Research article Special Issues

Some new identities involving Laguerre polynomials

  • In this paper, we use elementary method and some sort of a counting argument to show the equality of two expressions. That is, let f(n) and g(n) be two functions, k be any positive integer. Then f(n)=nr=0(1)rn!r!(n+k1r+k1)g(r) if and only if g(n)=nr=0(1)rn!r!(n+k1r+k1)f(r) for all integers n0. As an application of this formula, we obtain some new identities involving the famous Laguerre polynomials.

    Citation: Xiaowei Pan, Xiaoyan Guo. Some new identities involving Laguerre polynomials[J]. AIMS Mathematics, 2021, 6(11): 12713-12717. doi: 10.3934/math.2021733

    Related Papers:

    [1] Talha Usman, Mohd Aman, Owais Khan, Kottakkaran Sooppy Nisar, Serkan Araci . Construction of partially degenerate Laguerre-Genocchi polynomials with their applications. AIMS Mathematics, 2020, 5(5): 4399-4411. doi: 10.3934/math.2020280
    [2] Syed Ali Haider Shah, Shahid Mubeen . Expressions of the Laguerre polynomial and some other special functions in terms of the generalized Meijer G-functions. AIMS Mathematics, 2021, 6(11): 11631-11641. doi: 10.3934/math.2021676
    [3] Aimin Xu . Some identities involving derangement polynomials and r-Bell polynomials. AIMS Mathematics, 2024, 9(1): 2051-2062. doi: 10.3934/math.2024102
    [4] SAIRA, Wenxiu Ma, Suliman Khan . An efficient numerical method for highly oscillatory logarithmic-algebraic singular integrals. AIMS Mathematics, 2025, 10(3): 4899-4914. doi: 10.3934/math.2025224
    [5] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [6] Dojin Kim, Patcharee Wongsason, Jongkyum Kwon . Type 2 degenerate modified poly-Bernoulli polynomials arising from the degenerate poly-exponential functions. AIMS Mathematics, 2022, 7(6): 9716-9730. doi: 10.3934/math.2022541
    [7] Fan Yang, Yang Li . The infinite sums of reciprocals and the partial sums of Chebyshev polynomials. AIMS Mathematics, 2022, 7(1): 334-348. doi: 10.3934/math.2022023
    [8] Feng Qi, Da-Wei Niu, Bai-Ni Guo . Simplifying coefficients in differential equations associated with higher order Bernoulli numbers of the second kind. AIMS Mathematics, 2019, 4(2): 170-175. doi: 10.3934/math.2019.2.170
    [9] Letelier Castilla, William Ramírez, Clemente Cesarano, Shahid Ahmad Wani, Maria-Fernanda Heredia-Moyano . A new class of generalized Apostol–type Frobenius–Euler polynomials. AIMS Mathematics, 2025, 10(2): 3623-3641. doi: 10.3934/math.2025167
    [10] Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori . New expressions for certain polynomials combining Fibonacci and Lucas polynomials. AIMS Mathematics, 2025, 10(2): 2930-2957. doi: 10.3934/math.2025136
  • In this paper, we use elementary method and some sort of a counting argument to show the equality of two expressions. That is, let f(n) and g(n) be two functions, k be any positive integer. Then f(n)=nr=0(1)rn!r!(n+k1r+k1)g(r) if and only if g(n)=nr=0(1)rn!r!(n+k1r+k1)f(r) for all integers n0. As an application of this formula, we obtain some new identities involving the famous Laguerre polynomials.



    For any integer n0, the famous Laguerre polynomial Ln(x) is defined by

    Ln(x)=exdndxn(xnex)=nr=0(1)rn!r!(nr)xr, (1.1)

    where (nm)=m!m!(nm)!.

    The exponential generating function of Ln(x) is

    11text1t=n=0Ln(x)n!tn. (1.2)

    It is clear that L0(x)=1, L1(x)=x+1, and Ln+1(x)=(2n+1x)Ln(x)n2Ln1(x) for all positive integer n1. Therefore Ln(x) satisfy a 3-term recurrence relation. It satisfies the integral identity

    +0exLm(x)Ln(x)dx={0,ifmn;(n!)2,ifm=n. (1.3)

    In recent years, many papers investigated the elementary properties of Laguerre polynomials and recurrence polynomials (see [3,4,5,6,7,8]).

    In this paper, as a note, we prove a new inversion formula related to Laguerre polynomials. That is, we shall prove the following conclusion.

    Theorem. Let f(n) and g(n) be two functions, k be any positive integer. For all integer n0, if

    f(n)=nr=0(1)rn!r!(n+k1r+k1)g(r), (1.4)

    then we have the inversion formula

    g(n)=nr=0(1)rn!r!(n+k1r+k1)f(r). (1.5)

    It is clear that if we take k=1, f(n)=Ln(x) and g(r)=xr, then from (1.1) we have the identity

    xn=nr=0(1)rn!r!(nr)Lr(x).

