSO): A Novel

SI-Based Optimization Algorithm for Engineering Problems, Iranian Journal of Optimization,

11 (2019), 177-205.

101. H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, Water cycle algorithm – A novel

metaheuristic optimization method for solving constrained engineering optimization problems,

Comput. Struct., 110–111 (2012), 151–166. doi: 10.1016/j.compstruc.2012.07.010.

102. L. Gu, R.-J. Yang, C. Tho, M. Makowskit, O. Faruquet, Y. Li, Optimisation and robustness for

crashworthiness of side impact, Int. J. Veh. Des. - INT J VEH DES, 26 (2001), 348–360. doi:

10.1504/IJVD.2001.005210.

103. B. D. Youn, K. K. Choi, R.-J. Yang, L. Gu, Reliability-based design optimization for

crashworthiness of vehicle side impact, Struct. Multidiscip. Optim., 26 (2004), 272–283. doi:

10.1007/s00158-003-0345-0.

104. A. H. Gandomi, X.-S. Yang, A. H. Alavi, Mixed variable structural optimization using Firefly

Algorithm, Comput. Struct., 89 (2011), 2325–2336. doi: 10.1016/j.compstruc.2011.08.002.

105. S. Sharma, A. K. Saha, G. Lohar, Optimization of weight and cost of cantilever retaining wall

by a hybrid metaheuristic algorithm, Eng. Comput., (2021). doi: 10.1007/s00366-021-01294-x.

106. M. Toz, Chaos-based Vortex Search algorithm for solving inverse kinematics problem of serial

robot manipulators with offset wrist, Appl. Soft Comput., 89 (2020), 106074. doi:

10.1016/j.asoc.2020.106074.

107. S. Dereli, R. Köker, A meta-heuristic proposal for inverse kinematics solution of 7-DOF serial

robotic manipulator: quantum behaved particle swarm algorithm, Artif. Intell. Rev., 53 (2020),

949–964. doi: 10.1007/s10462-019-09683-x.

©2022 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

