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1. Introduction

A permutation of a set of elements ranking from one to n is called derangement if none of the
elements is left at its original place. The number of derangements of a set of n elements is denoted
by Dn throughout this paper. The first few derangement numbers are D1 = 0,D2 = 1,D3 = 2,D4 =

9,D5 = 44, with D0 = 1 being defined by convention and the familiar inclusion-exclusion principle
giving a closed formula as follows [5, 16]

Dn = n!
n∑

k=0

(−1)k

k!
=

n∑
k=0

(−1)n−k

(
n
k

)
k!, (1.1)

which can be also obtained by applying the generating function of the derangement numbers [6, 16]

e−t

1 − t
=

∞∑
n=0

Dn
tn

n!
. (1.2)

The derangement numbers satisfy the following recurrence relations

Dn = (n − 1)(Dn−1 + Dn−2), n ≥ 2 (1.3)
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and

Dn = nDn−1 + (−1)n, n ≥ 1, (1.4)

with D0 = 1 and D1 = 0. The above two recursion formulae allow us fast evaluation of Dn. Moreover,
Qi, Wang and Guo [15] established a new recurrence relation

Dn =

n−2∑
k=0

(
n
k

)
(n − k − 1)Dk, n ≥ 2. (1.5)

A short proof was given by Fonseca [9].
Let Bn denote the nth Bell number, defined as the number of partitions of a set of cardinality n (with

B0 = 1). The Bell number Bn can be represented by the sum of Stirling numbers of the second kind, as
follows

Bn =

n∑
k=0

S (n, k), (1.6)

where S (n, k) are the Stirling numbers of the second kind. The Bell numbers obey the recurrence

Bn+1 =

n∑
k=0

(
n
k

)
Bk (1.7)

and satisfy the generating function

eet−1 =

∞∑
n=0

Bn
tn

n!
. (1.8)

Both Bell numbers and derangement numbers are important tools in the study of special sequences
and combinatorics. In [5], an interesting connection between the derangement numbers and the Bell
numbers was established by the probabilistic method:

n∑
k=0

(
n
k

)
ksDk = n!

s∑
k=0

(
s
k

)
(−1)kns−kBk, n ≥ s ≥ 0. (1.9)

Recently, Du and Fonseca [7] provided a general identity for the derangement numbers and the Bell
numbers which includes (1.1), (1.5) and (1.9) as particular cases. They also provided a combinatorial
interpretation and established a general determinantal representation in terms of a Hessenberg matrix.
For more interesting identities involving the derangement numbers, the Bell numbers and their
generalizations, one is referred to [13] and the references therein.

The aim of this short note is to establish two kinds of identities involving derangement
polynomials and r-Bell polynomials. The identities of the first kind are mainly inspired by the work
in [5, 7], and they are the extensions of (1.9). The identities of the second kind generalize some of the
results on derangement polynomials and Bell polynomials in [12]. The definitions of the derangement
polynomials, the r-Bell polynomials and some necessary properties will be presented in the next
section.
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2. Preliminaries

We begin by recalling the definition of the derangement polynomials. The derangement polynomials
Dn(x) are defined by

e−t

1 − t
ext =

∞∑
n=0

Dn(x)
tn

n!
, (2.1)

which have been considerably investigated in [8, 10–12]. They are natural extensions of the
derangement numbers because Dn(x) = Dn when x = 0. The derangement polynomials Dn(x) obey the
recursive relation

Dn(x) = nDn−1(x) + (x − 1)n. (2.2)

As a direct consequence of (2.1), two closed formulae for the derangement polynomials are

Dn(x) =
n∑

k=0

(
n
k

)
Dkxn−k (2.3)

and

Dn(x) =
n∑

k=0

(
n
k

)
k!(x − 1)n−k, (2.4)

respectively. The r-Stirling number denoted by S r(n, k) enumerates the partitions of a set of n elements
into k nonempty, disjoint subsets such that the first r elements are in distinct subsets. A systematic
treatment on the r-Stirling numbers was given in [1] and a different approach was described in [2, 3].
The r-Stirling numbers have the ’horizontal’ generating function

(x + r)n =

n∑
k=0

S r(n + r, k + r)(x)k, (2.5)

where the falling factorial of a given real number x is (x)k = x(x − 1) · · · (x − k + 1). From (2.5), the
explicit expressions of S r(n + r, k + r) are given by