    In this section, we shall complete the proof of our main result. Hereinafter, we shall use some elementary number theory contents and properties of power series, which can be found in references [1,2], and also be found in [3,4], so we will not repeat them here. First we need the following simple lemma.

    Lemma. For any integer n0, let f(n) and g(n) be two number theoretic functions. If f(n) and g(n) satisfy the identity

    f(n)=nr=0(1)rn!r!(nr)g(r),

    then we have the inversion formula

    g(n)=nr=0(1)rn!r!(nr)f(r).

    Proof. It is clear that the lemma holds if n=0. So without loss of generality, we can assume that n1. At this time, from the definition of f(n), we have

    nr=0(1)rn!r!(nr)f(r)=nr=0(1)rn!r!(nr)(rs=0(1)sr!s!(rs)g(s))=n!ns=0(1)sg(s)s!nr=s(1)r(rs)(nr)=n!ns=0(1)sg(s)s!nsr=0(1)r+s(r+ss)(nr+s)=n!ns=0g(s)s!nsr=0(1)rn!(ns)!s!(ns)!r!(nrs)!=n!ns=0g(s)s!n!(ns)!s!nsr=0(1)r(nsr)=n!ns=0g(s)s!n!(ns)!s!(11)ns=n!g(n)n!n!0!n!+n!n1s=0g(s)s!n!(ns)!s!(11)ns=g(n).

    That is,

    g(n)=nr=0(1)rn!r!(nr)f(r).

    The lemma is proved.

    Now for any positive integer k1, let f(n) and g(n) be defined as (1.4) and (1.5). If k=1, then the theorem follows from the lemma. So without loss of generality we can assume k2. This time we have

    nr=0(1)rn!r!(n+k1r+k1)f(r)=nr=0(1)rn!r!(n+k1r+k1)(rs=0(1)sr!s!(r+k1s+k1)g(s))=n!ns=0(1)sg(s)s!nr=s(1)r(r+k1s+k1)(n+k1r+k1)=n!ns=0(1)sg(s)s!nsr=0(1)r+s(r+s+k1s+k1)(n+k1r+s+k1)=n!ns=0g(s)s!nsr=0(1)r(n+k1)!(ns)!(s+k1)!(ns)!r!(nrs)!=n!ns=0g(s)s!(n+k1s+k1)nsr=0(1)r(nsr)=n!ns=0g(s)s!(n+k1s+k1)(11)ns=g(n).

    The theorem is proved.

    This theorem can also be proved by manipulating the exponential generating function in (1.2). Here we give an alternative proof for the theorem by using the well known method of the exponential generating functions. Consider

    F(x)=n=0f(n)xnn!  and  G(x)=n=0g(n)xnn!,

    where f(n) and g(n) defined as in the theorem.

    Then multiplying on both sides of (1.4) by xnn! and summing over n0, we obtain

    F(x)=(1x)kG(x(1x)1). (2.1)

    Now let y=x(1x)1, so x=y(1y)1 and 1x=(1y)1, and expressing (2.1) in terms of y gives

    F(y(1y)1)=(1y)kG(y),

    or rearranging slightly,

    G(y)=(1y)kF(y(1y)1). (2.2)

    Equating coefficients of ynn! in (2.2) we obtain (1.5). This completes the second proof of the theorem.

    The main result of this paper is a theorem, which proved a new reciprocal formula for some arithmetical functions, it revealed some essential properties of the Laguerre polynomials. The result is actually new contribution to the study of the properties of Laguerre polynomials. Of course, the methods adopted in this paper have some good reference for the further study of the Laguerre polynomials.

    This work is supported by X. M. U. F.(2017GJFY21), (2018XNRC05) and P. N. S. F.(2019JM573) of China.

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] T. M. Apostol, Introduction to analytic number theory, New York: Springer-Verlag, 1976.
    [2] T. M. Apostol, Mathematical analysis, 2 Eds., Mass.-London-Don Mills: Addison-Wesley Publishing Co., 1974.
    [3] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions, New York, 1965.
    [4] D. Jackson, Fourier series and orthogonal polynomials, Dover Publications, 2004.
    [5] R. Ma, W. P. Zhang, Several identities involving the Fibonacci numbers and Lucas numbers, Fibonacci Quart., 45 (2007), 164–170.
    [6] Y. Yi, W. P. Zhang, Some identities involving the Fibonacci polynomials, Fibonacci Quart., 40 (2002), 314–318.
    [7] T. T. Wang, W. P. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roumanie, 103 (2012), 95–103.
    [8] X. H. Wang, D. Han, Some identities related to Dedekind sums and the Chebyshev polynomials, Int. J. Appl. Math. Stat., 51 (2013), 334–339.
  • This article has been cited by:

    1. M.Muniru Iddrisu, , On the Nörlund-Rice Integral Formula, 2024, 4, 25828932, 7, 10.54105/ijam.B1175.04021024
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2626) PDF downloads(129) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog