In this work, we establish the concept of a new class of non-convex functions, namely hyperbolic type preinvex functions. Secondly few algebraic properties of this class are obtained. Further Hermite-Hadamard type integral inequalities are established for this class. We also derive several new inequalities for the functions for which absolute value of first derivative, with exponent greater or equal to one is hyperbolic type preinvexity. The results are obtained by using both the Hölder's inequality and Hölder-Iscan inequality and compared at the end. Several special cases are discussed as applications of the results.
Citation: Sarah Elahi, Muhammad Aslam Noor. Integral inequalities for hyperbolic type preinvex functions[J]. AIMS Mathematics, 2021, 6(9): 10313-10326. doi: 10.3934/math.2021597
[1] | Serap Özcan . Some integral inequalities of Hermite-Hadamard type for multiplicatively preinvex functions. AIMS Mathematics, 2020, 5(2): 1505-1518. doi: 10.3934/math.2020103 |
[2] | Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306 |
[3] | Humaira Kalsoom, Muhammad Amer Latif, Muhammad Idrees, Muhammad Arif, Zabidin Salleh . Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions. AIMS Mathematics, 2021, 6(12): 13291-13310. doi: 10.3934/math.2021769 |
[4] | Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371 |
[5] | Muhammad Tariq, Hijaz Ahmad, Abdul Ghafoor Shaikh, Soubhagya Kumar Sahoo, Khaled Mohamed Khedher, Tuan Nguyen Gia . New fractional integral inequalities for preinvex functions involving Caputo-Fabrizio operator. AIMS Mathematics, 2022, 7(3): 3440-3455. doi: 10.3934/math.2022191 |
[6] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[7] | Sabila Ali, Rana Safdar Ali, Miguel Vivas-Cortez, Shahid Mubeen, Gauhar Rahman, Kottakkaran Sooppy Nisar . Some fractional integral inequalities via h-Godunova-Levin preinvex function. AIMS Mathematics, 2022, 7(8): 13832-13844. doi: 10.3934/math.2022763 |
[8] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[9] | Muhammad Tariq, Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh . Some integral inequalities for generalized preinvex functions with applications. AIMS Mathematics, 2021, 6(12): 13907-13930. doi: 10.3934/math.2021805 |
[10] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
In this work, we establish the concept of a new class of non-convex functions, namely hyperbolic type preinvex functions. Secondly few algebraic properties of this class are obtained. Further Hermite-Hadamard type integral inequalities are established for this class. We also derive several new inequalities for the functions for which absolute value of first derivative, with exponent greater or equal to one is hyperbolic type preinvexity. The results are obtained by using both the Hölder's inequality and Hölder-Iscan inequality and compared at the end. Several special cases are discussed as applications of the results.
The theory of convexity exhibits a significant contribution in the evolution of many branches of science and technology. Over the last few years, several advancements and generalizations of convex sets have been contemplated. One of the remarkable comprehension of convex functions is that of invex functions [1]. Hanson established the invex functions which involves the bifunctional used widely in the study of nonlinear programming involved in mathematical and engineering science. Another comprehension of convex functions is preinvex functions proposed and investigated by Weir and Mond [2]. They related the preinvex function to the formation of sufficient optimality conditions and duality in nonlinear programming. Further Noor [3] demonstrated that a function is preinvex function if it satisfies the Hermite-Hadamard inequality. This result is analogous to the convex functions. For detailed properties, applications and other characteristics of preinvex functions, see [3,4,5,6,7].
Various rectifications of the Hermite-Hadamard inequality for the convex functions and their generalized formations have been obtained by many researchers [3,4,5,6,7,8,9,10,11,12,13,15,16]. In [17], Varosanec established the concept of h-convex functions, from which many other classes of convex functions can be obtained as a special case. Another recent concept of convex functions, called the hyperbolic type convex function is introduced by Toplu et.al. [18].
In this work, by using the concept of [18], we introduce the idea of class of hyperbolic type preinvex functions. Also, we establish some Hermite-Hadamard type integral inequalities for this class. The ideas and techniques of this paper may be the starting point for further research in this dynamic field.
Let X⊂Rn be a nonempty set. Let ϕ:X→R be a continuous function and ζ:X×X→Rn be the bifunctional. In the first place, we remind some fundamental ideas and concepts.
Definition 2.1. [19] A set Xζ is said to be an invex or ζ-connected set corresponding to the bifunctional ζ, if
ω+ϑζ(υ,ω)∈Xζ,∀ω,υ∈Xζ,ϑ∈[0,1]. | (2.1) |
Definition 2.2. [7] A function ϕ described on the invex set Xζ is said to be the preinvex function corresponding to the bifunctional ζ, if
ϕ(ω+ϑζ(υ,ω))≤(1−ϑ)ϕ(ω)+ϑϕ(υ),∀ω,υ∈Xζ,ϑ∈[0,1]. | (2.2) |
The function ϕ is preconcave function if and only if the above inequality is altered in other direction. For ζ(υ,ω)=υ−ω, the preinvex function becomes convex function.
Definition 2.3. [20] A function ϕ:X→R is said to be a convex function, if and only if,
ϕ(ϑω+(1−ϑ)υ)≤(1−ϑ)ϕ(ω)+ϑϕ(υ),∀ω,υ∈X,ϑ∈[0,1]. | (2.3) |
The function ϕ is said to be concave if the inequality reverses. Clearly, every convex function is a preinvex function, but converse may not be true.
Definition 2.4. [17] Let h:J→R be a nonnegative function, h≠0. A nonnegative function ϕ:I→R is said to be h-convex function if
ϕ(ϑω+(1−ϑ)υ)≤h(ϑ)ϕ(ω)+h(1−ϑ)ϕ(υ),∀ω,υ∈I,ϑ∈[0,1]. | (2.4) |
If we take h(ϑ)=ϑ then h-convexity reduces to classical convexity. The h-convex function reduces the h-concave function if the above inequality is reversed.
Definition 2.5. [14] Let h be a non-negative function h≠0 defined as h:[0,1]→R. The positive function ϕ on the invex set Xζ is said to be h-preinvex with respect to the bifunctional ζ, if
ϕ(ω+ϑζ(υ,ω)≤h(1−ϑ)ϕ(ω)+h(ϑ)ϕ(υ)),∀ω,υ∈Xζ,ϑ∈[0,1]. | (2.5) |
If the above inequality reverses, then the function ϕ is said to be h-preconcave. For any ϑ∈[0,1], when ζ(υ,ω)=υ−ω and h(ϑ)=ϑ every h-preinvex function reduces to h-convex function.
For the properties and applications, generalization and other aspects of the preinvex functions in variational inequalities and optimization theory, see [21,22,23,24,25] and references therein for more details.
Definition 2.6. (Hölder-Ïşcan integral inequality [26]). Let r>1 and 1r+1s=1. Consider ϕ and ψ be the real valued functions defined on [ω,υ], where |ϕ|r,|ψ|s are integrable on [ω,υ], then
∫υω|ϕ(χ)ψ(χ)|dχ≤1ω−υ[(∫υω(υ−χ)|ϕ(χ)|rdχ)1r(∫υω(υ−χ)|ψ(χ)|sdχ)1s+(∫υω(χ−ω)|ϕ(χ)|rdχ)1r(∫υω(χ−ω)|ψ(χ)|sdχ)1s]. | (2.6) |
Definition 2.7. An improved form of power-mean integral inequality as a distinct form of the Hölder-Ïşcan inequality is given by [26]. Let ϕ and ψ be two real valued functions described on the interval [ω,υ]. If for any s≥1, the functions |ϕ|,|ϕ||ψ|s are integrable, then
∫υω|ϕ(χ)ψ(χ)|dχ≤1ω−υ[(∫υω(υ−χ)|ϕ(χ)|dχ)1−1r(∫υω(υ−χ)|ϕ(χ)||ψ(χ)|sdχ)1s+(∫υω(χ−ω)|ϕ(χ)|dχ)1−1s(∫υω(χ−ω)|ϕ(χ)||ψ(χ)|sdχ)1s]. | (2.7) |
In this section, we introduce the concept of hyperbolic type preinvex function. First, we will define a hyperbolic type preinvex function and then give some basic theorems relevant to it.
Definition 3.1. Let function ϕ:Xζ⊂R→R, and Xζ be an invex set regarding the bifunctional ζ, then ϕ is said to be hyperbolic type preinvex function if and only if for each ω,υ∈I and ϑ∈[0,1],
ϕ(ω+ϑζ(υ,ω))≤(sinh1−sinhϑsinh1)ϕ(ω)+(sinhϑsinh1)ϕ(υ). | (3.1) |
We denote this class by HP(I).
If we choose ζ(υ,ω)=υ−ω, then the hyperbolic type preinvex function reduces to hyperbolic type convex function.
Theorem 3.1. Let ϕ,ψ∈Xζ=[ω,ω+ζ(υ,ω)]→R be hyperbolic type preinvex function. Then for any scalar κ≥0,kϕ is a hyperbolic type preinvex function and ϕ+ψ is also a hyperbolic preinvex function.
Proof. (i) Let ϕ be a hyperbolic type preinvex function and κ be a non-negative real number. Consider
κϕ(ω+(1−ϑ)ζ(υ,ω))≤κ[(sinhϑsinh1)ϕ(ω)+(sinh1−sinhϑsinh1)ϕ(ω+ζ(υ,ω))]=(sinhϑsinh1)[κϕ(ω)]+(sinh1−sinhϑsinh1)[κϕ(ω+ζ(υ,ω))]=(sinhϑsinh1)(κϕ)(ω)+(sinh1−sinhϑsinh1)(κϕ)(ω+ζ(υ,ω)), |
which completes the proof.
(ii) Let ϕ,ψ be hyperbolic type preinvex functions, then
(ϕ+ψ)(ω+(1−ϑ)ζ(υ,ω))=ϕ(ω+(1−ϑ)ζ(υ,ω))+ψ(ω+(1−ϑ)ζ(υ,ω))≤(sinhϑsinh1)ϕ(ω)+(sinh1−sinhϑsinh1)ϕ(ω+ζ(υ,ω))+(sinhϑsinh1)ψ(ω)+(sinh1−sinhϑsinh1)ψ(ω+ζ(υ,ω))=(sinhϑsinh1)(ϕ+ψ)(ω)+(sinh1−sinhϑsinh1)(ϕ+ψ)(ω+ζ(υ,ω)), |
which completes the proof.
Theorem 3.2. Let ϕ:Xζ→Xζ be a preinvex function and ψ:Xζ→R be a hyperbolic type preinvex function, then ψ∘ϕ:J→R is a hyperbolic type preinvex function.
Proof. For ω,υ∈J and ϑ∈[0,1], consider
ψ∘ϕ(ω+(1−ϑ)ζ(υ,ω))=ψ(ϕ(ω+(1−ϑ)ζ(υ,ω))≤ψ(ϑϕ(ω)+(1−ϑ)ϕ(υ))≤(sinhϑsinh1)ψ(ϕ(ω))+(sinh1−sinhϑsinh1)ψ(ϕ(υ))=(sinhϑsinh1)(ψ∘ϕ)(ω)+(sinh1−sinhϑsinh1)(ψ∘ϕ)(υ), |
which completes the proof.
Theorem 3.3. Let ϕα:Xζ⊂R→R be any family of hyperbolic type preinvex functions and let ϕ(ω)=supαϕα(ω). If I is nonempty such that I={χ∈Xζ:ϕ(χ)<∞}, then I is an invex set regarding the bifunctional ζ and ϕ is a hyperbolic type preinvex function on I.
Proof. Let ϑ∈[0,1] and ω,υ∈I, then
ϕ(ω+(1−ϑ)ζ(υ,ω))=supαϕα(ω+(1−ϑ)ζ(υ,ω))≤supα[(sinhϑsinh1)ϕα(ω)+(sinh1−sinhϑsinh1)ϕα(υ)]≤(sinhϑsinh1)supαϕα(ω)+(sinh1−sinhϑsinh1)supαϕα(υ)=(sinhϑsinh1)ϕα(ω)+(sinh1−sinhϑsinh1)ϕα(υ)<∞. | (3.2) |
This shows that I is an invex set, as it contains every point between any two of its points, and ϕ is a hyperbolic type preinvex function on I.
Theorem 4.1. Let ϕ:L=[ω,ω+ζ(υ,ω)]→R be a hyperbolic type preinvex function. If ζ(υ,ω)>0 then
ϕ(2ω+ζ(υ,ω)2)≤1ζ(υ,ω)∫ω+ζ(υ,ω)ωϕ(z)dz≤cosh1−1sinh1ϕ(ω)+e−1esinh1ϕ(ω+ζ(υ,ω)). |
Proof. Let ϕ be a hyperbolic type preinvex function, then
ϕ(2ω+ζ(υ,ω)2)=ϕ(2ω+ϑζ(υ,ω)+(1−ϑ)ζ(υ,ω)2)=ϕ(ω+ϑζ(υ,ω)2+ω+(1−ϑ)ζ(υ,ω)2)≤sinh(1/2)sinh1ϕ(ω+ϑζ(υ,ω))+sinh1−sinh(1/2)sinh1ϕ(ω+(1−ϑ)ζ(υ,ω)). |
By taking the integral in last inequality over ϑ∈[0,1], we have
ϕ(2ω+ζ(υ,ω)2)≤sinh(1/2)sinh1∫10ϕ(ω+ϑζ(υ,ω)dϑ+sinh1−sinh(1/2)sinh1∫10ϕ(ω+(1−ϑ)ζ(υ,ω))dϑ=sinh(1/2)sinh11ζ(υ,ω)∫ω+ζ(υ,ω)ωϕ(z)dz+sinh1−sinh(1/2)sinh11ζ(υ,ω)∫ω+ζ(υ,ω)ωϕ(z)dz=1ζ(υ,ω)∫ω+ζ(υ,ω)ωϕ(z)dz. |
By using the property of hyperbolic type preinvex function ϕ, we change the variable as z=ω+(1−ϑ)ζ(υ,ω), then
1ζ(υ,ω)∫ω+ζ(υ,ω)ωϕ(z)dz=∫10ϕ(ω+(1−ϑ)ζ(υ,ω))dϑ≤∫10[sinhϑsinh1ϕ(ω)+sinh1−sinhϑsinh1ϕ(ω+ζ(υ,ω))]dϑ=ϕ(ω)sinh1∫10sinhϑdϑ+ϕ(ω+ζ(υ,ω))sinh1∫10(sinh1−sinhϑ)dϑ=cosh1−1sinh1ϕ(ω)+e−1esinh1ϕ(ω+ζ(υ,ω)). |
This completes the proof of the Theorem.
In the following section, we set up some new approximations that rectify the Hermite-Hadamard inequality for the functions whose first derivative in absolute value, raised to some power equal or more than one, is a hyperbolic type preinvex function. We go prove the following Lemma, which is a generalization of a result in [5].
Lemma 5.1. Let Xζ be an open invex subset in R regarding the bifunctional ζ(.,.), and ω,υ∈Xζ with ζ(ω,υ)>0. If ϕ:I→R be a differentiable function such that ϕ′∈L, then the following inequality holds
ϕ(ω)+ϕ(ω+ζ(υ,ω))2−1ζ(υ,ω)∫ω+ζ(υ,ω)ωϕ(χ)dχ=ζ(υ,ω)2∫10(1−2ϑ)ϕ′(ω+(1−ϑ)ζ(υ,ω))dϑ. | (5.1) |
Proof. Consider
∫10(1−2ϑ)ϕ(ω+(1−ϑ)ζ(υ,ω))=ϕ′(ω+(1−ϑ)ζ(υ,ω))−ζ(υ,ω)(1−2ϑ)|10−∫102ϕ(ω+(1−ϑ)ζ(υ,ω))ζ(υ,ω)dϑ=ϕ(ω)+ϕ(ω+ζ(υ,ω))ζ(υ,ω)−2ζ(υ,ω)2∫ω+ζ(υ,ω)ωϕ(χ)dχ, |
after rearranging the terms, the required result is obtained.
Theorem 5.1. Let A be an open invex set in R with respect to ζ(.,.). Let ϕ:A→R be a differential function on A and ω,υ∈A with ζ(ω,υ)>0. If |ϕ′|∈L, then for ϑ∈[0,1],
|ϕ(ω)+ϕ(ω+ζ(υ,ω))2−1ζ(υ,ω)∫ω+ζ(υ,ω)ωϕ(χ)dχ|≤ζ(υ,ω)2(sinh1)[ϕ′(ω)(cosh1−2sinh1+4sinh(1/2)−1)+ϕ′(ω+ζ(υ,ω))(52sinh1−cosh1−4sinh(1/2))+1]. | (5.2) |
Proof. Suppose that ω,υ∈A, which is an open invex set with respect to ζ. Consider Lemma (5.1) and using the hyperbolic type preinvexity of ϕ,
|ϕ(ω)+ϕ(ω+ζ(υ,ω))2−1ζ(υ,ω)∫ω+ζ(υ,ω)ωϕ(χ)dχ|≤|ζ(υ,ω)2∫10(1−2ϑ)ϕ′(ω+(1−ϑ)ζ(υ,ω))dϑ|≤ζ(υ,ω)2∫10|1−2ϑ|[sinhϑsinh1|ϕ′(ω)|+sinh1−sinhϑsinh1|ϕ′(υ)|]dϑ≤ζ(υ,ω)2(|ϕ′(ω)|sinh1∫10|1−2ϑ|sinhϑdϑ+|ϕ′(υ|)sinh1∫10|1−2ϑ|(sinh1−sinhϑ)dϑ)=ζ(υ,ω)2sinh1(|ϕ′(ω)|K1+|ϕ′(υ)|K2), |
where
K1=∫10|1−2ϑ|sinhϑdϑ=cosh1−2sinh1+4sinh(1/2)−1,
K2=∫10|1−2ϑ|(sinh1−sinhϑ)=52sinh1−cosh1−4sinh(1/2))+1.
This completes the proof of the Theorem.
Theorem 5.2. Let ϕ:A⊆R→R be a differentiable function on A and ϕ′∈L. If for some s>1, such that 1/r+1/s=1 the function |ϕ′|s is a hyperbolic type preinvex function on A then
|ϕ(ω)+ϕ(ω+ζ(υ,ω))2−1ζ(υ,ω)∫ω+ζ(υ,ω)ωϕ(χ)dχ|≤ζ(υ,ω)2(1r+1)1/r[|ϕ′(ω)|ssinh1(cosh1−1)+|ϕ′(υ)|ssinh1(sinh1−cosh1+1)]1/s, | (5.3) |
for all υ,ϑ∈A with ζ(υ,ω)>0.
Proof. Considering the Lemma (5.1) and applying the Hölder's integral inequality,
|ϕ(ω)+ϕ(ω+ζ(υ,ω))2−1ζ(υ,ω)∫ω+ζ(υ,ω)ωϕ(χ)dχ|≤|ζ(υ,ω)2∫10(1−2ϑ)ϕ′(ω+(1−ϑ)ζ(υ,ω))dϑ|≤ζ(υ,ω)2∫10|1−2ϑ||ϕ′(ω+(1−ϑ)ζ(υ,ω))|dϑ≤ζ(υ,ω)2(∫10|1−2ϑ|rdϑ)1/r(∫10|ϕ′(ω+(1−ϑ)ζ(υ,ω))|sdϑ)1/s≤ζ(υ,ω)2(12(r+1))1/r[∫10(sinhϑsinh1|ϕ′(ω)|s+sinh1−sinhϑsinh1|ϕ′(υ)|s)dϑ]1/s=ζ(υ,ω)2(12(r+1))1/r[|ϕ′(ω)|ssinh1(cosh1−1)+|ϕ′(υ)|ssinh1(sinh1−cosh1+1)]1/s, |
which completes the proof.
Theorem 5.3. Let ϕ:A⊆R→R be a differentiable function on A and ϕ′∈L. If for some s≥1, the function |ϕ′|s is a hyperbolic type preinvex function on A then for ϑ∈[0,1],
|ϕ(ω)+ϕ(ω+ζ(υ,ω))2−1ζ(υ,ω)∫ω+ζ(υ,ω)ωϕ(χ)dχ|≤ζ(υ,ω)2(12)1−1/s×[|ϕ′(ω)|ssinh1(2(e−1)√e−e2−32e−1)+|ϕ′(υ)|ssinh1(3e2−74e+2√2−2√e+1)]1/s, | (5.4) |
for all υ,ϑ∈A with ζ(υ,ω)>0.
Proof. We assume that s>1. Consider (5.1), using Hölder's integral inequality and the property of |ϕ′|s being a hyperbolic type preinvex function, we have
|ϕ(ω)+ϕ(ω+ζ(υ,ω))2−1ζ(υ,ω)∫ω+ζ(υ,ω)ωϕ(χ)dχ|≤|ζ(υ,ω)2∫10(1−2ϑ)ϕ′(ω+(1−ϑ)ζ(υ,ω))dϑ|≤ζ(υ,ω)2∫10|1−2ϑ||ϕ′(ω+(1−ϑ)ζ(υ,ω))|dϑ≤ζ(υ,ω)2(∫10|1−2ϑ|dϑ)1−1/s(∫10|1−2ϑ||ϕ′(ω+(1−ϑ)ζ(υ,ω))|sdϑ)1/s=ζ(υ,ω)2(12)1−1/s[∫10|1−2ϑ|(sinhϑsinh1|ϕ′(ω)|s+sinh1−sinhϑsinh1|ϕ′(υ)|s)dϑ]1/s=ζ(υ,ω)2(12)1−1/s[|ϕ′(ω)|ssinh1∫10|1−2ϑ|sinhϑdϑ+|ϕ′(υ)|ssinh1∫10|1−2ϑ|(sinh1−sinhϑ)dϑ]1/s=ζ(υ,ω)2sinh1(12)1−1/s[|ϕ′(ω)|sJ1+|ϕ′(υ)|sJ2]1/s, |
where
J1=∫10|1−2ϑ|sinhϑdϑ=2(e−1)√e−e2−32e−1
J2=∫10|1−2ϑ|(sinh1−sinhϑ)dϑ=3e2−74e+2√2−2√e+1.
For s=1, we use the estimates from the Theorem (5.1), which also follows stepwise the above approximations. This completes the proof.
Corollary 5.1. Under the assumption of above Theorem with s=1, we obtain the result of Theorem (5.1).
In next Theorem we will use the Hölder-Işcan integral inequality to prove our results. The new results obtained shows a better approximation than (5.3).
Theorem 5.4. Let ϕ:A⊆R→R be a differentiable function on A and ϕ′∈L. If for some s>1, such that 1/r+1/s=1 the function |ϕ′|s is a hyperbolic type preinvex function on A then
|ϕ(ω)+ϕ(ω+ζ(υ,ω))2−1ζ(υ,ω)∫ω+ζ(υ,ω)ωϕ(χ)dχ|≤ζ(υ,ω)2(12(r+1))1/r[(|ϕ′(ω)|ssinh1(1e)+|ϕ′(υ)|ssinh1(e2−54e))1/s+(|ϕ′(ω)|ssinh1(e2−2e−12e)+|ϕ′(υ)|ssinh1(−e2−2e+14e))1/s], | (5.5) |
for all υ,ϑ∈A with ζ(υ,ω)>0.
Proof. Consider Lemma (5.1) and applying Hölder-Iscan integral inequality
|ϕ(ω)+ϕ(ω+ζ(υ,ω))2−1ζ(υ,ω)∫ω+ζ(υ,ω)ωϕ(χ)dχ|≤ζ(υ,ω)2∫10|1−2ϑ||ϕ′(ω+(1−ϑ)ζ(υ,ω))|dϑ≤ζ(υ,ω)2[(∫10ϑ|1−2ϑ|rdϑ)1/r(∫10ϑ|ϕ′(ω+(1−ϑ)ζ(υ,ω))|sdϑ)1/s+(∫10(1−ϑ)|1−2ϑ|rdϑ)1/r(∫10(1−ϑ)|ϕ′(ω+(1−ϑ)ζ(υ,ω))|sdϑ)1/s]≤ζ(υ,ω)2[(∫10ϑ|1−2ϑ|rdϑ)1/r(∫10ϑ(sinhϑsinh1|ϕ′(ω)|s+sinh1−sinhϑsinh1|ϕ′(υ)|s)dϑ)1/s+(∫10(1−ϑ)|1−2ϑ|rdϑ)1/r×(∫10(1−ϑ)(sinhϑsinh1|ϕ′(ω)|s+sinh1−sinhϑsinh1|ϕ′(υ)|s)dϑ)1/s]≤ζ(υ,ω)2[(∫10ϑ|1−2ϑ|rdϑ)1/r×(|ϕ′(ω)|ssinh1∫10ϑsinhϑdϑ+|ϕ′(υ)|ssinh1∫10ϑ(sinh1−sinhϑ)dϑ)1/s |
+(∫10(1−ϑ)|1−2ϑ|rdϑ)1/r×(|ϕ′(ω)|ssinh1∫10(1−ϑ)sinhϑdϑ+|ϕ′(υ)|ssinh1∫10(1−ϑ)(sinh1−sinhϑ)dϑ)1/s]=ζ(υ,ω)2sinh1(12(p+1))1/p[(|ϕ′(ω)|sI1+|ϕ′(υ)|sI2)1/s+(|ϕ′(ω)|sI3+|ϕ′(υ)|sI4)1/s], | (5.6) |
where
∫10ϑ|1−2ϑ|rdϑ=∫10(1−ϑ)|1−2ϑ|rdϑ=1/2(r+1)I1=∫10ϑsinhϑdϑ=1/eI2=∫10ϑ(sinh1−sinhϑ)dϑ=(e2−5)/(4e)I3=∫10(1−ϑ)sinhϑdϑ=(e2−2e−1)/(2e)I4=∫10(1−ϑ)(sinh1−sinhϑ)dϑ=(−e2+4e+1)/4e. |
This completes the proof of the Theorem.
Remark 5.1. The results in inequality (5.5) are better then the results in inequality (5.3). Using the concavity of function f:[0,∞)→R,f(x)=xα, 0<α≤1, then
ζ(υ,ω)2(12(r+1))1/r[(|ϕ′(ω)|ssinh1(1e)+|ϕ′(υ)|ssinh1(e2−54e))1/s+(|ϕ′(ω)|ssinh1(e2−2e−12e)+|ϕ′(υ)|ssinh1(−e2−2e+14e))1/s]≤2ζ(υ,ω)2(12(r+1))1/r(12|ϕ′(ω)|ssinh1(e−1)22e+|ϕ′(υ)|ssinh1e−1e)1/s=ζ(υ,ω)2(1r+1)1/r[|ϕ′(ω)|ssinh1(cosh1−1)+|ϕ′(υ)|ssinh1(sinh1−cosh1+1)]1/s, |
whereas
cosh1−1=(e−1)22esinh1−cosh1+1=e−1e. |
Theorem 5.5. Let ϕ:A⊆R→R be a differentiable function on A and ϕ′∈L. If for some s≥1, the function |ϕ′|s is a hyperbolic type preinvex function on A then
|ϕ(ω)+ϕ(ω+ζ(υ,ω))2−1ζ(υ,ω)∫ω+ζ(υ,ω)ωϕ(χ)dχ|≤ζ(υ,ω)2(12)2−2/s×[(|ϕ′(ω)|ssinh1(3√e−3e2−52e+5√e−5)+|ϕ′(υ)|ssinh1(198e+13e8−5√e−3√e+5))1/s+(|ϕ′(ω)|ssinh1(4e+e−5√e−3√e+4)+|ϕ′(υ)|ssinh1(5√e−7e8+338e+3√e−4))1/s] | (5.7) |
for all υ,ϑ∈A with ζ(υ,ω)>0.
Proof. Let |ϕ′|s be a hyperbolic type preinvex function and take s>1. Consider Lemma (5.1) and using the power-mean integral inequality, we obtain
|ϕ(ω)+ϕ(ω+ζ(υ,ω))2−1ζ(υ,ω)∫ω+ζ(υ,ω)ωϕ(χ)dχ|≤ζ(υ,ω)2∫10|(1−2ϑ)||ϕ′(ω+(1−ϑ)ζ(υ,ω))|dϑ≤ζ(υ,ω)2[(∫10(1−ϑ)|(1−2ϑ)|dϑ)1−1/s(∫10(1−ϑ)|(1−2ϑ)||ϕ′(ω+(1−ϑ)ζ(υ,ω))|sdϑ)1/s+(∫10ϑ|(1−2ϑ)|dϑ)1−1/s(∫10ϑ|(1−2ϑ)||ϕ′(ω+(1−ϑ)ζ(υ,ω))|sdϑ)1/s]≤ζ(υ,ω)2(∫10(1−ϑ)|(1−2ϑ)|dϑ)1−1/s×(∫10(1−ϑ)|(1−2ϑ)|[sinhϑsinh1|ϕ′(ω)|s+sinh1−sinhϑsinh1|ϕ′(υ)|s])1/s+ζ(υ,ω)2(∫10ϑ|(1−2ϑ)|dϑ)1−1/s×(∫10ϑ|(1−2ϑ)|[sinhϑsinh1|ϕ′(ω)|s+sinh1−sinhϑsinh1|ϕ′(υ)|s]dϑ)1/s |
=ζ(υ,ω)2(14)1−1/s(|ϕ′(ω)|ssinh1∫10(1−ϑ)|(1−2ϑ)|sinhϑdϑ+|ϕ′(υ)|ssinh1∫10(1−ϑ)|(1−2ϑ)|(sinh1−sinhϑ)dϑ)1/s+ζ(υ,ω)2(14)1−1/s(|ϕ′(ω)|ssinh1∫10ϑ|(1−2ϑ)|sinhϑdϑ+|ϕ′(υ)|ssinh1∫10ϑ|(1−2ϑ)|(sinh1−sinhϑ)dϑ)1/s=ζ(υ,ω)2(12)2−2/s[(|ϕ′(ω)|ssinh1K1+|ϕ′(υ)|ssinh1K2)1/s+(|ϕ′(ω)|ssinh1K3+|ϕ′(υ)|ssinh1K4)1/s], | (5.8) |
where
∫10(1−ϑ)|(1−2ϑ)|dϑ=∫10ϑ|(1−2ϑ)|dϑ=1/4
K1=∫10(1−ϑ)|(1−2ϑ)|sinhϑdϑ=3√e−3e2−52e+5√e−5
K2=∫10(1−ϑ)|(1−2ϑ)|(sinh1−sinhϑ)dϑ=198e+13e8−5√e−3√e+5
K3=∫10ϑ|(1−2ϑ)|sinhϑdϑ=4e+e−5√e−3√e+4
K4=∫10ϑ|(1−2ϑ)|(sinh1−sinhϑ)dϑ=5√e−7e8+338e+3√e−4.
For s=1, we use the approximations from the Theorem (5.3), which also follows above estimates step by step. Hence it completes the proof.
Remark 5.2. The inequality (5.7) gives better results than the inequality (5.4). Consider (5.7) and using the concavity of the function f:[0,∞)→R,f(x)=xα, 0<α≤1, then
ζ(υ,ω)2(12)2−2/s[(|ϕ′(ω)|ssinh1(3√e−3e2−52e+5√e−5)+|ϕ′(υ)|ssinh1(198e+13e8−5√e−3√e+5))1/s+(|ϕ′(ω)|ssinh1(4e+e−5√e−3√e+4)+|ϕ′(υ)|ssinh1(5√e−7e8+338e+3√e−4))1/s]≤2ζ(υ,ω)2(12)2−2/s[12(|ϕ′(ω)|ssinh1(3√e−3e2−52e+5√e−5)+|ϕ′(υ)|ssinh1(198e+13e8−5√e−3√e+5)) |
+12(|ϕ′(ω)|ssinh1(4e+e−5√e−3√e+4)+|ϕ′(υ)|ssinh1(5√e−7e8+338e+3√e−4))]1/s=ζ(υ,ω)2(12)1−1/s×[|ϕ′(ω)|ssinh1(2(e−1)√e−e2−32e−1)+|ϕ′(υ)|ssinh1(3e2−74e+2√2−2√e+1)]1/s, |
which completes the proof.
In this work, we have introduced the concept of hyperbolic type preinvex functions. For this function few elementary algebraic properties are being satisfied. The Hermite-Hadamard inequality for this function has been introduced. Several inequalities for the differentiable hyperbolic type preinvex functions are obtained. To establish these inequalities the Holder inequality and Holder-Iscan inequalities are being used. It is shown that the results obtained by applying the Holder-Iscan inequality provide better estimate than Holder's inequality. The presented results are more generalized and quite exciting for the further development of this topic.
The authors would like to thank Imdat Işcan, Department of Mathematics, Faculty of Arts and Sciences, Giresun University, 28200, Giresun, Turkey, for constructive assessment/remarks. Authors are grateful to the referees for their very constructive suggestions and valuable comments.
[1] |
M. A. Hanson, On Sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545–550. doi: 10.1016/0022-247X(81)90123-2
![]() |
[2] |
T. Weir, B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. doi: 10.1016/0022-247X(88)90113-8
![]() |
[3] | M. A. Noor, Hermite Hadramrd Integral Inequalities for Log-preinvex functions, J. Math. Anal. Approx. Theory, 2 (2007), 126–131. |
[4] |
T. Antczak, Mean value in invexity analysis, Nonl. Anal., 60 (2005), 1473–1484. doi: 10.1016/j.na.2004.11.005
![]() |
[5] | A. Barani, A. G. Ghazanfari, S. S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal. Appl., 247 (2012), 2012. |
[6] | J. Hadamard, Etude sur les proprietes des fonctions entieres e.t en particulier dune fonction considereepar Riemann, J. Math. Pures Appl., 58 (1983), 171–215. |
[7] |
S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. doi: 10.1006/jmaa.1995.1057
![]() |
[8] | S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, App. Math. Lett., 11 (1998), 91–95. |
[9] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Victoria University, 2000. |
[10] | S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. |
[11] | S. S. Dragomir, S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Math., 32 (1999), 687–696. |
[12] |
A. Guessab, G. Schmeisser, Sharp integral inequalities of the Hermite–Hadamard type, J. Approx. Th., 115 (2002), 260–288. doi: 10.1006/jath.2001.3658
![]() |
[13] | U. S. Kirmaci, M. K. Bakula, M. E. Ozdemir, J. Pecaric, Hadamard-type inequalities fors-convex functions, Appl. Math. Comput., 193 (2007), 26–35. |
[14] |
M. Matloka, On some Hadamard-type inequalities for (h1,h2)-preinvex functions on the co-ordinates, J. Inequal. Appl., 2013 (2013), 227. doi: 10.1186/1029-242X-2013-227
![]() |
[15] | A. Guessab, G. Schmeisser, Convexity results and sharp error estimates in approximate multivariate integration, Math. Comp., 73 (2004), 1365–1384. |
[16] |
A. Guessab, G. Schmeisser, Sharp error estimates for interpolatory approximation on convex polytopes, SIAM J. Numer. Anal., 43 (2005), 909–923. doi: 10.1137/S0036142903435958
![]() |
[17] | S. Varosanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. |
[18] | T. Toplu, I. Iscan, M. Kadakal, Hyperbolic type convexity and some new inequalities, Honam Math. J., 42 (2020), 301–318. |
[19] | A. Ben-Israel, B. Mond, What is invexity? J. Aust. Math. Soc. Ser. B, 28 (1986), 1–9. |
[20] | R. T. Rockafellar, Convex Analysis, Princeton Uni. Press. Princeton, NJ, 1970. |
[21] |
M. A. Noor, K. I. Noor, New classes of strongly exponentially preinvex functions, AIMS Math., 4 (2019), 1554–1568. doi: 10.3934/math.2019.6.1554
![]() |
[22] |
M. A. Noor, K. I. Noor, Higher order strongly general convex functions and variational inequalities, AIMS Math., 5 (2020), 3646–3663. doi: 10.3934/math.2020236
![]() |
[23] |
M. A. Noor, K. I. Noor, M. T. Rassias, New trends in general variational inequalities, Acta Applicand. Math., 170 (2020), 981–1046. doi: 10.1007/s10440-020-00366-2
![]() |
[24] | M. Z. Sarikaya, A. Saglam, H. Yildirim, On some Hadamard-type inequalities for h−convex functons, J. Math. Inequal., 2 (2008), 335–341. |
[25] | A. A. Shaikh, A. Iqbal, C. K. Mondal, Some results on φ–convex functions and geodesic φ-convex functions, Differ. Geom. Dyn. Syst., 20 (2018), 159–170. |
[26] | I. Iscan, New refinements for integral and sum forms of Holder inequality, J. Inequal. Appl., 304 (2019), 1–11. |