In this paper two kinds of identities involving derangement polynomials and $ r $-Bell polynomials were established. The identities of the first kind extended the identity on derangement numbers and Bell numbers due to Clarke and Sved and its generalizations due to Du and Fonseca. The identities of the second kind extended some of the results on derangement polynomials and Bell polynomials due to Kim et al.
Citation: Aimin Xu. Some identities involving derangement polynomials and $ r $-Bell polynomials[J]. AIMS Mathematics, 2024, 9(1): 2051-2062. doi: 10.3934/math.2024102
In this paper two kinds of identities involving derangement polynomials and $ r $-Bell polynomials were established. The identities of the first kind extended the identity on derangement numbers and Bell numbers due to Clarke and Sved and its generalizations due to Du and Fonseca. The identities of the second kind extended some of the results on derangement polynomials and Bell polynomials due to Kim et al.
[1] | A. Z. Broder, The $r$-Stirling numbers, Discrete Math., 49 (1984), 241–259. https://doi.org/10.1016/0012-365X(84)90161-4 doi: 10.1016/0012-365X(84)90161-4 |
[2] | L. Carlitz, Weighted Stirling numbers of the first and second kind-Ⅰ, Fibonacci Quart., 18 (1980), 147–162. |
[3] | L. Carlitz, Weighted Stirling numbers of the first and second kind-Ⅱ, Fibonacci Quart., 18 (1980), 242–257. |
[4] | A. Chouria, J. G. Luque, $r$-Bell polynomials in combinatorial Hopf algebras, C. R. Math., 355 (2017), 243–247. https://doi.org/10.1016/j.crma.2017.01.015 doi: 10.1016/j.crma.2017.01.015 |
[5] | R. J. Clarke, M. Sved, Derangements and Bell numbers, Math. Mag., 66 (1993), 299–303. https://doi.org/10.1080/0025570X.1993.11996148 doi: 10.1080/0025570X.1993.11996148 |
[6] | L. Comtet, Advanced combinatorics: The art of finite and infinite expansions, Dordrecht: D. Reidel Publishing Company, 1974. https://doi.org/10.1007/978-94-010-2196-8 |
[7] | Z. Du, C. M. da Fonseca, An identity involving derangement numbers and Bell numbers, Appl. Anal. Discr. Math., 16 (2022), 485–494 https://doi.org/10.2298/AADM200705018D doi: 10.2298/AADM200705018D |
[8] | N. Eriksen, R. Freij, J. Wästlund, Enumeration of derangements with descents in prescribed positions, Electron. J. Comb., 16 (2009), R32. https://doi.org/10.37236/121 doi: 10.37236/121 |
[9] | C. M. da Fonseca, On a closed form for derangement numbers: An elementary proof, RACSAM, 114 (2020), 146. https://doi.org/10.1007/s13398-020-00879-3 doi: 10.1007/s13398-020-00879-3 |
[10] | T. Kim, D. S. Kim, G. W. Jang, J. Kwon, A note on some identities of derangement polynomials, J. Inequal. Appl., 2018 (2018), 40. https://doi.org/10.1186/s13660-018-1636-8 doi: 10.1186/s13660-018-1636-8 |
[11] | T. Kim, D. S. Kim, H. I. Kwon, L. C. Jang, Fourier series of sums of products of $r$-derangement functions, J. Nonlinear Sci. Appl., 11 (2018), 575–590. https://doi.org/10.22436/jnsa.011.04.12 doi: 10.22436/jnsa.011.04.12 |
[12] | T. Kim, D. S. Kim, L. C. Jang, H. Lee, Some identities invovling derangement polynomials and numbers and moments of Gamma random variables, 2020. https://doi.org/10.48550/arXiv.2011.01577 |
[13] | Y. He, J. Pan, Some recursion formulae for the number of derangements and Bell numbers, J. Math. Res. Appl., 36 (2016), 15–22. |
[14] | I. Mező, The $r$-Bell numbers, J. Integer Seq., 14 (2011), 3. |
[15] | F. Qi, J. L. Wang, B. N. Guo, Closed forms for derangement numbers in terms of the Hessenberg determinants, RACSAM, 112 (2018), 933–944. https://doi.org/10.1007/s13398-017-0401-z doi: 10.1007/s13398-017-0401-z |
[16] | R. P. Stanley, Enumerative combinatorics, Cambridge Studies in Advanced Mathematics, 2011. |