S r(n + r, k + r) =
1
k!

k∑
j=0

(−1)k− j

(
k
j

)
( j + r)n. (2.6)

In particular, when r = 0, we have S r(n + r, k + r) = S (n, k), where S (n, k) are the Stirling numbers of
the second kind. In [14], r-Bell numbers and r-Bell polynomials are defined by

Bn,r =

n∑
k=0

S r(n + r, k + r) (2.7)

and

Bn,r(x) =
n∑

k=0

S r(n + r, k + r)xk, (2.8)
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respectively. The exponential generating function for the r-Bell polynomials is

∞∑
n=0

Bn,r(x)
tn

n!
= ex(et−1)+rt. (2.9)

It is clear that the r-Bell polynomials Bn,r(x) reduce to the well-known Bell polynomials Bn(x) [6]
when r = 0. For more about r-Bell polynomials, especially from an algebraic perspective, one can
refer to reference [4], in which partial r-Bell polynomials in three combinatorial Hopf algebras are
introduced.

3. Main results

In this section, two kinds of identities involving the derangement polynomials and the r-Bell
polynomials are established. The following lemma plays an important role.

Lemma 3.1. If both r and s are nonnegative integers, then we have

n∑
k=0

(
n
k

)
(n − k + r)sxn−kDk(1 − x) = n!

Bs,r(x) −
s∑

j=n+1

S r(s + r, j + r)x j

 . (3.1)

Proof. From the explicit expression of the derangement polynomials Dn(x) (2.4), we have

n∑
k=0

(
n
k

)
(n − k + r)sxn−kDk(1 − x) =

n∑
k=0

(
n
k

)
(n − k + r)sxn−k

k∑
j=0

(
k
j

)
j!(−x)k− j

=

n∑
j=0

j!xn− j
n∑

k= j

(−1)k− j

(
n
k

)(
k
j

)
(n − k + r)s

=

n∑
j=0

j!
(
n
j

)
xn− j

n∑
k= j

(−1)k− j

(
n − j
k − j

)
(n − k + r)s,

since (
n
k

)(
k
j

)
=

(
n
j

)(
n − j
k − j

)
.

We replace k by k + j and obtain

n∑
j=0

j!
(
n
j

)
xn− j

n∑
k= j

(−1)k− j

(
n − j
k − j

)
(n − k + r)s

=

n∑
j=0

j!
(
n
j

)
xn− j

n− j∑
k=0

(−1)k

(
n − j

k

)
(n − j − k + r)s

=

n∑
j=0

j!
(
n
j

)
xn− j

n− j∑
k=0

(−1)n− j−k

(
n − j

k

)
(k + r)s.
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By (2.6), we have

n∑
j=0

j!
(
n
j

)
xn− j

n− j∑
k=0

(−1)n− j−k

(
n − j

k

)
(k + r)s

=

n∑
j=0

j!
(
n
j

)
xn− j(n − j)!S r(s + r, n − j + r)

=n!
n∑

j=0

S r(s + r, j + r)x j.

From (2.8), it is equivalent to the righthand side of (3.1).

Remark 3.1. For j > i ≥ 0, S r(i, j) = 0. Thus, when n ≥ s, it is natural that (3.1) reduces to

n∑
k=0

(
n
k

)
(n − k + r)sxn−kDk(1 − x) = n!Bs,r(x). (3.2)

By Lemma 3.1, we have the following theorem.

Theorem 3.1. Let f (x) = asxs + as−1xs−1 + · · · + a0 be a polynomial of degree s. If r is a nonnegative
integer, then

n∑
k=0

(
n
k

)
f (n − k + r)xn−kDk(1 − x) = n!

 s∑
i=0

aiBi,r(x) −
∑

n+1≤ j≤i≤s

aiS r(i + r, j + r)x j

 . (3.3)

Proof. Using (3.1), the theorem is easily obtained by linearity.

Remark 3.2. In fact, here we introduce truncated r-Bell polynomials:

B(n)
s,r (x) =

n∑
k=0

S r(s + r, k + r)xk,

with the exponential generating function

∞∑
s=0

B(n)
s,r (x)

ts

s!
= ex

(∑n
i=1

ti
i!

)
+rt
.

For x = 1, we obtain numbers that have a simple combinatorial interpretation: They are partitions
of a set of size s into k ≤ n disjoint subsets such that the first r elements are in distinct sets. For a
fixed n, these polynomials form a generating set of the space of polynomials of degree at most n. As
the referee pointed out, we can use this notation to give a simpler form to the statement of Lemma 3.1,
which becomes

B(n)
s,r (x) =

1
n!

n∑
k=0

(
n
k

)
(n − k + r)sxn−kDk(1 − x).
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Theorem 3.1 can then be rewritten as follows:

s∑
i=0

aiB(n)
s,r (x) =

1
n!

n∑
k=0

(
n
k

)
f (n − k + r)xn−kDk(1 − x).

We therefore have an equality between two linear combinations of families of polynomials. Suppose
that f (x) =

∑∞
k=0 akxk has an infinite radius of convergence. Passing to the limit, the equality becomes

∞∑
i=0

aiB(n)
s,r (x) =

1
n!

n∑
k=0

(
n
k

)
f (n − k + r)xn−kDk(1 − x).

The identity relates the values of a function and the coefficients of its Taylor expansion.

Remark 3.3. The referee also pointed out that using the truncated r-Bell polynomials and generating
series, the proof of Lemma 3.1 can be simplified. Now, we present his (her) proof. Lemma 3.1 is
equivalent to

∞∑
n=0

B(n)
s,r (x)tn =

∞∑
n=0

(n + r)s (xt)n

n!

∞∑
n=0

Dn(1 − x)
tn

n!
.

The left hand side is

∞∑
n=0

B(n)
s,r (x)tn =

∞∑
n=0

n∑
k=0

S r(s + r, k + r)xktn =

∞∑
k=0

xkS r(s + r, k + r)
tk

1 − t
=

Bs,r(xt)
1 − t

.

By Dobinski’s formula for r-Bell polynomials [14]

Bn,r(x) = e−x
∞∑

k=0

(k + r)n

k!
xk,

we obtain the righthand side

∞∑
n=0

(n + r)s (xt)n

n!

∞∑
n=0

Dn(1 − x)
tn

n!
= Bs,r(xt)ext e−xt

1 − t
.

The two expressions are equal and Lemma 3.1 is proved.

When r = 0, we establish the relationship between the derangement polynomials and the Bell
polynomials.

Corollary 3.1. Let f (x) = asxs + as−1xs−1 + · · · + a0 be a polynomial of degree s, then

n∑
k=0

(
n
k

)
f (n − k)xn−kDk(1 − x) = n!

 s∑
i=0

aiBi(x) −
∑

n+1≤ j≤i≤s

aiS (i, j)x j

 . (3.4)
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Remark 3.4. Theorem 4 in [7] describes a relationship between the derangement numbers and the
Bell numbers, while Corollary 3.1 in our paper is extended to the case of the derangement polynomials
and the Bell polynomials. When x = 1, (3.4) reduces to

n∑
k=0

(
n
k

)
f (n − k)Dk = n!

 s∑
i=0

aiBi −
∑

n+1≤ j≤i≤s

aiS (i, j)

 . (3.5)

In (3.4), when f (x) = 1, we get

n∑
k=0

(
n
k

)
xn−kDk(1 − x) = n!; (3.6)

equivalently, by the binomial inversion formula we have

Dn(x) =
n∑

k=0

(
n
k

)
k!(x − 1)n−k. (3.7)

In fact, if we rewrite (2.1) as

1
1 − t

= ext
∞∑

n=0

Dn(1 − x)
tn

n!
,

we can easily find that (3.6) is a direct consequence of the above identity. When f (x) = x − 1, we get

n∑
k=0

(
n
k

)
(n − k − 1)xn−kDk(1 − x) = n! {B1(x) − B0(x)} = n!(x − 1), n ≥ 2. (3.8)

It can be rewritten as

Dn(x) =
n−2∑
k=0

(
n
k

)
(n − k − 1)(1 − x)n−kDk(x) + n!x, n ≥ 2. (3.9)

When x = 0, (3.9) reduces to (1.5).

