Research article

Some identities involving derangement polynomials and $ r $-Bell polynomials

  • Received: 29 September 2023 Revised: 28 November 2023 Accepted: 12 December 2023 Published: 20 December 2023
  • MSC : 05A10, 05A19, 11B83

  • In this paper two kinds of identities involving derangement polynomials and $ r $-Bell polynomials were established. The identities of the first kind extended the identity on derangement numbers and Bell numbers due to Clarke and Sved and its generalizations due to Du and Fonseca. The identities of the second kind extended some of the results on derangement polynomials and Bell polynomials due to Kim et al.

    Citation: Aimin Xu. Some identities involving derangement polynomials and $ r $-Bell polynomials[J]. AIMS Mathematics, 2024, 9(1): 2051-2062. doi: 10.3934/math.2024102

    Related Papers:

  • In this paper two kinds of identities involving derangement polynomials and $ r $-Bell polynomials were established. The identities of the first kind extended the identity on derangement numbers and Bell numbers due to Clarke and Sved and its generalizations due to Du and Fonseca. The identities of the second kind extended some of the results on derangement polynomials and Bell polynomials due to Kim et al.



    加载中


    [1] A. Z. Broder, The $r$-Stirling numbers, Discrete Math., 49 (1984), 241–259. https://doi.org/10.1016/0012-365X(84)90161-4 doi: 10.1016/0012-365X(84)90161-4
    [2] L. Carlitz, Weighted Stirling numbers of the first and second kind-Ⅰ, Fibonacci Quart., 18 (1980), 147–162.
    [3] L. Carlitz, Weighted Stirling numbers of the first and second kind-Ⅱ, Fibonacci Quart., 18 (1980), 242–257.
    [4] A. Chouria, J. G. Luque, $r$-Bell polynomials in combinatorial Hopf algebras, C. R. Math., 355 (2017), 243–247. https://doi.org/10.1016/j.crma.2017.01.015 doi: 10.1016/j.crma.2017.01.015
    [5] R. J. Clarke, M. Sved, Derangements and Bell numbers, Math. Mag., 66 (1993), 299–303. https://doi.org/10.1080/0025570X.1993.11996148 doi: 10.1080/0025570X.1993.11996148
    [6] L. Comtet, Advanced combinatorics: The art of finite and infinite expansions, Dordrecht: D. Reidel Publishing Company, 1974. https://doi.org/10.1007/978-94-010-2196-8
    [7] Z. Du, C. M. da Fonseca, An identity involving derangement numbers and Bell numbers, Appl. Anal. Discr. Math., 16 (2022), 485–494 https://doi.org/10.2298/AADM200705018D doi: 10.2298/AADM200705018D
    [8] N. Eriksen, R. Freij, J. Wästlund, Enumeration of derangements with descents in prescribed positions, Electron. J. Comb., 16 (2009), R32. https://doi.org/10.37236/121 doi: 10.37236/121
    [9] C. M. da Fonseca, On a closed form for derangement numbers: An elementary proof, RACSAM, 114 (2020), 146. https://doi.org/10.1007/s13398-020-00879-3 doi: 10.1007/s13398-020-00879-3
    [10] T. Kim, D. S. Kim, G. W. Jang, J. Kwon, A note on some identities of derangement polynomials, J. Inequal. Appl., 2018 (2018), 40. https://doi.org/10.1186/s13660-018-1636-8 doi: 10.1186/s13660-018-1636-8
    [11] T. Kim, D. S. Kim, H. I. Kwon, L. C. Jang, Fourier series of sums of products of $r$-derangement functions, J. Nonlinear Sci. Appl., 11 (2018), 575–590. https://doi.org/10.22436/jnsa.011.04.12 doi: 10.22436/jnsa.011.04.12
    [12] T. Kim, D. S. Kim, L. C. Jang, H. Lee, Some identities invovling derangement polynomials and numbers and moments of Gamma random variables, 2020. https://doi.org/10.48550/arXiv.2011.01577
    [13] Y. He, J. Pan, Some recursion formulae for the number of derangements and Bell numbers, J. Math. Res. Appl., 36 (2016), 15–22.
    [14] I. Mező, The $r$-Bell numbers, J. Integer Seq., 14 (2011), 3.
    [15] F. Qi, J. L. Wang, B. N. Guo, Closed forms for derangement numbers in terms of the Hessenberg determinants, RACSAM, 112 (2018), 933–944. https://doi.org/10.1007/s13398-017-0401-z doi: 10.1007/s13398-017-0401-z
    [16] R. P. Stanley, Enumerative combinatorics, Cambridge Studies in Advanced Mathematics, 2011.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(695) PDF downloads(52) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog