Research article

Generalization of some fractional versions of Hadamard inequalities via exponentially (α,hm)-convex functions

  • Received: 10 March 2021 Accepted: 11 June 2021 Published: 16 June 2021
  • MSC : 26A51, 26A33, 33E12

  • In this paper we give Hadamard inequalities for exponentially (α,hm)-convex functions using Riemann-Liouville fractional integrals for strictly increasing function. Results for Riemann-Liouville fractional integrals of convex, m-convex, s-convex, (α,m)-convex, (s,m)-convex, (hm)-convex, (α,hm)-convex, exponentially convex, exponentially m-convex, exponentially s-convex, exponentially (s,m)-convex, exponentially (hm)-convex, exponentially (α,hm)-convex functions are particular cases of the results of this paper. The error estimations of these inequalities by using two fractional integral identities are also given.

    Citation: Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung. Generalization of some fractional versions of Hadamard inequalities via exponentially (α,hm)-convex functions[J]. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521

    Related Papers:

    [1] Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096
    [2] Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661
    [3] Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386
    [4] Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379
    [5] Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab . $ k $-Fractional inequalities associated with a generalized convexity. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460
    [6] Atiq Ur Rehman, Ghulam Farid, Sidra Bibi, Chahn Yong Jung, Shin Min Kang . $k$-fractional integral inequalities of Hadamard type for exponentially $(s, m)$-convex functions. AIMS Mathematics, 2021, 6(1): 882-892. doi: 10.3934/math.2021052
    [7] Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297
    [8] Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273
    [9] Moquddsa Zahra, Muhammad Ashraf, Ghulam Farid, Kamsing Nonlaopon . Inequalities for unified integral operators of generalized refined convex functions. AIMS Mathematics, 2022, 7(4): 6218-6233. doi: 10.3934/math.2022346
    [10] Wenfeng He, Ghulam Farid, Kahkashan Mahreen, Moquddsa Zahra, Nana Chen . On an integral and consequent fractional integral operators via generalized convexity. AIMS Mathematics, 2020, 5(6): 7632-7648. doi: 10.3934/math.2020488
  • In this paper we give Hadamard inequalities for exponentially (α,hm)-convex functions using Riemann-Liouville fractional integrals for strictly increasing function. Results for Riemann-Liouville fractional integrals of convex, m-convex, s-convex, (α,m)-convex, (s,m)-convex, (hm)-convex, (α,hm)-convex, exponentially convex, exponentially m-convex, exponentially s-convex, exponentially (s,m)-convex, exponentially (hm)-convex, exponentially (α,hm)-convex functions are particular cases of the results of this paper. The error estimations of these inequalities by using two fractional integral identities are also given.



    Fractional calculus is the study of integrals and derivatives of any arbitrary real or complex order. Its origin goes far back in 1695 when Leibniz and l'Hospital started discussion on the meaning of semi-derivative. The 17th century witnessed the attention of this debate by many researchers working in the field of mathematics. Seeking in the formulation of fractional derivative/integral formulas Riemann and Liouville obtained their definitions with complementary functions. Later by Sonin and Letnikov along with others worked out the final form of fractional integral operator named Riemann-Liouville fractional integral/derivative operator, see [1,2]. After this definition of fractional integral/derivative operator the subject of fractional calculus become prominent in generalizing and extending the concepts of calculus and their applications. From the last few years, use of fractional calculus is also followed by scientists from various fields of engineering, sciences and economics. Some fractional integral operators have also been introduced in recent past see [3,4,5]. By applying fractional operators, extensive research has been carried out to establish various inequalities with motivating results, see [6,7,8,9].

    Definition 1. [10] Let φL1[ϱ1,ϱ2]. Then left-sided and right-sided Riemann-Liouville fractional integrals of a function φ of order ζ where (ζ)>0 are given by

    Iζϱ+1φ(x)=1Γ(ζ)xϱ1(xt)ζ1φ(t)dt,x>ϱ1, (1.1)

    and

    Iζϱ2φ(x)=1Γ(ζ)ϱ2x(tx)ζ1φ(t)dt,x<ϱ2. (1.2)

    The k-analogue of the Riemann-Liouville fractional integral is defined as follows:

    Definition 2. [11] Let φL1[ϱ1,ϱ2]. Then k-fractional Riemann-Liouville integrals of order ζ where (ζ)>0, k>0, are given by

    kIζϱ+1φ(x)=1kΓk(ζ)xϱ1(xt)ζk1φ(t)dt,x>ϱ1, (1.3)

    and

    kIζϱ2φ(x)=1kΓk(ζ)ϱ2x(tx)ζk1φ(t)dt,x<ϱ2, (1.4)

    where Γk(.) is defined by [12]:

    Γk(ζ)=0tζ1etkkdt,(ζ)>0.

    The generalized Riemann-Liouville fractional integrals via a monotonically increasing function are given as follows:

    Definition 3. [1] Let φL1[ϱ1,ϱ2]. Also let ψ be an increasing and positive monotone function on (ϱ1,ϱ2], further ψ has a continuous derivative ψ on (ϱ1,ϱ2). The left as well as right fractional integral operators of order ζ where (ζ)>0 of φ with respect to ψ on [ϱ1,ϱ2] are given by

    ψIζϱ+1φ(x)=1Γ(ζ)xϱ1ψ(t)(ψ(x)ψ(t))ζ1φ(t)dt,x>ϱ1, (1.5)

    and

    ψIζϱ2φ(x)=1Γ(ζ)ϱ2xψ(t)(ψ(t)ψ(x))ζ1φ(t)dt,x<ϱ2. (1.6)

    The k-analogues of the above generalized Riemann-Liouville fractional integrals are defined as follows:

    Definition 4. [13] Let φL1[ϱ1,ϱ2]. Also let ψ be an increasing and positive monotone function on (ϱ1,ϱ2], further ψ has a continuous derivative ψ on (ϱ1,ϱ2). Therefore left as well as right k-fractional integral operators of order ζ where (ζ)>0 of φ with respect to ψ on [ϱ1,ϱ2] are given by

    ψkIζϱ+1φ(x)=1kΓk(ζ)xϱ1ψ(t)(ψ(x)ψ(t))ζk1φ(t)dt,x>ϱ1, (1.7)

    and

    ψkIζϱ2φ(x)=1kΓk(ζ)ϱ2xψ(t)(ψ(t)ψ(x))ζk1φ(t)dt,x<ϱ2. (1.8)

    For a detailed study of fractional integrals we refer the readers to [2,14]. Next, we give the definition of exponentially (α,hm)-convex function as follows:

    Definition 5. [15] Let JR be an interval containing (0,1) and let h:JR be a non-negative function. A function φ:[0,ϱ2]R is called exponentially (α,hm)-convex function, if for all x,y[0,ϱ2], t(0,1), (α,m) (0,1]2 and ηR one has

    φ(tx+m(1t)y)h(tα)φ(x)eηx+mh(1tα)φ(y)eηy. (1.9)

    The above definition provides some kinds of exponential convexities as follows:

    Remark 1. (i) If we substitute α=1 and h(t)=ts, then exponentially (s,m)-convex function in the second sense introduced by Qiang et al. in [16] can be obtained.

    (ii) If we substitute α=m=1 and h(t)=ts, then exponentially s-convex function introduced by Mehreen et al. in [17] can be obtained.

    (iii) If we substitute α=m=1 and h(t)=t, then exponentially convex function introduced by Awan et al. in [18] can be obtained.

    In [19,20], the following Hadamard inequality for convex function φ:[ϱ1,ϱ2]R is studied:

    φ(ϱ1+ϱ22)1ϱ2ϱ1ϱ2ϱ1φ(ν)dνφ(ϱ1)+φ(ϱ2)2. (1.10)

    If this inequality holds in reverse order, then the function f is called concave function. This inequality was first published by Hermite in 1883 and later Hadamard proved it independently in 1893. Since its occurrence, it is in focus of researchers and had/has been studied for different kinds of convex functions. In past two decades it is generalized by using various types of fractional integral operators and authors have investigated a lot of versions of this inequality, see [21,22,23] and references therein. Our aim in this article is to apply the generalized Riemann-Liouville fractional integrals with monotonically increasing function to obtain the Hadamard inequalities for exponentially (α,hm)-convex functions. Two fractional integral identities are applied to get the error bounds of Hadamard type inequalities. Following two theorems give the fractional versions of Hadamard inequalities for Riemann-Liouville fractional integrals.

    Theorem 1. [24] Let φ:[ϱ1,ϱ2]R be a positive function with 0ϱ1<ϱ2 and φL1[ϱ1,ϱ2]. If φ is a convex function on [ϱ1,ϱ2], then the following fractional integral inequality holds:

    φ(ϱ1+ϱ22)Γ(ζ+1)2(ϱ2ϱ1)ζ[Iζϱ+1φ(ϱ2)+Iζϱ2φ(ϱ1)]φ(ϱ1)+φ(ϱ2)2, (1.11)

    with ζ>0.

    Theorem 2. [25] Under the assumptions of Theorem 1, the following fractional integral inequality holds:

    φ(ϱ1+ϱ22)2ζ1Γ(ζ+1)(ϱ2ϱ1)ζ[Iζ(ϱ1+ϱ22)+φ(ϱ2)+Iζ(ϱ1+ϱ22)φ(ϱ1)]φ(ϱ1)+φ(ϱ2)2, (1.12)

    with ζ>0.

    The following theorem gives an error estimation of the inequality (1.11).

    Theorem 3. [24] Let φ:[ϱ1,ϱ2]R be a differentiable mapping on (ϱ1,ϱ2) with ϱ1<ϱ2. If |φ| is convex on [ϱ1,ϱ2], then the following fractional integral inequality holds:

    |φ(ϱ1)+φ(ϱ2)2Γ(ζ+1)2(ϱ2ϱ1)ζ[Iζϱ1+φ(ϱ2)+Iζϱ2φ(ϱ1)]|ϱ2ϱ12(ζ+1)(112ζ)[|φ(ϱ1)|+|φ(ϱ2)|]. (1.13)

    The k-analogues of Theorems 1 and 2 are given in the next two results.

    Theorem 4. [26] Let φ:[ϱ1,ϱ2]R be a positive function with 0ϱ1<ϱ2. If φ is a convex function on [ϱ1,ϱ2], then the following inequality for k-fractional integral holds:

    φ(ϱ1+ϱ22)Γk(ζ+k)2(ϱ2ϱ1)ζk[kIζϱ+1φ(ϱ2)+kIζϱ2φ(ϱ1)]φ(ϱ1)+f(ϱ2)2, (1.14)

    with ζ>0.

    Theorem 5. [27] Under the assumptions of Theorem 4, the following inequality for k-fractional integral holds:

    φ(ϱ1+ϱ22)2ζk1Γk(ζ+k)(ϱ2ϱ1)ζk[kIζ(ϱ1+ϱ22)+φ(ϱ2)+kIζ(ϱ1+ϱ22)φ(ϱ1)]φ(ϱ1)+φ(ϱ2)2, (1.15)

    with ζ>0.

    An error estimation of the inequality (1.14) is given in the following theorem.

    Theorem 6. [26] Let φ:[ϱ1,ϱ2]R be a differentiable mapping on (ϱ1,ϱ2) with 0ϱ1<ϱ2. If |φ| is convex on [ϱ1,ϱ2], then the following inequality for k-fractional integral holds:

    |φ(ϱ1)+φ(ϱ2)2Γk(ζ+k)2(ϱ2ϱ1)ζk[kIζϱ1+φ(ϱ2)+kIζϱ2φ(ϱ1)]|ϱ2ϱ12(ζk+1)(112ζk)[|φ(ϱ1)|+|φ(ϱ2)|]. (1.16)

    The rest of the paper is organized as follows: In Section 2, we establish Hadamard inequalities for generalized Riemann-Liouville fractional integrals of exponentially (α,hm)-convex functions. The special cases, associated with previously published results are presented in terms of their generalizations. In Section 3, using two fractional integral identities, the error bounds of fractional Hadamard inequalities are established. Inequalities proved in this article are in line with the results established in [24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39].

    We give two fractional versions of the Hadamard inequality for exponentially (α,hm)-convex functions, first one is given in the following theorem.

    Theorem 7. Let φ:[ϱ1,ϱ2]R be a positive function with 0ϱ1<mϱ2 and φL1[ϱ1,ϱ2]. Also suppose that φ is exponentially (α,hm)-convex function on [ϱ1,ϱ2], such that ϱ1m, ϱ2m2 [ϱ1,ϱ2]. Then, for ηR, k>0 and (α,m)(0,1]2, the following k-fractional integral inequality holds for operators given in (1.7) and (1.8):

    φ(ϱ1+mϱ22)Γk(ζ+k)(mϱ2ϱ1)ζk[g1(η)h(12α)ψkIζψ1(ϱ1)+(φψ)(ψ1(mϱ2))+g2(η)H(12)×mζk+1ψkIζψ1(ϱ2)(φψ)(ψ1(ϱ1m))]ζk[g1(η)h(12α)φ(ϱ1)eηϱ1+mg2(η)H(12)φ(ϱ2)eηϱ2]10h(tα)tζk1dt+mζk[g1(η)h(12α)φ(ϱ2)eηϱ2+mg2(η)H(12)φ(ϱ1m2)eηϱ1m2]10tζk1H(t)dt, (2.1)

    where ζ>0, H(t)=h(1tα) and

    g1(η)={eηmϱ2if η<0eηϱ1if η>0,g2(η)={eηϱ2if η<0eηϱ1mif η>0.

    Proof. From exponentially (α,hm)-convexity of φ, the following inequality holds:

    φ(x+my2)h(12α)φ(x)eηx+mh(2α12α)φ(y)eηy. (2.2)

    By setting x=ϱ1t+m(1t)ϱ2, y=ϱ1m(1t)+ϱ2t, t[0,1], in (2.2) and integrating the resulting inequality over [0,1] after multiplying with tζk1, we get

    kζφ(ϱ1+mϱ22)h(12α)10φ(ϱ1t+m(1t)ϱ2)eη(ϱ1t+m(1t)ϱ2)tζk1dt+mH(12)10φ(ϱ1m(1t)+ϱ2t)eη(ϱ1m(1t)+ϱ2t)tζk1dt. (2.3)

    By setting ψ(u)=ϱ1t+m(1t)ϱ2 and ψ(v)=ϱ1m(1t)+ϱ2t in (2.3), we obtain

    kζφ(ϱ1+mϱ22)1(mϱ2ϱ1)ζk[h(12α)ψ1(mϱ2)ψ1(ϱ1)φ(ψ(u))eηψ(u)(mϱ2ψ(u))ζk1d(ψ(u))+mH(12)ψ1(ϱ2)ψ1(ϱ1m)φ(ψ(v))eηψ(v)(ψ(v)ϱ1m)ζk1d(ψ(v))]. (2.4)

    Further, taking the maximum value of exponential function and using Definition 4, we get

    φ(ϱ1+mϱ22)Γk(ζ+k)(mϱ2ϱ1)ζk[g1(η)h(12α)ψkIζψ1(ϱ1)+(φψ)(ψ1(mϱ2))+g2(η)mζk+1H(12)ψkIζψ1(ϱ2)(φψ)(ψ1(ϱ1m))].

    Again using exponentially (α,hm)-convexity of φ, for t[0,1], we have

    g1(η)h(12α)φ(ϱ1t+m(1t)ϱ2)+mg2(η)H(12)φ(ϱ1m(1t)+ϱ2t)h(tα)[g1(η)h(12α)φ(ϱ1)eηϱ1+mg2(η)H(12)φ(ϱ2)eηϱ2]+mH(t)[g1(η)h(12α)φ(ϱ2)eηϱ2+mg2(η)H(12)φ(ϱ1m2)eηϱ1m2]. (2.5)

    By integrating (2.5) over the interval [0,1] after multiplying with tζk1, we get

    g1(η)h(12α)10φ(tϱ1+m(1t)ϱ2)tζk1dt+mg2(η)H(12)10φ(ϱ1m(1t)+tϱ2)tζk1dt[g1(η)h(12α)φ(ϱ1)eηϱ1+mg2(η)H(12)φ(ϱ)eηϱ2]10h(tα)tζk1dt+m[g1(η)h(12α)φ(ϱ2)eηϱ2+mg2(η)H(12)φ(ϱ1m2)eηϱ1m2]10tζk1H(t)dt. (2.6)

    Again using substitutions as considered in (2.3), the inequality (2.6) leads to the second inequality of (2.1).

    The following remark states the connection of Theorem 7 with already established results.

    Remark 2. (i) If we substitute η=0, α=1 and ψ(t)=t in (2.1), then [32,Theorem 2.1] can be obtained.

    (ii) If we substitute k=m=α=1, η=0 and h(t)=ψ(t)=t in (2.1), then Theorem 1 can be obtained.

    (iii) If we substitute η=0, h(t)=ψ(t)=t and m=α=1 in (2.1), then refinement of Theorem 1 can be obtained.

    (iv) If we substitute α=k=ζ=m=1, η=0 and h(t)=ψ(t)=t in (2.1), then Hadamard inequality can be obtained.

    (v) If we substitute η=0, m=α=1 and h(t)=t in (2.1), then [28,Theorem 1] can be obtained.

    (vi) If we substitute η=0, k=m=α=1 and h(t)=t in (2.1), then [37,Theorem 2.1] can be obtained.

    (vii) If we substitute α=k=1, h(t)=ψ(t)=t and η=0 in (2.1), then [34,Theorem 2.1] can be obtained.

    (viii) If we substitute α=1, h(t)=ts and ψ(t)=t in (2.1), then [39,Theorem 2] can be obtained.

    (ix) If we substitute α=1, η=0 and h(t)=ts in (2.1), then [38,Corollary 1] can be obtained.

    (x) If we substitute η=0 and k=1 in (2.1), then [31,Corollary 1] can be obtained.

    (xi) If we substitute η=0 and α=1 in (2.1), then [31,Corollary 1] gives the refinement of resulting inequality.

    In the following we give inequality (2.1) for exponentially (hm)-convex, exponentially (s,m)-convex, exponentially s-convex, exponentially m-convex and exponentially convex functions.

    Corollary 1. If we take α=1 in (2.1), then the following inequality holds for exponentially (hm)-convex functions:

    φ(ϱ1+mϱ22)h(12)Γk(ζ+k)(mϱ2ϱ1)ζk[g1(η)ψkIζψ1(ϱ1)+(φψ)(ψ1(mϱ2))+g2(η)mζk+1×ψkIζψ1(ϱ2)(φψ)(ψ1(ϱ1m))]ζh(12)k[g1(η)φ(ϱ1)eηϱ1+mg2(η)φ(ϱ2)eηϱ2]×10h(t)tζk1dt+mζh(12)k[g1(η)φ(ϱ2)eηϱ2+mg2(η)φ(ϱ1m2)eηϱ1m2]10tζk1h(1t)dt.

    Corollary 2. If we take α=1 and h(t)=ts in (2.1), then the following inequality holds for exponentially (s,m)-convex functions:

    φ(ϱ1+mϱ22)Γk(ζ+k)2s(mϱ2ϱ1)ζk[g1(η)ψkIζψ1(ϱ1)+(φψ)(ψ1(mϱ2))+mζk+1g2(η)×ψkIζψ1(ϱ2)(φψ)(ψ1(ϱ1m))]ζ2s(ζ+k)[g1(η)φ(ϱ1)eηϱ1+mg2(η)φ(ϱ1)eηϱ2]+mμB(1+s,μk)2sk[g1(η)φ(ϱ2)eηϱ2+mg2(η)φ(ϱ1m2)eηϱ1m2].

    If we put m=1 in the above inequality, then the result of exponentially s-convex function can be obtained.

    Corollary 3. If we take α=1 and h(t)=t in (2.1), then the following inequality holds for exponentially m-convex functions:

    φ(ϱ1+mϱ22)Γk(ζ+k)2(mϱ2ϱ1)ζk[g1(η)ψkIζψ1(ϱ1)+(φψ)(ψ1(mϱ2))+g2(η)mζk+1×ψkIζψ1(ϱ2)(φψ)(ψ1(ϱ1m))]ζ2(ζ+k)[g1(η)φ(ϱ1)eηϱ1+mg2(η)φ(ϱ2)eηϱ2]+m2(ζ+k)[g1(η)φ(ϱ2)eηϱ2+mg2(η)φ(ϱ1m2)eηϱ1m2].

    Corollary 4. If we take α=m=1 and h(t)=t in (2.1), then the following inequality holds for exponentially convex functions:

    φ(ϱ1+ϱ22)Γk(ζ+k)2(ϱ2ϱ1)ζk×[g1(η)ψkIζψ1(ϱ1)+(φψ)(ψ1(ϱ2))+g2(η)ψkIζψ1(ϱ2)(φψ)(ψ1(ϱ1))]ζ2(ζ+k)[g1(η)φ(ϱ1)eηϱ1+g2(η)φ(ϱ2)eηϱ2]+12(ζ+k)[g1(η)φ(ϱ2)eηϱ2+g2(η)φ(ϱ1)eηϱ1].

    The next theorem is another version of the Hadamard inequality for exponentially (α,hm)-convex functions.

    Theorem 8. Under the assumptions of Theorem 7, the following k-fractional integral inequality holds:

    φ(ϱ1+mϱ22)2ζkΓk(ζ+k)(mϱ2ϱ1)ζk[g1(η)h(12α)ψkIζψ1(ϱ1+mϱ22)+(φψ)(ψ1(mϱ2))+g2(η)H(12)mζk+1ψkIζψ1(ϱ1+mϱ22m)(φψ)(ψ1(ϱ1m))]ζk[g1(η)h(12α)φ(ϱ1)eηϱ1+mg2(η)H(12)φ(ϱ2)eηϱ2]10h(tα2α)tζk1dt+ζmk[g1(η)h(12α)φ(ϱ2)eηϱ2+mg2(η)H(12)φ(ϱ1m2)eηϱ1m2]10H(t2)tζk1dt, (2.7)

    where ζ>0, H(t)=h(1tα) and

    g1(η)={eηmϱ2if η<0eη(ϱ1+mϱ22)if η>0,g2(η)={eη(ϱ1+mϱ22m)if η<0eηϱ1mif η>0.

    Proof. By setting x=ϱ1t2+m(2t2)ϱ2, y=ϱ1m(2t2)+ϱ2t2, t[0,1], in (2.2) and integrating the resulting inequality over [0,1] after multiplying with tζk1, we get

    kζφ(ϱ1+mϱ22)h(12α)10φ(ϱ1t2+m(2t2)ϱ2)eη(ϱ1t2+m(2t2)ϱ2)tζk1dt+mH(12)10φ(ϱ1m(2t2)+ϱ2t2)eη(ϱ1m(2t2)+ϱ2t2)tζk1dt. (2.8)

    By setting ψ(u)=ϱ1t2+m(2t2)ϱ2 and ψ(v)=ϱ1m(2t2)+ϱ2t2 in (2.8), we obtain

    kζφ(ϱ1+mϱ22)2ζk(mϱ2ϱ1)ζk×[h(12α)ψ1(mϱ2)ψ1(ϱ1+mϱ22)φ(ψ(u))eηψ(u)(mϱ2ψ(u))ζk1d(ψ(u))+mζk+1H(12)ψ1(ϱ1+mϱ22m)ψ1(ϱ1m)φ(ψ(v))eηψ(v)(ψ(v)ϱ1m)ζk1d(ψ(v))]. (2.9)

    Further, taking the maximum value of exponential function and using Definition 4, we get

    φ(ϱ1+mϱ22)2ζkΓk(ζ+k)(mϱ2ϱ1)ζk[g1(η)h(12α)ψkIζψ1(ϱ1+mϱ22)+(φψ)(ψ1(mϱ2))+g2(η)h(2α12α)mζk+1ψkIζψ1(ϱ1+mϱ22m)(φψ)(ψ1(ϱ1m))].

    Again using exponentially (α,hm)-convexity of φ, for t[0,1], we have

    g1(η)h(12α)φ(ϱ1t2+m(2t2)ϱ2)+mg2(η)H(12)φ(ϱ1m(2t2)+ϱ2t2)h(tα2α)[g1(η)h(12α)φ(ϱ1)eηϱ1+mH(12)φ(ϱ2)eηϱ2]+mH(t2)×[g1(η)h(12α)φ(ϱ2)eηϱ2+mg2(η)H(12)φ(ϱ1m2)eηϱ1m2]. (2.10)

    By integrating (2.10) over [0,1] after multiplying with tζk1, the following inequality holds

    g1(η)h(12α)10φ(ϱ1t2+m(2t2)ϱ2)tζk1dt+mg2(η)H(12)×10φ(ϱ1m(2t2)+ϱ2t2)tζk1dt[g1(η)h(12α)φ(ϱ1)eηϱ1+mg2(η)H(12)φ(ϱ2)eηϱ2]×10h(tα2α)tζk1dt+m[g1(η)h(12α)φ(ϱ2)eηϱ2+mg2(η)H(12)φ(ϱ1m2)eηϱ1m2]10h(2αtα2α)tζk1dt. (2.11)

    Again using substitutions as considered in (2.8), the second inequality of (2.7) can be obtained.

    The following remark states the connection of Theorem 8 with already established results.

    Remark 3. (i) If we substitute η=0 and k=1 in (2.7), then [31,Corollary 3] can be obtained.

    (ii) If we substitute η=0 and α=1 in (2.7), then [31,Theorem 10] gives the refinement of resulting inequality.

    (iii) If we take h(t)=ψ(t)=t, m=k=α=1 and η=0 (2.7), then Theorem 2 can be obtained.

    (iv) If we substitute h(t)=ψ(t)=t, m=α=1, η=0 in (2.7), then refinement of Theorem 2 can be obtained.

    (v) If we use h(t)=ψ(t)=t, m=ζ=k=α=1, η=0 and in (2.7), then the Hadamard inequality can be obtained.

    (vi) If we substitute h(t)=t,m=α=1 and η=0 in (2.7), then [35,Corrollary 3] can be obtained.

    (vii) If we substitute h(t)=ψ(t=)t,k=α=1 and η=0 in (2.7), then [33,Theorem 2.1] can be obtained.

    (viii) If we substitute α=1, h(t)=ts and η=0 in (2.7), then [38,Corollary 3] can be obtained.

    (ix) If we substitute h(t)=t, m=α=k=1 and η=0 in (2.7), then [40,Corrollary 3] can be obtained.

    In the following we give inequality (2.7) for exponentially (hm)-convex, exponentially (s,m)-convex, exponentially s-convex, exponentially m-convex and exponentially convex functions.

    Corollary 5. If we take α=1 in (2.7), then the following inequality holds for exponentially (hm)-convex functions:

    φ(ϱ1+mϱ22)2ζkh(12)Γk(ζ+k)(mϱ2ϱ1)ζk[g1(η)ψkIζψ1(ϱ1+mϱ22)+(φψ)(ψ1(mϱ2))+g2(η)mζk+1ψkIζψ1(ϱ1+mϱ22m)(φψ)(ψ1(ϱ1m))]ζh(12)k[g1(η)φ(ϱ1)eηϱ1+mg2(η)φ(ϱ2)eηϱ2]10h(t2)tζk1dt+ζmh(12)k×[g1(η)φ(ϱ2)eηϱ2+mg2(η)φ(ϱ1m2)eηϱ1m2]10h(2t2)tζk1dt.

    Corollary 6. If we take α=1 and h(t)=ts in (2.7), then the following inequality holds for exponentially (s,m)-convex functions:

    φ(ϱ1+mϱ22)2ζksΓk(ζ+k)(mϱ2ϱ1)ζk[g1(η)ψkIζψ1(ϱ1+mϱ22)+(φψ)(ψ1(mϱ2))+g2(η)mζk+1ψkIζψ1(ϱ1+mϱ22m)(φψ)(ψ1(ϱ1m))]ζ22s(ζ+sk)[g1(η)φ(ϱ1)eηϱ1+mg2(η)φ(ϱ2)eηϱ2]+ζmB(1+s,ζk)22sk[g1(η)φ(ϱ2)eηϱ2+mg2(η)φ(ϱ1m2)eηϱ1m2].

    If we put m=1 in the above inequality, then the result of exponentially s-convex function can be obtained.

    Corollary 7. If we take α=1, h(t)=t in (2.7), then the following inequality holds for exponentially m-convex functions:

    φ(ϱ1+mϱ22)2ζk1Γk(ζ+k)(mϱ2ϱ1)ζk[g1(η)ψkIζψ1(ϱ1+mϱ22)+(φψ)(ψ1(mϱ2))+g2(η)mζk+1×ψkIζψ1(ϱ1+mϱ22m)(φψ)(ψ1(ϱ1m))]ζ4(ζ+k)[g1(η)φ(ϱ1)eηϱ1+mg2(η)φ(ϱ2)eηϱ2]+m(ζ+2k)4(ζ+k)[g1(η)φ(ϱ2)eηϱ2+mg2(η)φ(ϱ1m2)eηϱ1m2].

    Corollary 8. If we take α=m=1, h(t)=t in (2.7), then the following inequality holds for exponentially convex functions:

    φ(ϱ1+ϱ22)2ζk1Γk(ζ+k)(ϱ2ϱ1)ζk[g1(η)ψkIζψ1(ϱ1+ϱ22)+(φψ)(ψ1(ϱ2))+g2(η)ψkIζψ1(ϱ1+ϱ22)(φψ)(ψ1(ϱ1))]ζ4(ζ+k)[g1(η)φ(ϱ1)eηϱ1+g2(η)φ(ϱ2)eηϱ2]+(ζ+2k)4(ζ+k)[g1(η)φ(ϱ2)eηϱ2+g2(η)φ(ϱ1)eηϱ1].

    In this section we give error estimations of the Hadamard inequalities by using exponentially (α,hm)-convex functions via generalized Riemann-Liouville fractional integrals. The following identity is useful to prove the next theorem.

    Lemma 1. [28] Let ϱ1<ϱ2 and φ:[ϱ1,ϱ2]R be a differentiable mapping on (ϱ1,ϱ2). Also, suppose that φL1[ϱ1,ϱ2]. Then, for k>0, the following identity holds for the operators given in (1.7) and (1.8):

    φ(ϱ1)+φ(ϱ2)2Γk(ζ+k)2(φ2φ1)ζk[ψkIζψ1(φ1)+(φψ)(ψ1(φ2))+ψkIζψ1(ϱ2)(φψ)(ψ1(ϱ1))]=ϱ2ϱ1210((1t)ζktζk)φ(tϱ1+(1t)ϱ2)dt. (3.1)

    Theorem 9. Let φ:[ϱ1,ϱ2]R be a differentiable mapping on (ϱ1,ϱ2) such that φL1[ϱ1,ϱ2]. Also suppose that |φ| is exponentially (α,hm)-convex on [ϱ1,ϱ2]. Then, for k>0, ηR and (α,m)(0,1]2, the following k-fractional integral inequality holds for the operators given in (1.7) and (1.8):

    |φ(ϱ1)+φ(ϱ2)2Γk(ζ+k)2(ϱ2ϱ1)ζk[ψkIζψ1(ϱ1)+(φψ)(ψ1(ϱ2))+ψkIζψ1(ϱ2)(φψ)(ψ1(ϱ1))]|ϱ2ϱ12[|φ(ϱ1)|eηϱ1(120h(tα)((1t)ζktζk)dt+112h(tα)(tζk(1t)ζk)dt)+m|φ(ϱ2m)|eηϱ2m(120H(t)((1t)ζktζk)dt+112H(t)(tζk(1t)ζk)dt)], (3.2)

    where H(t) is defined in Theorem 7.

    Proof. From Lemma 1, it follows that

    |φ(ϱ1)+φ(ϱ2)2Γk(ζ+k)2(φ2φ1)ζk[ψkIζψ1(φ1)+(φψ)(ψ1(φ2))+ψkIζψ1(ϱ2)(φψ)(ψ1(ϱ1))]|ϱ2ϱ1210|(1t)ζktζk||φ(tϱ1+(1t)ϱ2)|dt. (3.3)

    By using exponentially (α,hm)-convexity of |φ|, for t[0,1], we have

    |φ(tϱ1+(1t)ϱ2)|h(tα)|φ(ϱ1)|eηϱ1+mH(t)|φ(ϱ2m)|eηϱ2m. (3.4)

    Using (3.4) in (3.3), we get

    |φ(ϱ1)+φ(ϱ2)2Γk(ζ+k)2(φ2φ1)ζk[ψkIζψ1(φ1)+(φψ)(ψ1(φ2))+ψkIζψ1(ϱ2)(φψ)(ψ1(ϱ1))]|ϱ2ϱ1210|(1t)ζktζk|[h(tα)|φ(ϱ1)|eηϱ1+mH(t)|φ(ϱ2m)|eηϱ2m]=ϱ2ϱ12[|φ(ϱ1)|eηϱ1[120h(tα)((1t)ζktζk)dt+112h(tα)(tζk(1t)ζk)dt]+m|φ(ϱ2m)|eηϱ2m[120H(t)((1t)ζktζk)dt+112H(t)(tζk(1t)ζk)dt].

    The following remark states the connection of Theorem 9 with already established results.

    Remark 4. (i) If we substitute η=0 and k=1 in (3.2), then [31,Corllary 7] can be obtained.

    (ii) If we substitute η=0 and α=1 in (3.2), then [31,Theorem 11] gives the refinement of resulting inequality.

    (iii) If we substitute h(t)=t, m=α=1 and η=0 in (3.2), then [35,Corollary 10] can be obtained.

    (iv) If we substitute m=α=1, η=0 and h(t)=ts in (3.2), then [28,Theorem 2] can be obtained.

    (v) If we substitute m=α=1, h(t)=ψ(t)=t and η=0 in (3.2), then [26,Theorem 2.4] can be obtained.

    (vi) If we substitute k=m=α=1, h(t)=ψ(t)=t and η=0 in (3.2), then Theorem 3 can be obtained.

    (vii) If we substitute k=α=ζ=m=1, h(t)=ψ(t)=t and η=0 in (3.2), then [29,Theorem 2.2] can be obtained.

    (viii) If we substitute α=1, η=0 and h(t)=ts in (3.2), then [38,Corollary 5] can be obtained.

    In the following we present the inequality (3.2) for exponentially (hm)-convex, exponentially (s,m)-convex, exponentially s-convex, exponentially m-convex and exponentially convex functions.

    Corollary 9. If we take α=1 in (3.2), then the following inequality holds for exponentially (hm)-convex functions:

    |φ(ϱ1)+φ(ϱ2)2Γk(ζ+k)2(ϱ2ϱ1)ζk[ψkIζψ1(ϱ1)+(φψ)(ψ1(ϱ2))+ψkIζψ1(ϱ2)(φψ)(ψ1(ϱ1))]|ϱ2ϱ12[|φ(ϱ1)|eηϱ1(120h(t)((1t)ζktζk)dt+112h(t)(tζk(1t)ζk)dt)+m|φ(ϱ2m)|eηϱ2m(120h(1t)((1t)ζktζk)dt+112h(1t)(tζk(1t)ζk)dt)].

    Corollary 10. If we take α=1 and h(t)=ts in (3.2), then the following inequality holds for exponentially (s,m)-convex functions:

    |φ(ϱ1)+φ(ϱ2)2Γk(ζ+k)2(ϱ2ϱ1)ζk[ψkIζψ1(ϱ1)+(φψ)(ψ1(ϱ2))+ψkIζψ1(ϱ2)(φψ)(ψ1(ϱ1))]|ϱ2ϱ12[|φ(ϱ1)|eηϱ1(2B(12;s+1,ζk+1)+1(12)s+ζks+ζk+1B(1+s,1+ζk))+m|φ(ϱ2m)|eηϱ2m(1(12)s+ζk+1s+ζk+12F1(s,1+ζk,2+ζk;12)21+ζk(ζk+1)+B(1+s,1+ζk)k(k+ζ+2s(k+ks+ζ)2F1(s,1+ζk,2+ζk;12)2s+ζk+1(sk+ζ+k)(ζ+k))].

    If we put m=1 in the above inequality, then the result of exponentially s-convex function can be obtained.

    Corollary 11. If we take α=m=1 and h(t)=t in (3.2), then the following inequality holds for exponentially convex functions:

    |φ(ϱ1)+φ(ϱ2)2Γk(ζ+k)2(ϱ2ϱ1)ζk[ψkIζψ1(ϱ1)+(φψ)(ψ1(ϱ2))+ψkIζψ1(ϱ2)(φψ)(ψ1(ϱ1))]|ϱ2ϱ12(ζk+1)(112ζk)(|φ(ϱ1)|eηϱ1+|φ(ϱ2)|eηϱ2).

    Corollary 12. If we take α=m=k=1 and h(t)=ψ(t)=t in (3.2), then the following inequality holds for exponentially convex functions via Riemann-Liouville fractional integrals:

    |φ(ϱ1)+φ(ϱ2)2Γ(ζ+1)2(ϱ2ϱ1)ζ[Iζ(ϱ1)+φ(ϱ2)+Iζ(ϱ2)φ(ϱ1)]|ϱ2ϱ12(ζk+1)(112ζk)(|φ(ϱ1)|eηϱ1+|φ(ϱ2)|eηϱ2).

    The following identity will be useful to obtain the next results.

    Lemma 2. [38] Let φ:[ϱ1,ϱ2]R be a differentiable mapping on (ϱ1,ϱ2) such that φL1[ϱ1,ϱ2]. Then for k>0 and m(0,1], the following integral identity holds for operators given in (1.7) and (1.8):

    2ζk1Γk(ζ+k)(mϱ2ϱ1)ζk[ψkIζψ1(ϱ1+mϱ22)+(φψ)(ψ1(mϱ2))+mζk+1ψkIζψ1(ϱ1+mϱ22m)(φψ)(ψ1(ϱ1m))]12[φ(ϱ1+mϱ22)+mφ(ϱ1+mϱ22m)]=mϱ2ϱ14[10tζkφ(ϱ1t2+m(2t2)ϱ2)dt10tζkφ(ϱ1m(2t2)+ϱ2t2)dt]. (3.5)

    Theorem 10. Let φ:[ϱ1,ϱ2]R be a differentiable mapping on (ϱ1,ϱ2) such that φŁ1[ϱ1,ϱ2]. Also suppose that |φ|q is exponentially (α,hm)-convex function on [ϱ1,ϱ2] for q1. Then, for ηR, k>0 and (α,m)(0,1]2, the following fractional integral inequality holds for operators given in (1.7) and (1.8):

    |2ζk1Γk(ζ+k)(mϱ2ϱ1)ζk[ψkIζψ1(ϱ1+mϱ22)+(φψ)(ψ1(mϱ2))+mζk+1ψkIζψ1(ϱ1+mϱ22m)(φψ)(ψ1(ϱ1m))]12[φ(ϱ1+mϱ22)+mφ(ϱ1+mϱ22m)]|mϱ2ϱ14(ζk+1)11q[(|φ(ϱ1)|qeηϱ110h(tα2α)tζkdt+m|φ(ϱ2)|qeηϱ210h(2αtα2α)tζkdt)1q+(m|φ(ϱ1m2)|qeηϱ1m210H(t2)tζkdt+|φ(ϱ2)|qeηϱ210h(tα2α)tζkdt)1q]. (3.6)

    Proof. We divide the proof in two cases:

    Case 1. For q=1. Applying Lemma 2 and using exponentially (α,hm)-convexity of |φ|, we have

    |2ζk1Γk(ζ+k)(mϱ2ϱ1)ζk[ψkIζψ1(ϱ1+mϱ22)+(φψ)(ψ1(mϱ2))+mζk+1ψkIζψ1(ϱ1+mϱ22m)(φψ)(ψ1(ϱ1m))]12[φ(ϱ1+mϱ22)+mφ(ϱ1+mϱ22m)]|mϱ2ϱ14[10|tζkφ(ϱ1t2+m(2t2)ϱ2)|dt+10|tζkφ(ϱ1m(2t2)+ϱ2t2)|dt]mϱ2ϱ14[(|φ(ϱ1)|eηϱ1+|φ(ϱ2)|eηϱ2)10h(tα2α)tζkdt+m(|φ(ϱ2)|eηϱ2+|φ(ϱ1m2)|eηϱ1m2)×10H(t2)tζkdt].

    Case 2. Now for q>1. From Lemma 2 and using power mean inequality, we get

    |2ζk1Γk(ζ+k)(mϱ2ϱ1)ζk[ψkIζψ1(ϱ1+mϱ22)+(φψ)(ψ1(mϱ2))+mζk+1ψkIζψ1(ϱ1+mϱ22m)(φψ)(ψ1(ϱ1m))]12[φ(ϱ1+mϱ22)+mφ(ϱ1+mϱ22m)]|mϱ2ϱ14(10tζkdt)11q[(10tζk|φ(ϱ1t2+m(2t2)ϱ2)|qdt)1q+(10tζk|φ(ϱ1m(2t2)+ϱ2t2)|qdt)1q]mϱ2ϱ14(ζk+1)11q[(|φ(ϱ1)|qeηϱ110h(tα2α)tζkdt+m|φ(ϱ2)|qeηϱ210H(t2)tζkdt)1q+(m|φ(ϱ1m2)|qeηϱ1m210H(t2)tζkdt+|φ(ϱ)2|qeηϱ210h(tα2α)tζkdt)1q].

    Hence (3.6) is obtained.

    The following remark states the connection of Theorem 10 with already established results.

    Remark 5. (i) If we substitute η=0, α=1 and h(t)=ts in (3.6), then [38,Corollary 7] can be obtained.

    (ii) If we substitute h(t)=ψ(t)=t, k=α=1 and η=0 in (3.6), then [33,Theorem 2.4] can be obtained.

    (iii) If we substitute η=0, h(t)=ψ(t)=t and α=m=1 in (3.6), then [27,Theorem 3.1] can be obtained.

    (iv) If we substitute h(t)=ψ(t)=t, m=k=α=1 and η=0 in (3.6), then [25,Theorem 5] can be obtained.

    (v) If we substitute q=m=k=ζ=α=1, h(t)=ψ(t)=t and η=0 in (3.6), then [36,Theorem 2.2] can be obtained.

    (vi) If we substitute η=0, m=α=1 and h(t)=t in (3.6), then [35,Corollary 10] can be obtained.

    (vii) If we substitute η=0 and k=1 in (3.6), then [31,Corollary 10] can be obtained.

    (viii) If we substitute η=0 and α=1 in (3.6), then [31,Theorem 12] gives the refinement of resulting inequality.

    In the following we present the inequality (3.6) for exponentially (hm)-convex, exponentially (s,m)-convex, exponentially s-convex, exponentially m-convex and exponentially convex functions.

    Corollary 13. If we take α=1 in (3.6), then the following inequality holds for exponentially (hm)-convex functions:

    |2ζk1Γk(ζ+k)(mϱ2ϱ1)ζk[ψkIζψ1(ϱ1+mϱ22)+(φψ)(ψ1(mϱ2))+mζk+1ψkIζψ1(ϱ1+mϱ22m)(φψ)(ψ1(ϱ1m))]12[φ(ϱ1+mϱ22)+mφ(ϱ1+mϱ22m)]|mϱ2ϱ14(ζk+1)11q[(|φ(ϱ1)|qeηϱ110h(t2)tζkdt+m|φ(ϱ2)|qeηϱ210h(2t2)tζkdt)1q+(m|φ(ϱ1m2)|qeηϱ1m210h(2t2)tζkdt+|φ(ϱ2)|qeηϱ210h(t2)tζkdt)1q].

    Corollary 14. If we take α=1 and h(t)=ts in (3.6), then the following inequality holds for exponentially (s,m)-convex functions:

    |2ζk1Γk(ζ+k)(mϱ2ϱ1)ζk[ψkIζψ1(ϱ1+mϱ22)+(φψ)(ψ1(mϱ2))+mζk+1ψkIζψ1(ϱ1+mϱ22m)(φψ)(ψ1(ϱ1m))]12[φ(ϱ1+mϱ22)+mφ(ϱ1+mϱ22m)]|mϱ2ϱ14(ζk+1)(2s(ζk+s+1))1q[((ζk+1)|φ(ϱ1)|qeηϱ1+2sm(ζk+s+1)2F1(s,1+ζk,2+ζk;12)|φ(ϱ2)|qeηϱ2)1q+(2sm2F1(s,1+ζk,2+ζk;12)(ζk+s+1)|φ(ϱ1m2)|qeηϱ1m2+(ζk+1)|φ(ϱ2)|qeηϱ2)1q].

    If we put m=1 in the above inequality, then the result of exponentially s-convex function can be obtained.

    Corollary 15. If we take α=m=1 and h(t)=t in (3.6), then the following inequality holds for exponentially convex functions:

    |2ζk1Γk(ζ+k)(ϱ2ϱ1)ζk[ψkIζψ1(ϱ1+ϱ22)+(φψ)(ψ1(ϱ2))+ψkIζψ1(ϱ1+ϱ22)(φψ)(ψ1(ϱ1))]φ(ϱ1+ϱ22)|ϱ2ϱ14(ζk+1)(2(ζk+2))1q[((ζk+1)|φ(ϱ1)|qeηϱ1+(ζk+3)|φ(ϱ2)|qeηϱ2)1q+((ζk+3)|φ(ϱ1))|qeηϱ1+(ζk+1)|φ(ϱ2)|qeηϱ2)1q].

    Corollary 16. If we take α=k=m=q=ζ=1, h(t)=ψ(t)=t in (3.6), then the following inequality is obtained:

    |1(ϱ2ϱ1)10φ(ν)dνφ(ϱ1+ϱ22)|ϱ2ϱ18[|φ(ϱ1)|eηϱ1+|φ(ϱ2)|eηϱ2].

    Theorem 11. Let φ:[ϱ1,ϱ2]R be a differentiable mapping on (ϱ1,ϱ2) with 0ϱ1<mϱ2. Also suppose that |φ|q is exponentially (α,hm)-convex function on [ϱ1,ϱ2] for q>1. Then, for k>0 and (α,m)(0,1]2, the following fractional integral inequality holds for the operators given in (1.7) and (1.8):

    |2ζk1Γk(ζ+k)(mϱ2ϱ1)ζk[ψkIζψ1(ϱ1+mϱ22)+(φψ)(ψ1(mϱ2))+mζk+1ψkIζψ1(ϱ1+mϱ22m)(φψ)(ψ1(ϱ1m))]12[φ(ϱ1+mϱ22)+mφ(ϱ1+mϱ22m)]|mϱ2ϱ14(ζpk+1)1p[(|φ(ϱ1)|eηϱ1q10h(tα2α)dt+m|φ(ϱ2)|qeηϱ210h(2αtα2α)dt)1q+(m|φ(ϱ1m2)|qeηϱ1m210H(t2)dt+|φ(ϱ2)|qeηϱ210h(tα2α)dt)1q], (3.7)

    with 1p+1q=1.

    Proof. By applying Lemma 2 and using the property of modulus, we get

    |2ζk1Γk(ζ+k)(mϱ2ϱ1)ζk[ψkIζψ1(ϱ1+mϱ22)+(φψ)(ψ1(mϱ2))+mζk+1ψkIζψ1(ϱ1+mϱ22m)(φψ)(ψ1(ϱ1m))]12[φ(ϱ1+mϱ22)+mφ(ϱ1+mϱ22m)]|mϱ2ϱ14[10|tζkφ(ϱ1t2+m(2t2)ϱ2)|dt+10|tζkφ(ϱ1m(2t2)+ϱ2t2)|dt].

    Now applying Hölder's inequality for integrals, we get

    |2ζk1Γk(ζ+k)(mϱ2ϱ1)ζk[ψkIζψ1(ϱ1+mϱ22)+(φψ)(ψ1(mϱ2))+mζk+1ψkIζψ1(ϱ1+mϱ22m)(φψ)(ψ1(ϱ1m))]12[φ(ϱ1+mϱ22)+mφ(ϱ1+mϱ22m)]|mϱ2ϱ14(ζpk+1)1p[(10|φ(ϱ1t2+m(2t2)ϱ2)|qdt)1q+(10|φ(ϱ1m(2t2)+ϱ2t2)|qdt)1q].

    Using exponentially (α,hm)-convexity of |φ|q, we get

    |2ζk1Γk(ζ+k)(mϱ2ϱ1)ζk[ψkIζψ1(ϱ1+mϱ22)+(φψ)(ψ1(mϱ2))+mζk+1ψkIζψ1(ϱ1+mϱ22m)(φψ)(ψ1(ϱ1m))]12[φ(ϱ1+mϱ22)+mφ(ϱ1+mϱ22m)]|mϱ2ϱ14(ζpk+1)1p[(|φ(ϱ1)|eηϱ1q10h(tα2α)dt+m|φ(ϱ2)|qeηϱ210h(2αtα2α)dt)1q+(m|φ(ϱ1m2)|qeηϱ1m210h(2αtα2α)dt+|φ(ϱ2)|qeηϱ210h(tα2α)dt)1q].

    The following remark is the connection of Theorem 3.3 with already established results.

    Remark 6. (i) If we substitute η=0 and k=1 in (3.7), then [31,Corollary 12] can be obtained.

    (ii) If we substitute η=0 and α=1 in (3.7), then [31,Theorem 13] gives the refinement of resulting inequality.

    (iii) If we substitute h(t)=ψ(t)=t, k=α=1 and η=0 in (3.7), then [33,Theorem 2.7] can be obtained.

    (iv) If we substitute η=0, h(t)=ψ(t)=t and α=m=1 in (3.7), then [27,Theorem 3.2] can be obtained.

    (v) If we substitute k=m=ζ=α=1, h(t)=ψ(t)=t and η=0 in (3.7), then [36,Theorem 2.4] can be obtained.

    (vi) If we substitute η=0, α=1 and h(t)=ts in (3.7), then [38,Corollary 9] can be obtained.

    (vii) If we substitute α=m=1, h(t)=t and η=0 in (3.7), then [35,Corollary 14] can be obtained.

    In the following we give inequality (3.7) for exponentially (hm)-convex, exponentially (s,m)-convex, exponentially s-convex, exponentially m-convex and exponentially convex functions.

    Corollary 17. If we take α=1 in (3.7), then the following inequality holds for exponentially (hm)-convex functions:

    |2ζk1Γk(ζ+k)(mϱ2ϱ1)ζk[ψkIζψ1(ϱ1+mϱ22)+(φψ)(ψ1(mϱ2))+mζk+1ψkIζψ1(ϱ1+mϱ22m)(φψ)(ψ1(ϱ1m))]12[φ(ϱ1+mϱ22)+mφ(ϱ1+mϱ22m)]|mϱ2ϱ14(ζpk+1)1p[(|φ(ϱ1)|eηϱ1q10h(t2)dt+m|φ(ϱ2)|qeηϱ210h(2t2)dt)1q+(m|φ(ϱ1m2)|qeηϱ1m210h(2t2)dt+|φ(ϱ2)|qeηϱ210h(t2)dt)1q].

    Corollary 18. If we take α=1 and h(t)=ts in (3.7), then the following inequality holds for exponentially (s,m)-convex functions:

    |2ζk1Γk(ζ+k)(mϱ2ϱ1)ζk[ψkIζψ1(ϱ1+mϱ22)+(φψ)(ψ1(mϱ2))+mζk+1ψkIζψ1(ϱ1+mϱ22m)(φψ)(ψ1(ϱ1m))]12[φ(ϱ1+mϱ22)+mφ(ϱ1+mϱ22m)]|mϱ2ϱ14(2s(1+s)1q(ζpk+1)1p[(|φ(ϱ1)|qeηϱ1+2sm|φ(ϱ2)|q(1+21+s)eηϱ2)1q+(2sm|φ(ϱ1m2)|q(1+21+s)eηϱ1m2+|φ(ϱ2)|qeηϱ2)1q].

    If we put m=1 in the above inequality, then the result of exponentially s-convex function can be obtained.

    Corollary 19. If we take α=1 and h(t)=t in (3.7), then the following inequality holds for exponentially m-convex functions:

    |2ζk1Γk(ζ+k)(mϱ2ϱ1)ζk[ψkIζψ1(ϱ1+mϱ22)+(φψ)(ψ1(mϱ2))+mζk+1ψkIζψ1(ϱ1+mϱ22m)(φψ)(ψ1(ϱ1m))]12[φ(ϱ1+mϱ22)+mφ(ϱ1+mϱ22m)]mϱ2ϱ116(4αpk+1)1p[(|φ(ϱ1)|qeηϱ1+3m|φ(ϱ2)|qeηϱ2)1q+(3m|φ(ϱ1m2)|qeηϱ1m2+|φ(ϱ2)|qeηϱ2)1q].

    Corollary 20. If we take α=m=1 and h(t)=t in (3.7), then the following inequality holds for exponentially convex functions:

    |2ζk1Γk(ζ+k)(ϱ2ϱ1)ζk[ψkIζψ1(ϱ1+ϱ22)+(φψ)(ψ1(ϱ2))+ψkIζψ1(ϱ1+ϱ22)(φψ)(ψ1(ϱ1))]φ(ϱ1+ϱ22)|ϱ2ϱ116(4αpk+1)1p[(|φ(ϱ1)|qeηϱ1+3|φ(ϱ2)|qeηϱ2)1q+(3|φ(ϱ1)|qeηϱ1+|φ(ϱ2)|qeηϱ2)1q].

    In the following, we give inequality (3.7) for the operators given in (1.5) and (1.6).

    Corollary 21. If we take k=1 in (3.7), then the following inequality holds for exponentially convex functions:

    |2ζ1Γ(ζ+1)(mϱ2ϱ1)ζ[ψIζψ1(ϱ1+mϱ22)+(φψ)(ψ1(mϱ2))+mζ+1ψIζψ1(ϱ1+mϱ22m)(φψ)(ψ1(ϱ1m))]12[φ(ϱ1+mϱ22)+mφ(ϱ1+mϱ22m)]|mϱ2a4(ζp+1)1p[(|φ(ϱ1)|eηϱ1q10h(tα2α)dt+m|φ(ϱ2)|qeηϱ210h(2αtα2α)dt)1q+(m|φ(ϱ1m2)|qeηϱ1m210H(t2)dt+|φ(ϱ2)|qeηϱ210h(tα2α)dt)1q].

    The Hadamard inequalities presented in this work behave as generalized formulas which generate a number of fractional integral inequalities for all kinds of convex functions connected with exponentially (α,hm)-convex function. Inequalities for Riemann-Liouville fractional integrals can also be deduced from the results of this paper. This work can be extended for other kinds of fractional integral operators exist in the literature.

    We would like to thank reviewers for evaluating the work and giving useful suggestions.