Lemma 3.2. If both r and s are nonnegative integers, then we have

n∑
k=0

(
n
k

)
(k − r)sxn−kDk(1 − x)

= n!

 s∑
j=0

(−1) j

(
s
j

)
ns− jB j,r(x) −

∑
n+1≤i≤ j≤s

(−1) j

(
s
j

)
ns− jS r( j + r, i + r)xi

 . (3.10)

Proof. We have

n∑
k=0

(
n
k

)
(k − r)sxn−kDk(1 − x) =

n∑
k=0

(
n
k

)
(n − (n − k + r))sxn−kDk(1 − x)
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=

n∑
k=0

(
n
k

)
xn−kDk(1 − x)

s∑
j=0

(−1) j

(
s
j

)
ns− j(n − k + r) j

=

s∑
j=0

(−1) j

(
s
j

)
ns− j

n∑
k=0

(
n
k

)
(n − k + r) jxn−kDk(1 − x).

By Lemma 3.1, we immediately obtain Lemma 3.2.

Remark 3.5. When n ≥ s, (3.10) reduces to
n∑

k=0

(
n
k

)
(k − r)sxn−kDk(1 − x) = n!

s∑
j=0

(−1) j

(
s
j

)
ns− jB j,r(x), (3.11)

which is a generalized identity of (1.9).

By Lemma 3.2 and simple calculations, we have the following theorem.

Theorem 3.2. Let f (x) = asxs + as−1xs−1 + · · · + a0 be a polynomial of degree s. If r is a nonnegative
integer, then

n∑
k=0

(
n
k

)
f (k − r)xn−kDk(1 − x)

= n!

 ∑
0≤ j≤i≤s

(−1) jai

(
i
j

)
ni− jB j,r(x) −

∑
n+1≤t≤ j≤i≤s

(−1) jai

(
i
j

)
ni− jS r( j + r, t + r)xt

 . (3.12)

Remark 3.6. As discussed in Remark 3.2, we can have the same approach for Theorem 3.2 with the
formula

s∑
i=0

ai

i∑
j=0

(−1) j

(
i
j

)
ni− jB(n)

j,r (x) =
1
n!

n∑
k=0

(
n
k

)
f (k − r)xn−kDk(1 − x).

In particular, suppose that f (x) =
∑∞

k=0 akxk has an infinite radius of convergence. Passing to the limit
we obtain

∞∑
i=0

ai

i∑
j=0

(−1) j

(
i
j

)
ni− jB(n)

j,r (x) =
1
n!

n∑
k=0

(
n
k

)
f (k − r)xn−kDk(1 − x).

The identity also relates the values of a function and the coefficients of its Taylor expansion.

In particular, when r = 0, we have

Corollary 3.2. Let f (x) = asxs + as−1xs−1 + · · · + a0 be a polynomial of degree s, then

n∑
k=0

(
n
k

)
f (k)xn−kDk(1 − x)

= n!

 ∑
0≤ j≤i≤s

(−1) jai

(
i
j

)
ni− jB j(x) −

∑
n+1≤t≤ j≤i≤s

(−1) jai

(
i
j

)
ni− jS ( j, t)xt

 . (3.13)

AIMS Mathematics Volume 9, Issue 1, 2051–2062.



2059

If we take x = 1 in Corollary 3.2, we recover Corollary 5 in [7].
In the following theorems, we establish the identities of the second kind involving the derangement

polynomials and the r-Bell polynomials.

Theorem 3.3. If both r and s are nonnegative integers, then we have

Bn,r(x) =
n∑

j=0

j∑
k=0

(
n
j

)
(r + 1)n− j(−1)kS ( j, k)Dk(1 − x). (3.14)

Proof. If we let u = 1 − et, then

ex(et−1)+rt =
e−xu

1 − u
· e(r+1)t =

∞∑
k=0

Dk(1 − x)
uk

k!

∞∑
k=0

(r + 1)k tk

k!
.

Since

uk

k!
= (−1)k (et − 1)k

k!
= (−1)k

∑
n≥k

S (n, k)
tn

n!
,

we have

ex(et−1)+rt =

∞∑
p=0

tp

p!

p∑
k=0

(−1)kS (p, k)Dk(1 − x) ·
∞∑

q=0

(r + 1)q tq

q!

=

∞∑
n=0

tn

n!

n∑
j=0

(
n
j

)
(r + 1)n− j

j∑
k=0

(−1)kS ( j, k)Dk(1 − x).

From (2.9), we arrive at

∞∑
n=0

tn

n!

n∑
j=0

(
n
j

)
(r + 1)n− j

j∑
k=0

(−1)kS ( j, k)Dk(1 − x) =
∞∑

n=0

Bn,r(x)
tn

n!
.

By comparing the coefficients of tn/n!, we get

Bn,r(x) =
n∑

j=0

(
n
j

)
(r + 1)n− j

j∑
k=0

(−1)kS ( j, k)Dk(1 − x),

which leads to Theorem 3.3.

Taking x = 1 in (3.14), we obtain the explicit expression of the r-Bell numbers Bn,r in terms of the
derangement numbers Dk.

Corollary 3.3. If both r and s are nonnegative integers, then we have

Bn,r =

n∑
j=0

j∑
k=0

(
n
j

)
(r + 1)n− j(−1)kS ( j, k)Dk. (3.15)
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When r = 0 in (3.14), we have the relationship between the derangement polynomials and the Bell
polynomials.

Corollary 3.4. [12] For n ≥ 0, we have

Bn(x) =
n∑

j=0

j∑
k=0

(
n
j

)
(−1)kS ( j, k)Dk(1 − x). (3.16)

Remark 3.7. By the binomial inversion formula, we can rewrite (3.14) as

n∑
k=0

(−1)kS (n, k)Dk(1 − x) =
n∑

j=0

(−1)n− j

(
n
j

)
(r + 1)n− jB j,r(x). (3.17)

By (3.17), we obtain the explicit expression of the derangement polynomials Dn(x) in terms of the
r-Bell polynomials.

Theorem 3.4. If both r and s are nonnegative integers, then we have

Dn(x) =
n∑

k=0

k∑
j=0

(−1)n−k− js(n, k)
(
k
j

)
(r + 1)k− jB j,r(1 − x), (3.18)

where s(n, k) are the Stirling numbers of the first kind.

Proof. Let Tn =
∑n

j=0(−1)n− j
(

n
j

)
(r + 1)n− jB j,r(x) in (3.17). By the orthogonal relationship between two

kinds of Stirling numbers [6],

n∑
j=k

s(n, j)S ( j, k) = δn,k,

where δn,k is the Kronecker symbol defined by δn,k = 1 if n = k and δn,k = 0 otherwise, and one can
obtain

Dn(1 − x) = (−1)n
n∑

k=0

s(n, k)Tk.

Replacing x by 1 − x, we arrive at (3.18).

Taking x = 1 in (3.14), we obtain the explicit expression of the derangement numbers Dn in terms
of the r-Bell numbers B j,r.

Corollary 3.5. For n ≥ 0, we have

Dn =

n∑
k=0

k∑
j=0

(−1)n−k− js(n, k)
(
k
j

)
(r + 1)k− jB j,r, (3.19)

where s(n, k) are the Stirling numbers of the first kind.

Taking r = 0 in (3.14), we have the following corollary.
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Corollary 3.6. [12] For n ≥ 0, we have

Dn(x) =
n∑

k=0

k∑
j=0

(−1)n−k− js(n, k)
(
k
j

)
B j(1 − x), (3.20)

where s(n, k) are the Stirling numbers of the first kind.

Remark 3.8. In [12], Kim et al. obtained Corollaries 3.4 and 3.6 by using the generating function
method. Their method provides us with a good idea to prove Theorems 3.3 and 3.4. In the proof of
Theorem 3.4, we use the binomial inversion formula and the orthogonal relationship of two kinds of
Stirling numbers, which seems more direct.

Remark 3.9. Theorems 3.3 and 3.4 have a common feature, which is that the lefthand member of the
equality is a combinatorial number, while the righthand member of the equality is a somewhat
complicated double sum. For algorithmic motivation, these results show that either derangement
polynomials or r-Bell polynomials can be calculated using the other one. Furthermore, these results
may well have combinatorial consequences, as double sums involve combinatorial numbers, binomial
coefficients, signs and so on. It would therefore be interesting to look for an interpretation of these
two identities from the point of view of combinatorial objects. We will continue our research in the
following paper.

4. Conclusions

We have obtained two kinds of identities involving derangement polynomials and r-Bell
polynomials. The identities of the first kind presented a relation between two linear combinations of
families of polynomials. They also related the values of a function and the coefficients of its Taylor
expansion. The identities of the second kind extended some of the results on derangement
polynomials and Bell polynomials due to Kim et al and had a common feature, which is that the
lefthand member of the equality is a combinatorial number, while the righthand member of the
equality is a somewhat complicated double sum.
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