    The authors do not have competing interests.



    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier, 2006.
    [2] V. Mladenov, N. Mastorakis, Advanced Topics on Applications of Fractional Calculus on Control Problems, System Stability and Modeling, Belgrade: WSEAS Press, 2014.
    [3] F. Jarad, E. Uǧurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equations, 2017 (2017), 247. doi: 10.1186/s13662-017-1306-z
    [4] M. Z. Sarikaya, Z. Dahmani, M. E. Kiris, F. Ahmad, (k,s)-Riemann-Liouville fractional integral and applications, Hacettepe J. Math. Stat., 45 (2016), 77–89.
    [5] T. Tunç, H. Budak, F. Usta, M. Z. Sarikaya, On new generalized fractional integral operators and related fractional inequalities, Konuralp J. Math., 8 (2020), 268–278.
    [6] S. Iqbal, K. H. Kristina, J. Pečarić, Weighted Hardy-type inequalities for monotone convex functions with some applications, Fractional Differ. Calculus, 3 (2013), 31–53.
    [7] A. O. Akdemir, E. Deniz, E. Yüksel, On some integral inequalities via conformable fractional untegrals, Appl. Math. Nonlinear Sci., 2021. Available from: https://doi.org/10.2478/amns.2020.2.00071.
    [8] E. Set, J. Choi, A. Gözpinar, Hermite-Hadamard type inequalities for the generalized k-fractional integral operators, J. Inequalities Appl., 1 (2017), 1–17.
    [9] E. Set, A. Gözpinar, Hermite-Hadamard type inequalities for convex functions via generalized fractional integral operators, Topol. Algebra Appl., 5 (2016), 55–62.
    [10] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives-Theory and Applications, USA : Gordon and Breach Science Publishers, 1993.
    [11] S. Mubeen, G. M. Habibullah, k-fractional integrals and applications, Int. J. Math. Math. Sci., 7 (2012), 89–94.
    [12] S. Mubeen, A. Rehman, A note on k-Gamma function and Pochhammer k-symbol, J. Inform. Math. Sci., 6 (2014), 93–107.
    [13] A. Akkurt, M. E. Yildirim, H. Yildirim, On some integral inequalities for (k,h)-Riemann-Liouville fractional integral, New Trends Math. Sci., 4 (2016), 138–146. doi: 10.20852/ntmsci.2016217824
    [14] K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, New York: John Wiley and Sons, Inc., 1993.
    [15] W. F. He, G. Farid, K. Mahreen, M. Zahra, N. Chen, On an integral and consequent fractional integral operators via generalized convexity, AIMS Math., 5 (2020), 7632–7648.
    [16] X. L. Qiang, G. Farid, J. Pečarić, S. B. Akbar, Generalized fractional integral inequalities for exponentially (s,m)-convex functions, J. Inequal. Appl., 2020 (2020), 70. doi: 10.1186/s13660-020-02335-7
    [17] N. Mehreen, M. Anwar, Hermite-Hadamard type inequalities for exponentially p-convex functions and exponentially s-convex functions in the second sense with applications, J. Inequal. Appl., 2019 (2019), 92.
    [18] M. U. Awan, M. A. Noor, K. I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inf. Sci, 12 (2018), 405–409. doi: 10.18576/amis/120215
    [19] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171–215.
    [20] C. Hermite, Sur deux limites d'une intégrale définie, Mathesis, 3 (1883), 82.
    [21] P. O. Mohammed, T. Abdeljawad, S. D. Zeng, A. Kashuri, Fractional Hermite-Hadamard integral inequalities for a new class of convex functions, Symmetry, 12 (2020), 1485.
    [22] M. E. Özdemir, A. A. Merve, H. Kavurmaci-Önalan, Hermite-Hadamard type inequalities for s-convex and s-concave functions via fractional integrals, Turkish J. Sci., 1 (2016), 28–40.
    [23] E. Set, M. A. Noor, M. U. Awan, A. Gözpinar, Generalized Hermite-Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl., 2017 (2017), 169.
    [24] M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modell., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048
    [25] M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2017), 1049–1059. doi: 10.18514/MMN.2017.1197
    [26] G. Farid, A. U. Rehman, M. Zahra, On Hadamard-type inequalities for k-fractional integrals, Nonlinear Funct. Anal. Appl., 21 (2016), 463–478.
    [27] G. Farid, A. U. Rehman, M. Zahra, On Hadamard inequalities for k-fractional integrals, Konuralp J. Math., 4 (2016), 79–86.
    [28] M. U. Awan, S. Talib, Y. M. Chu, M. A. Noor, K. I. Noor, Some new refinements of Hermite-Hadamard-type inequalities involving ψk-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 3051920.
    [29] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95.
    [30] G. Farid, S. B. Akbar, L. N. Mishra, V. N. Mishra, Riemann-Liouville fractional versions of Hadamard inequality for strongly m-convex functions, unpublished work.
    [31] G. Farid, Y. Kwun, H. Yasmeen, A. Akkurt, S. M. Kang, Inequalities for generalized Riemann-Liouville fractional integrals of generalized strongly convex functions, unpublished work.
    [32] G. Farid, A. U. Rehman, Q. U. Ain, k-fractional integral inequalities of Hadamard type for (hm)-convex functions, Comput. Methods Differ. Equations, 8 (2020), 119–140.
    [33] G. Farid, A. U. Rehman, B. Tariq, On Hadamard-type inequalities for m-convex functions via Riemann-Liouville fractional integrals, Stud. Univ. Babeş-Bolyai Math., 62 (2017), 141–150.
    [34] G. Farid, A. U. Rehman, B. Tariq, A. Waheed, On Hadamard type inequalities for m-convex functions via fractional integrals, J. Inequal. Spec. Funct., 7 (2016), 150–167.
    [35] G. Farid, H. Yasmeen, C. Y. Jung, S. H. Shim, G. Ha, Refinements and generalizations of some fractional integral inequalities via strongly convex functions, Math. Probl. Eng., 2021 (2021), 6667226.
    [36] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146.
    [37] K. Liu, J. R. Wang, D. O'Regan, On the Hermite-Hadamard type inequality for ψ-Riemann-Liouville fractional integrals via convex functions, J. Inequal. Appl., 2019 (2019), 27.
    [38] C. Miao, G. Farid, H. Yasmeen, Y. Bian, Generalized Hadamard fractional integral inequalities for strongly (s,m)-convex functions, J. Math., 2021 (2021), 6642289.
    [39] A. U. Rehman, G. Farid, S. Bibi, C. Y. Jung, S. M. Kang, k-fractional integral inequalities of Hadamard type for exponentially (s,m)-convex functions, AIMS Math., 6 (2021), 882–892.
    [40] P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, Math. Methods Appl. Sci., 44 (2021), 2314–2324.
  • This article has been cited by:

    1. Muhammad Bilal Khan, Muhammad Aslam Noor, Nehad Ali Shah, Khadijah M. Abualnaja, Thongchai Botmart, Some New Versions of Hermite–Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings, 2022, 6, 2504-3110, 83, 10.3390/fractalfract6020083
    2. Soubhagya Kumar Sahoo, Hijaz Ahmad, Muhammad Tariq, Bibhakar Kodamasingh, Hassen Aydi, Manuel De la Sen, Hermite–Hadamard Type Inequalities Involving k-Fractional Operator for (h¯,m)-Convex Functions, 2021, 13, 2073-8994, 1686, 10.3390/sym13091686
    3. Hongling Zhou, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah, Hermite-Hadamard type inequalities for interval-valued exponential type pre-invex functions via Riemann-Liouville fractional integrals, 2022, 7, 2473-6988, 2602, 10.3934/math.2022146
    4. Tareq Saeed, Muhammad Bilal Khan, Savin Treanțǎ, Hamed H. Alsulami, Mohammed Sh. Alhodaly, Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings, 2022, 11, 2075-1680, 368, 10.3390/axioms11080368
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2730) PDF downloads(102) Cited by(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog