Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

A constraint handling technique using compound distance for solving constrained multi-objective optimization problems

  • Guiding the working population to evenly explore the valuable areas which are not dominated by feasible solutions is important in the process of dealing with constrained multi-objective optimization problems (CMOPs). To this end, according to the angular distance and p-norm, this paper introduces a new compound distance to measure individual's search diameter in the objective space. After that, we propose a constraint handling technique using the compound distance and embed it in evolutionary algorithm for solving CMOPs. In the proposed algorithm, the individuals with large search diameters in the valuable areas are given priority to be preserved. This can prevent the working population from getting stuck in the local areas and then find the optimal solutions for CMOPs more effectively. A series of numerical experiments show that the proposed algorithm has better performance and robustness than several existing state-of-the-art constrained multi-objective evolutionary algorithms in dealing with different CMOPs.

    Citation: Jiawei Yuan. A constraint handling technique using compound distance for solving constrained multi-objective optimization problems[J]. AIMS Mathematics, 2021, 6(6): 6220-6241. doi: 10.3934/math.2021365

    Related Papers:

    [1] Bashir Ahmad, Ahmed Alsaedi, Ymnah Alruwaily, Sotiris K. Ntouyas . Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2020, 5(2): 1446-1461. doi: 10.3934/math.2020099
    [2] Ymnah Alruwaily, Lamya Almaghamsi, Kulandhaivel Karthikeyan, El-sayed El-hady . Existence and uniqueness for a coupled system of fractional equations involving Riemann-Liouville and Caputo derivatives with coupled Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Mathematics, 2023, 8(5): 10067-10094. doi: 10.3934/math.2023510
    [3] Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012
    [4] Bashir Ahmad, Ahmed Alsaedi, Areej S. Aljahdali, Sotiris K. Ntouyas . A study of coupled nonlinear generalized fractional differential equations with coupled nonlocal multipoint Riemann-Stieltjes and generalized fractional integral boundary conditions. AIMS Mathematics, 2024, 9(1): 1576-1594. doi: 10.3934/math.2024078
    [5] Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880
    [6] Murugesan Manigandan, Kannan Manikandan, Hasanen A. Hammad, Manuel De la Sen . Applying fixed point techniques to solve fractional differential inclusions under new boundary conditions. AIMS Mathematics, 2024, 9(6): 15505-15542. doi: 10.3934/math.2024750
    [7] Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316
    [8] Subramanian Muthaiah, Manigandan Murugesan, Muath Awadalla, Bundit Unyong, Ria H. Egami . Ulam-Hyers stability and existence results for a coupled sequential Hilfer-Hadamard-type integrodifferential system. AIMS Mathematics, 2024, 9(6): 16203-16233. doi: 10.3934/math.2024784
    [9] Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593
    [10] Djamila Chergui, Taki Eddine Oussaeif, Merad Ahcene . Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions. AIMS Mathematics, 2019, 4(1): 112-133. doi: 10.3934/Math.2019.1.112
  • Guiding the working population to evenly explore the valuable areas which are not dominated by feasible solutions is important in the process of dealing with constrained multi-objective optimization problems (CMOPs). To this end, according to the angular distance and p-norm, this paper introduces a new compound distance to measure individual's search diameter in the objective space. After that, we propose a constraint handling technique using the compound distance and embed it in evolutionary algorithm for solving CMOPs. In the proposed algorithm, the individuals with large search diameters in the valuable areas are given priority to be preserved. This can prevent the working population from getting stuck in the local areas and then find the optimal solutions for CMOPs more effectively. A series of numerical experiments show that the proposed algorithm has better performance and robustness than several existing state-of-the-art constrained multi-objective evolutionary algorithms in dealing with different CMOPs.



    The topic of fractional differential equations received immense popularity and attraction due to their extensive use in the mathematical modeling of several real world phenomena. Examples include HIV-immune system with memory [1], stabilization of chaotic systems [2], chaotic synchronization [3,4], ecology [5], infectious diseases [6], economic model [7], fractional neural networks [8,9], COVID-19 infection [10], etc. A salient feature distinguishing fractional-order differential and integral operators from the classical ones is their nonlocal nature, which can provide the details about the past history of the phenomena and processes under investigation. In the recent years, many researchers contributed to the development of fractional calculus, for example, see [11,12,13,14,15,16,17,18,19,20,21,22,23,24] and the references cited therein. One can also find a substantial material about fractional order coupled systems in the articles [25,26,27,28,29,30,31,32,33,34].

    In this paper, motivated by [30], we consider a Caputo type coupled system of nonlinear fractional differential equations supplemented with a new set of boundary conditions in terms of the sum and difference of the governing functions given by

    {CDνφ(t)=f(t,φ(t),ψ(t)),tJ:=[0,T],CDρψ(t)=g(t,φ(t),ψ(t)),tJ:=[0,T],P1(φ+ψ)(0)+P2(φ+ψ)(T)=mi=1ai(φ+ψ)(σi),T0(φψ)(s)dsζη(φψ)(s)ds=A, (1.1)

    where CDχ is the Caputo fractional derivative operator of order χ{ν,ρ}, ν,ρ(0,1], 0<σi<η<ζ<T, i=1,,m (the case 0<η<ζ<σi<T can be treated in a similar way), P1,P2,ai,A are nonnegative constants, such that P1+P2mi=1ai0, Tζ+η0, and f,g:[0,T]×R2R are continuous functions.

    Here it is imperative to notice that the first condition introduced in the problem (1.1) can be interpreted as the sum of the governing functions φ and ψ at the end positions of the interval [0,T] is sum of similar contributions due to arbitrary positions at σi(0,T),i=1,...,m, while the second condition describes that the contribution of the difference of the governing functions φ and ψ on the domain [0,T] differs from the one an arbitrary sub-domain (η,ξ) by a constant A.

    We will also study the problem (1.1) by replacing A in the last condition with the one containing nonlinear Riemann-Liouville integral term of the form:

    1Γ(δ)T0(Ts)δ1h(s,φ(s),ψ(s))ds,δ>0, (1.2)

    where h:[0,T]×R2R is a given continuous function.

    We organize the rest of the paper as follows. In Section 2, we outline the related concepts of fractional calculus and establish an auxiliary lemma for the linear analogue of the problem (1.1). We apply the standard fixed point theorems to derive the existence and uniqueness results for the problem (1.1) in Section 3. The case of nonlinear Riemann-Liouville integral boundary conditions is discussed in Section 4. The paper concludes with some interesting observations and special cases.

    Let us begin this section with some preliminary concepts of fractional calculus [11].

    Definition 2.1. The Riemann-Liouville fractional integral of order q>0 of a function h:[0,)R is defined by

    Iqh(t)=t0(ts)q1Γ(q)h(s)ds,t>0,

    provided the right-hand side is point-wise defined on (0,), where Γ is the Gamma function.

    Definition 2.2. The Caputo fractional derivative of order q for a function h:[0,]R with h(t)ACn[0,) is defined by

    CDqh(t)=1Γ(nq)t0h(n)(s)(ts)qn+1ds=Inqh(n)(t), t>0,n1<q<n.

    Lemma 2.1. Let q>0 and h(t)ACn[0,) or Cn[0,). Then

    (IqCDqh)(t)=h(t)n1k=0h(k)(0)k!tk,t>0,n1<q<n. (2.1)

    Now we present an auxiliary lemma related to the linear variant of problem (1.1).

    Lemma 2.2. Let F,GC[0,T], φ,ψAC[0,T].Then the solution of the following linear coupled system:

    {CDνφ(t)=F(t),tJ:=[0,T],CDρψ(t)=G(t),tJ:=[0,T],P1(φ+ψ)(0)+P2(φ+ψ)(T)=mi=1ai(φ+ψ)(σi),T0(φψ)(s)dsζη(φψ)(s)ds=A, (2.2)

    is given by

    φ(t)=t0(ts)ν1Γ(ν)F(s)ds+12{AΛ21Λ2T0(s0(sx)ν1Γ(ν)F(x)dxs0(sx)ρ1Γ(ρ)G(x)dx)dsP2Λ1(T0(Ts)ν1Γ(ν)F(s)ds+T0(Ts)ρ1Γ(ρ)G(s)ds)+1Λ2ξη(s0(sx)ν1Γ(ν)F(x)dxs0(sx)ρ1Γ(ρ)G(x)dx)ds+mi=1aiΛ1(σi0(σis)ν1Γ(ν)F(s)ds+σi0(σis)ρ1Γ(ρ)G(s)ds)}, (2.3)
    ψ(t)=t0(ts)ρ1Γ(ρ)G(s)ds+12{AΛ2+1Λ2T0(s0(sx)ν1Γ(ν)F(x)dxs0(sx)ρ1Γ(ρ)G(x)dx)dsP2Λ1(T0(Ts)ν1Γ(ν)F(s)ds+T0(Ts)ρ1Γ(ρ)G(s)ds)1Λ2ξη(s0(sx)ν1Γ(ν)F(x)dxs0(sx)ρ1Γ(ρ)G(x)dx)ds+mi=1aiΛ1(σi0(σis)ν1Γ(ν)F(s)ds+σi0(σis)ρ1Γ(ρ)G(s)ds)}, (2.4)

    where

    Λ1:=P1+P2mi=1ai0, (2.5)
    Λ2:=Tζ+η0. (2.6)

    Proof. Applying the operators Iν and Iρ on the first and second fractional differential equations in (2.2) respectively and using Lemma 2.1, we obtain

    φ(t)=t0(ts)ν1Γ(ν)F(s)ds+c1, (2.7)
    ψ(t)=t0(ts)ρ1Γ(ρ)G(s)ds+c2, (2.8)

    where c1,c2R. Inserting (2.7) and (2.8) in the condition P1(φ+ψ)(0)+P2(φ+ψ)(T)=mi=1ai(φ+ψ)(σi), we get

    c1+c2=1Λ1{mi=1ai(σi0(σis)ν1Γ(ν)F(s)ds+σi0(σis)ρ1Γ(ρ)G(s)ds)P2(T0(Ts)ν1Γ(ν)F(s)ds+T0(Ts)ρ1Γ(ρ)G(s)ds)}. (2.9)

    Using (2.7) and (2.8) in the condition T0(φψ)(s)dsζη(φψ)(s)ds=A, we obtain

    c1c2=1Λ2{AT0(s0(sx)ν1Γ(ν)F(x)dxs0(sx)ρ1Γ(ρ)G(x)dx)ds+ξη(s0(sx)ν1Γ(ν)F(x)dxs0(sx)ρ1Γ(ρ)G(x)dx)ds}. (2.10)

    Solving (2.9) and (2.10) for c1 and c2, yields

    c1=12{AΛ21Λ2T0(s0(sx)ν1Γ(ν)F(x)dxs0(sx)ρ1Γ(ρ)G(x)dx)dsP2Λ1(T0(Ts)ν1Γ(ν)F(s)ds+T0(Ts)ρ1Γ(ρ)G(s)ds)+1Λ2ξη(s0(sx)ν1Γ(ν)F(x)dxs0(sx)ρ1Γ(ρ)G(x)dx)ds+1Λ1mi=1ai(σi0(σis)ν1Γ(ν)F(s)ds+σi0(σis)ρ1Γ(ρ)G(s)ds)},

    and

    c2=12{AΛ2+1Λ2T0(s0(sx)ν1Γ(ν)F(x)dxs0(sx)ρ1Γ(ρ)G(x)dx)dsP2Λ1(T0(Ts)ν1Γ(ν)F(s)ds+T0(Ts)ρ1Γ(ρ)G(s)ds)1Λ2ξη(s0(sx)ν1Γ(ν)F(x)dxs0(sx)ρ1Γ(ρ)G(x)dx)ds+1Λ1mi=1ai(σi0(σis)ν1Γ(ν)F(s)ds+σi0(σis)ρ1Γ(ρ)G(s)ds)}.

    Substituting the values of c1 and c2 in (2.7) and (2.8) respectively, we get the solution (2.3) and (2.4). By direct computation, one can obtain the converse of this lemma. The proof is complete.

    Let X=C([0,T],R)×C([0,T],R) denote the Banach space endowed with the norm (φ,ψ)=φ+ψ=supt[0,T]|φ(t)|+supt[0,T]|ψ(t)|, (φ,ψ)X. In view of Lemma 2.2, we define an operator Φ:XX in relation to the problem (1.1) as

    Φ(φ,ψ)(t):=(Φ1(φ,ψ)(t),Φ2(φ,ψ)(t)), (3.1)

    where

    Φ1(φ,ψ)(t)=1Γ(ν)t0(ts)ν1f(s,φ(s),ψ(s))ds+12{AΛ21Λ2T0(s0(sx)ν1Γ(ν)f(x,φ(x),ψ(x))dxs0(sx)ρ1Γ(ρ)g(x,φ(x),ψ(x))dx)dsP2Λ1(T0(Ts)ν1Γ(ν)f(s,φ(s),ψ(s))ds+T0(Ts)ρ1Γ(ρ)g(s,φ(s),ψ(s))ds)+1Λ2ξη(s0(sx)ν1Γ(ν)f(x,φ(x),ψ(x))dxs0(sx)ρ1Γ(ρ)g(x,φ(x),ψ(x))dx)ds+1Λ1mi=1ai(σi0(σis)ν1Γ(ν)f(s,φ(s),ψ(s))ds+σi0(σis)ρ1Γ(ρ)g(s,φ(s),ψ(s))ds)}, (3.2)

    and

    Φ2(φ,ψ)(t)=1Γ(ρ)t0(ts)ρ1g(s,φ(s),ψ(s))ds+12{AΛ2+1Λ2T0(s0(sx)ν1Γ(ν)f(x,φ(x),ψ(x))dxs0(sx)ρ1Γ(ρ)g(x,φ(x),ψ(x))dx)dsP2Λ1(T0(Ts)ν1Γ(ν)f(s,φ(s),ψ(s))ds+T0(Ts)ρ1Γ(ρ)g(s,φ(s),ψ(s))ds)1Λ2ξη(s0(sx)ν1Γ(ν)f(x,φ(x),ψ(x))dxs0(sx)ρ1Γ(ρ)g(x,φ(x),ψ(x))dx)ds+1Λ1mi=1ai(σi0(σis)ν1Γ(ν)f(s,φ(s),ψ(s))ds+σi0(σis)ρ1Γ(ρ)g(s,φ(s),ψ(s))ds)}. (3.3)

    In the forthcoming analysis, we need the following assumptions.

    (H1) There exist continuous nonnegative functions μi,κiC([0,1],R+),i=1,2,3, such that

    |f(t,φ,ψ)|μ1(t)+μ2(t)|φ|+μ3(t)|ψ|(t,φ,ψ)J×R2;
    |g(t,φ,ψ)|κ1(t)+κ2(t)|φ|+κ3(t)|ψ|(t,φ,ψ)J×R2.

    (H2) There exist positive constants αi,βi,i=1,2, such that

    |f(t,φ1,ψ1)f(t,φ2,ψ2)|α1|φ1φ2|+α2|ψ1ψ2|,tJ,φi,ψiR,i=1,2;
    |g(t,φ1,ψ1)g(t,φ2,ψ2)|β1|φ1φ2|+β2|ψ1ψ2|,tJ,φi,ψiR,i=1,2.

    For computational convenience, we introduce the notation:

    ϱ1=12|Λ1|[mi=1aiσνiΓ(ν+1)+P2TνΓ(ν+1)]+12|Λ2|[ζν+1ην+1Γ(ν+2)+Tν+1Γ(ν+2)], (3.4)
    ϱ2=12|Λ1|[mi=1aiσρiΓ(ρ+1)+P2TρΓ(ρ+1)]+12|Λ2|[ζρ+1ηρ+1Γ(ρ+2)+Tρ+1Γ(ρ+2)], (3.5)

    and

    M0=min{1[μ2(2ϱ1+TνΓ(ν+1))+κ2(2ϱ2+TρΓ(ρ+1))],1[μ3(2ϱ1+TνΓ(ν+1))+κ3(2ϱ2+TρΓ(ρ+1))]}.

    We make use of the following fixed point theorem [35] to prove the existence of solutions for the problem (1.1).

    Lemma 3.1. Let E be the Banach space and Q:EE be a completely continuous operator. If the set Ω={xE|x=μQx,0<μ<1} is bounded, then Q has a fixed point in E.

    Theorem 3.1. Suppose that f,g:J×R2R are continuousfunctions and the condition (H1) holds. Then there exists at least one solution for the problem (1.1) on J if

    μ2(2ϱ1+TνΓ(ν+1))+κ2(2ϱ2+TρΓ(ρ+1))<1,μ3(2ϱ1+TνΓ(ν+1))+κ3(2ϱ2+TρΓ(ρ+1))<1, (3.6)

    where ϱi(i=1,2) are defined in (3.4)–(3.5).

    Proof. Observe that continuity of Φ:XX follows from that of the functions f and g. Now we show that the operator Φ maps any bounded subset of X into a relatively compact subset of X. For that, let ΩˉrX be bounded. Then, for the positive real constants Lf and Lg, we have

    |f(t,φ(t),ψ(t))|Lf,|g(t,φ(t),ψ(t))|Lg,(φ,ψ)Ωˉr.

    So, for any (φ,ψ)Ωˉr, tJ, we get

    |Φ1(φ,ψ)(t)|LfΓ(ν)t0(ts)ν1ds+12{A|Λ2|+1Λ2T0(Lfs0(sx)ν1Γ(ν)dx+Lgs0(sx)ρ1Γ(ρ)dx)ds+P2|Λ1|(LfT0(Ts)ν1Γ(ν)ds+LgT0(Ts)ρ1Γ(ρ)ds)+1|Λ2|ξη(Lfs0(sx)ν1Γ(ν)dx+Lgs0(sx)ρ1Γ(ρ)dx)ds+1|Λ1|mi=1ai(Lfσi0(σis)ν1Γ(ν)ds+Lgσi0(σis)ρ1Γ(ρ)ds)}LfTνΓ(ν+1)+Lf2|Λ1|[mi=1aiσνiΓ(ν+1)+P2TνΓ(ν+1)]+Lf2|Λ2|[ζν+1ην+1Γ(ν+2)+Tν+1Γ(ν+2)]+Lg2|Λ1|[mi=1aiσρiΓ(ρ+1)+P2TρΓ(ρ+1)]+Lg2|Λ2|[ζρ+1ηρ+1Γ(ρ+2)+Tρ+1Γ(ρ+2)]+A2|Λ2|,

    which, in view of (3.4) and (3.5), takes the form:

    |Φ1(φ,ψ)(t)|Lf(TνΓ(ν+1)+ϱ1)+Lgϱ2+A2|Λ2|. (3.7)

    In a similar fashion, one can obtain

    |Φ2(φ,ψ)(t)|Lfϱ1+Lg(TρΓ(ρ+1)+ϱ2)+A2|Λ2|. (3.8)

    From (3.7) and (3.8), we get

    Φ(φ,ψ)=Φ1(φ,ψ)+Φ2(φ,ψ)Lf(TνΓ(ν+1)+2ϱ1)+Lg(TρΓ(ρ+1)+2ϱ2)+A|Λ2|.

    From the foregoing inequality, we deduce that the operator Φ is uniformly bounded.

    In order to show that Φ maps bounded sets into equicontinuous sets of X, let t1,t2[0,T],t1<t2, and (φ,ψ)Ωˉr. Then

    |Φ1(φ,ψ)(t2)Φ1(φ,ψ)(t1)||1Γ(ν)(t10[(t2s)ν1(t1s)ν1]f(s,φ(s),ψ(s))ds+t2t1(t2s)ν1f(s,φ(s),ψ(s))ds)|Lf(2(t2t1)ν+tν2tν1Γ(ν+1)).

    Analogously, we can obtain

    |Φ2(φ,ψ)(t2)Φ2(u,v)(t1)|Lg(2(t2t1)ρ+tρ2tρ1Γ(ρ+1)).

    Clearly the right-hand sides of the above inequalities tend to zero when t1t2, independently of (φ,ψ)Ωˉr. Thus it follows by the Arzelá-Ascoli theorem that the operator Φ:XX is completely continuous.

    Next we consider the set E={(φ,ψ)X|(φ,ψ)=λΦ(φ,ψ),0<λ<1} and show that it is bounded. Let (φ,ψ)E, then (φ,ψ)=λΦ(φ,ψ),0<λ<1. For any tJ, we have

    φ(t)=λΦ1(φ,ψ)(t),ψ(t)=λΦ2(φ,ψ)(t).

    As in the previous step, using ϱi(i=1,2) given by (3.4)-(3.5), we find that

    |φ(t)|=λ|Φ1(φ,ψ)(t)|(μ1+μ2φ+μ3ψ)(TνΓ(ν+1)+ϱ1)+(κ1+κ2φ+κ3ψ)ϱ2+A2|Λ2|,
    |ψ(t)|=λ|Φ2(φ,ψ)(t)|(μ1+μ2φ+μ3ψ)ϱ1+(κ1+κ2φ+κ3ψ)(TρΓ(ρ+1)+ϱ2)+A2|Λ2|.

    In consequence, we get

    φ+ψμ1(2ϱ1+TνΓ(ν+1))+κ1(2ϱ2+TρΓ(ρ+1))+A|Λ2|+[μ2(2ϱ1+TνΓ(ν+1))+κ2(2ϱ2+TρΓ(ρ+1))]φ+[μ3(2ϱ1+TνΓ(ν+1))+κ3(2ϱ2+TνΓ(ν+1))]ψ.

    Thus, by the condition (3.6), we have

    (φ,ψ)1M0{μ1(2ϱ1+TνΓ(ν+1))+κ1(2ϱ2+TρΓ(ρ+1))+A|Λ2|},

    which shows that (φ,ψ) is bounded for tJ. In consequence, the set E is bounded. Thus it follows by the conclusion of Lemma 3.1 that the operator Φ has at least one fixed point, which is indeed a solution of the problem (1.1).

    Letting μ2(t)=μ3(t)0 and κ2(t)=κ3(t)0, the statement of Theorem 3.1 takes the following form.

    Corollary 3.1. Let f,g:J×R2R be continuousfunctions such that

    |f(t,φ,ψ)|μ1(t),|g(t,φ,ψ)|κ1(t),(t,φ,ψ)J×R2,

    where μ1,κ1C([0,T],R+). Then there exists at least one solution for the problem (1.1) on J.

    Corollary 3.2. If μi(t)=λi,κi(t)=εi,i=1,2,3, then the condition (H1) becomes:

    (H1) there exist real constants λi,εi>0,i=1,2, such that

    |f(t,φ,ψ)|λ1+λ2|φ|+λ3|ψ|(t,φ,ψ)J×R2;
    |f(t,φ,ψ)|ε1+ε2|φ|+ε3|ψ|(t,φ,ψ)J×R2;

    and (3.6) takes the form:

    λ2(2ϱ1+TνΓ(ν+1))+ε2(2ϱ2+TρΓ(ρ+1))<1,λ3(2ϱ1+TνΓ(ν+1))+ε3(2ϱ2+TρΓ(ρ+1))<1.

    Then there exists at least one solution for the problem (1.1) on J.

    The next result is concerned with the existence of a unique solution for the problem (1.1) and is reliant on the contraction mapping principle due to Banach.

    Theorem 3.2. Let f,g:[0,1]×R2R be continuous functions and the assumption (H2) holds.Then the problem (1.1) has a unique solution on J if

    α(TνΓ(ν+1)+2ϱ1)+β(TρΓ(ρ+1)+2ϱ2)<1, (3.9)

    where α=max{α1,α2},β=max{β1,β2} and ϱi,i=1,2, are defined in (3.4)-(3.5).

    Proof. Consider the operator Φ:XX defined by (3.1) and take

    r>M1(TνΓ(ν+1)+2ϱ1)+M2(TρΓ(ρ+1)+2ϱ2)+A|Λ2|1(α(TνΓ(ν+1)+2ϱ1)+β(TρΓ(ρ+1)+2ϱ2)),

    where M1=supt[0,T]|f(t,0,0)|, and M2=supt[0,T]|g(t,0,0)|. Then we show that ΦBrBr, where Br={(φ,ψ)X:(φ,ψ)r}. By the assumption (H1), for (φ,ψ)Br,t[0,T], we have

    |f(t,φ(t),ψ(t))||f(t,φ(t),ψ(t))f(t,0,0)|+|f(t,0,0)|α(|φ(t)|+|ψ(t)|)+M1α(φ+ψ)+M1.

    In a similar manner, one can find that

    |g(t,φ(t),ψ(t))|β(φ+ψ)+M2.

    In consequence, for (φ,ψ)Br, we obtain

    |Φ1(φ,ψ)(t)|TνΓ(ν+1)(α(φ+ψ)+M1)+12[A|Λ2|+1|Λ2|(Tν+1Γ(ν+2)(α(φ+ψ)+M1)+Tρ+1Γ(ρ+2)(β(φ+ψ)+M2))+P2|Λ1|(TνΓ(ν+1)(α(φ+ψ)+M1)+TρΓ(ρ+1)(β(φ+ψ)+M2))+1|Λ2|(ζν+1ην+1Γ(ν+2)(α(φ+ψ)+M1)+ζρ+1ηρ+1Γ(ρ+2)(β(φ+ψ)+M2))+1|Λ1|mi=1ai(σνiΓ(ν+1)(α(φ+ψ)+M1)+σρiΓ(ρ+1)(β(φ+ψ)+M2))],

    which, on taking the norm for tJ, yields

    Φ1(φ,ψ)(α(TνΓ(ν+1)+ϱ1)+βϱ2)(φ+ψ)+M1(TνΓ(ν+1)+ϱ1)+M2ϱ2+A2|Λ2|.

    In the same way, for (φ,ψ)Br, one can obtain

    Φ2(φ,ψ)(αϱ1+β(TρΓ(ρ+1)+ϱ2))(φ+ψ)+M1ϱ1+M2(TρΓ(ρ+1)+ϱ2)+A2|Λ2|.

    Therefore, for any (φ,ψ)Br, we have

    Φ(φ,ψ))=Φ1(φ,ψ)+Φ2(φ,ψ)(α(TνΓ(ν+1)+2ϱ1)+β(TρΓ(ρ+1)+2ϱ2))(φ+ψ)+M1(TνΓ(ν+1)+2ϱ1)+M2(TρΓ(ρ+1)+2ϱ2)+A|Λ2|<r,

    which shows that Φ maps Br into itself.

    Next it will be shown that the operator Φ is a contraction. For (φ1,ψ1),(φ2,ψ2)E,t[0,T], it follows by (H2) that

    |Φ1(φ1,ψ1)(t)Φ1(φ2,ψ2)(t)|t0(ts)ν1Γ(ν)|f(s,φ1(s),ψ1(s))f(s,φ2(s),ψ2(s))|ds+12{1|Λ2|T0(s0(sx)ν1Γ(ν)|f(x,φ1(x),ψ1(x))f(x,φ2(x),ψ2(x))|dx+s0(sx)ρ1Γ(ρ)|g(x,φ1(x),ψ1(x))g(x,φ2(x),ψ2(x))|dx)ds+P2|Λ1|(T0(Ts)ν1Γ(ν)|f(s,φ1(s),ψ1(s))f(s,φ2(s),ψ2(s))|ds+T0(Ts)ρ1Γ(ρ)|g(s,φ1(s),ψ1(s))g(s,φ2(s),ψ2(s))|ds)+1|Λ2|ξη(s0(sx)ν1Γ(ν)|f(x,φ1(x),ψ1(x))f(x,φ2(x),ψ2(x))|dx+s0(sx)ρ1Γ(ρ)|g(x,φ1(x),ψ1(x))g(x,φ2(x),ψ2(x))|dx)ds+1|Λ1|mi=1ai(σi0(σis)ν1Γ(ν)|f(s,φ1(s),ψ1(s))f(s,φ2(s),ψ2(s))|ds+σi0(σis)ρ1Γ(ρ)|g(s,φ1(s),ψ1(s))g(s,φ2(s),ψ2(s))|ds)}{α(TνΓ(ν+1)+ϱ1)+βϱ2}(φ1φ2+ψ1ψ2),

    and

    |Φ2(φ1,ψ1)(t)Φ2(φ2,ψ2)(t)|t0(ts)ρ1Γ(ρ)|g(s,φ1(s),ψ1(s))g(s,φ2(s),ψ2(s))|ds+12{1|Λ2|T0(s0(sx)ν1Γ(ν)|f(x,φ1(x),ψ1(x))f(x,φ2(x),ψ2(x))|dx+s0(sx)ρ1Γ(ρ)|g(x,φ1(x),ψ1(x))g(x,φ2(x),ψ2(x))|dx)ds+P2|Λ1|(T0(Ts)ν1Γ(ν)|f(s,φ1(s),ψ1(s))f(s,φ2(s),ψ2(s))|ds+T0(Ts)ρ1Γ(ρ)|g(s,φ1(s),ψ1(s))g(s,φ2(s),ψ2(s))|ds)+1|Λ2|ξη(s0(sx)ν1Γ(ν)|f(x,φ1(x),ψ1(x))f(x,φ2(x),ψ2(x))|dx+s0(sx)ρ1Γ(ρ)|g(x,φ1(x),ψ1(x))g(x,φ2(x),ψ2(x))|dx)ds+1|Λ1|mi=1ai(σi0(σis)ν1Γ(ν)|f(s,φ1(s),ψ1(s))f(s,φ2(s),ψ2(s))|ds+σi0(σis)ρ1Γ(ρ)|g(s,φ1(s),ψ1(s))g(s,φ2(s),ψ2(s))|ds)}{αϱ1+β(TρΓ(ρ+1)+ϱ2)}(φ1φ2+ψ1ψ2).

    In view of the foregoing inequalities, it follows that

    Φ(φ1,ψ1)Φ(φ2,ψ2)=Φ1(φ1,ψ1)Φ1(φ2,ψ2)+Φ2(φ1,ψ1)Φ2(φ2,ψ2){α(TνΓ(ν+1)+2ϱ1)+β(TρΓ(ρ+1)+2ϱ2)}(φ1φ2,ψ1ψ2).

    Using the condition (3.9), we deduce from the above inequality that Φ is a contraction mapping. Consequently Φ has a unique fixed point by the application of contraction mapping principle. Hence there exists a unique solution for the problem (1.1) on J. The proof is finished.

    Example 3.1. Consider the following problem

    {CD1/2φ(t)=f(t,φ(t),ψ(t)),tJ:=[0,2],CD4/5ψ(t)=g(t,φ(t),ψ(t)),tJ:=[0,2],(φ+ψ)(0)+5/2(φ+ψ)(2)=1/2(φ+ψ)(1/4)+3/2(φ+ψ)(1/2),20(φψ)(s)ds3/42/3(φψ)(s)ds=1, (3.10)

    where ν=1/2,ρ=4/5,η=2/3,ζ=3/4,a1=1/2,a2=3/2,P1=1,P2=5/2,σ1=1/4,σ2=1/2,A=1,T=2, and f(t,φ,ψ) and g(t,φ,ψ) will be fixed later.

    Using the given data, we find that Λ1=1.5,Λ2=1.91666667, ϱ1=2.110627579,ϱ2=2.494392906, where Λ1,Λ2,ϱ1 and ϱ2 are respectively given by (2.5), (2.6), (3.4) and (3.5). For illustrating theorem 3.1, we take

    f(t,φ,ψ)=et516+t2(tan1φ+ψ+cost)andg(t,φ,ψ)=1(t+2)6(|φ|1+|ψ|+tψ+et). (3.11)

    Clearly f and g are continuous and satisfy the condition (H1) with μ1(t)=etcost516+t2,μ2(t)=et516+t2,μ3(t)=et1016+t2,κ1(t)=et(t+2)6,κ2(t)=1(t+2)6, and κ3(t)=12(t+2)6. Also

    μ2(2ϱ1+TνΓ(ν+1))+κ2(2ϱ2+TρΓ(ρ+1))0.398009902,

    and

    μ3(2ϱ1+TνΓ(ν+1))+κ3(2ϱ2+TρΓ(ρ+1))0.199004951<1.

    Thus all the conditions of theorem 3.1 hold true and hence the problem (3.10) with f(t,φ,ψ) and g(t,φ,ψ) given by (3.11) has at least one solution on [0,2].

    Next we demonstrate the application of Theorem 3.2. Let us choose

    f(t,φ,ψ)=ettan1φ+cosψ516+t2andg(t,φ,ψ)=1(2+t)6(|φ|2+|φ|+sinψ). (3.12)

    It is easy to show that the condition (H2) is satisfied with α1=α2=1/20=α and β1=1/64,β2=1/128 and so, β=1/64. Also α(TνΓ(ν+1)+2ϱ1)+β(TρΓ(ρ+1)+2ϱ2)0.39800990<1. Thus the hypothesis of Theorem 3.2 holds and hence its conclusion implies that the problem (3.10) with f(t,φ,ψ) and g(t,φ,ψ) given by (3.12) has a unique solution on [0,2].

    In this section, we consider a variant of the problem (1.1) involving a nonlinear Riemann-Liouville integral term in the last boundary condition given by

    {CDνφ(t)=f(t,φ(t),ψ(t)),tJ:=[0,T],CDρψ(t)=g(t,φ(t),ψ(t)),tJ:=[0,T],P1(φ+ψ)(0)+P2(φ+ψ)(T)=mi=1ai(φ+ψ)(σi),T0(φψ)(s)dsζη(φψ)(s)ds=1Γ(δ)T0(Ts)δ1h(s,φ(s),ψ(s))ds,δ>0. (4.1)

    Now we state a uniqueness result for the problem (4.1). We do not provide the proof of this result as it is similar to that of Theorem 3.2.

    Theorem 4.1. Let f,g,h:[0,1]×R2R be continuous functions and the following assumption holds:

    (¯H2) There exist positive constants αi,βi,γi,i=1,2, such that

    |f(t,φ1,ψ1)f(t,φ2,ψ2)|α1|φ1φ2|+α2|ψ1ψ2|,tJ,φi,ψiR,i=1,2;
    |g(t,φ1,ψ1)g(t,φ2,ψ2)|β1|φ1φ2|+β2|ψ1ψ2|,tJ,φi,ψiR,i=1,2;
    |h(t,φ1,ψ1)h(t,φ2,ψ2)|γ1|φ1φ2|+γ2|ψ1ψ2|,tJ,φi,ψiR,i=1,2.

    Then the problem (4.1) has a unique solution on J if

    γTδ|Λ2|Γ(δ+1)+α(TνΓ(ν+1)+2ϱ1)+β(TρΓ(ρ+1)+2ϱ2)<1, (4.2)

    where α=max{α1,α2},β=max{β1,β2},γ=max{γ1,γ2}, and ϱi,i=1,2 are defined in (3.4)-(3.5).

    Example 4.1. Let us consider the data given in Example 3.1 for the problem (4.1) with (3.12), h(t,φ,ψ)=(sinφ+cosψ+1/2)/t2+49 and δ=3/2. Then γ=1/7 and

    γTδ|Λ2|Γ(δ+1)+α(TνΓ(ν+1)+2ϱ1)+β(TρΓ(ρ+1)+2ϱ2)0.5565956<1.

    Clearly the assumptions of Theorem 4.1 are satisfied. Hence, by the conclusion of Theorem 4.1, the problem (4.1) with the given data has a unique solution on [0,2].

    We have studied a coupled system of nonlinear Caputo fractional differential equations supplemented with a new class of nonlocal multipoint-integral boundary conditions with respect to the sum and difference of the governing functions by applying the standard fixed point theorems. The existence and uniqueness results presented in this paper are not only new in the given configuration but also provide certain new results by fixing the parameters involved in the given problem. For example, our results correspond to the ones with initial-multipoint-integral and terminal-multipoint-integral boundary conditions by fixing P2=0 and P1=0 respectively in the present results. By taking A=0 in the present study, we obtain the results for the given coupled system of fractional differential equations with the boundary conditions of the form:

    P1(φ+ψ)(0)+P2(φ+ψ)(T)=mi=1ai(φ+ψ)(σi),T0(φψ)(s)ds=ζη(φψ)(s)ds,

    where the second (integral) condition means that the contribution of the difference of the unknown functions (φψ) on the domain (0,T) is equal to that on the sub-domain (η,ζ). Such a situation arises in heat conduction problems with sink and source. In the last section, we discussed the uniqueness of solutions for a variant of the problem (1.1) involving nonlinear Riemann-Liouville integral term in the last boundary condition of (1.1). This consideration further enhances the scope of the problem at hand. As a special case, the uniqueness result (Theorem 4.1) for the problem (4.1) corresponds to nonlinear integral boundary conditions for δ=1.

    This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia under grant no. (KEP-PhD-80-130-42). The authors, therefore, acknowledge with thanks DSR technical and financial support. The authors also thank the reviewers for their useful remarks that led to the improvement of the original manuscript.

    The authors declare that they have no competing interests.



    [1] M. Baioletti, A. Milani, V. Santucci, MOEA/DEP: An algebraic decomposition-based evolutionary algorithm for the multiobjective permutation flowshop scheduling problem, In: European Conference on evolutionary Computation in Combinatorial Optimization, Springer, Cham, (2018), 132-145.
    [2] M. Zangari, A. Mendiburu, R. Santana, A. Pozo, Multiobjective decomposition-based mallows models estimation of distribution algorithm. A case of study for permutation flowshop scheduling problem, Inf. Sci., 397 (2017), 137-154.
    [3] O. Kabadurmus, M. F. Tasgetiren, H. Oztop, M. S. Erdogan, Solving 0-1 bi-objective multi-dimensional knapsack problems using binary genetic algorithm, Springer, Cham, (2021), 51-67.
    [4] K. Florios, G. Mavrotas, Generation of the exact pareto set in multi-objective traveling salesman and set covering problems, Appl. Math. Comput., 237 (2014), 1-19. doi: 10.1016/j.amc.2014.03.110
    [5] H. K. Singh, T. Ray, R. Sarker, Optimum oil production planning using infeasibility driven evolutionary algorithm, Evol. Comput., 21 (2013), 65-82. doi: 10.1162/EVCO_a_00064
    [6] Y. Yang, J. Liu, S. Tan, A constrained multi-objective evolutionary algorithm based on decomposition and dynamic constraint-handling mechanism, Appl. Soft Comput., 89 (2020), 106104. doi: 10.1016/j.asoc.2020.106104
    [7] J. Yuan, H. L. Liu, C. Peng, Population decomposition-based greedy approach algorithm for the multi-objective knapsack problems, Int. J. Pattern Recognit Artif. Intell., 31 (2017), 1759006. doi: 10.1142/S0218001417590066
    [8] H. Ma, H. Wei, Y. Tian, R. Cheng, X. Zhang, A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints, Inf. Sci., 560 (2021), 68-91. doi: 10.1016/j.ins.2021.01.029
    [9] P. Myszkowski, M. Laszczyk, Diversity based selection for many-objective evolutionary optimisation problems with constraints, Inf. Sci., 546 (2021), 665-700. doi: 10.1016/j.ins.2020.08.118
    [10] M. Ming, A. Trivedi, R. Wang, D. Srinivasan, T. Zhang, A dual-population based evolutionary algorithm for constrained multi-objective optimization, IEEE Trans. Evol. Comput., 2021. DOI: 10.1109/TEVC.2021.3066301.
    [11] K. Deb, An efficient constraint handling method for genetic algorithms, Comput. Methods Appl. Mech. Eng., 186 (2000), 311-338. doi: 10.1016/S0045-7825(99)00389-8
    [12] Z. Fan, W. Li, X. Cai, H. Huang, Y. Fang, Y. You, et al., An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions, Soft Comput., 23 (2019), 12491-12510. doi: 10.1007/s00500-019-03794-x
    [13] Z. Liu, Y. Wang, Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces, IEEE Trans. Evol. Comput., 23 (2019), 870-884. doi: 10.1109/TEVC.2019.2894743
    [14] J. P. Li, Y. Wang, S. Yang, Z. Cai, A comparative study of constraint-handling techniques in evolutionary constrained multiobjective optimization, In: 2016 IEEE Congress on Evolutionary Computation (CEC), IEEE, (2016), 4175-4182.
    [15] Y. Yang, J. Liu, S. Tan, H. Wang, A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio, Appl. Soft Comput., 80 (2019), 42-56. doi: 10.1016/j.asoc.2019.02.041
    [16] H. Afshari, W. Hare, S. Tesfamariam, Constrained multi-objective optimization algorithms: Review and comparison with application in reinforced concrete structures, Appl. Soft Comput., 83 (2019), 105631. doi: 10.1016/j.asoc.2019.105631
    [17] M. A. Jan, N. Tairan, R. A. Khanum, Threshold based dynamic and adaptive penalty functions for constrained multiobjective optimization, In: 2013 1st International Conference on Artificial Intelligence, Modelling and Simulation, IEEE, (2013), 49-54.
    [18] A. Panda, S. Pani, A symbiotic organisms search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems, Appl. Soft Comput., 46 (2016), 344-360. doi: 10.1016/j.asoc.2016.04.030
    [19] L. Jiao, J. Luo, R. Shang, F. Liu, A modified objective function method with feasible-guiding strategy to solve constrained multi-objective optimization problems, Appl. Soft Comput., 14 (2014), 363-380. doi: 10.1016/j.asoc.2013.10.008
    [20] H. Jain, K. Deb, An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach, IEEE Trans. Evol. Comput., 18 (2013), 602-622.
    [21] R. Cheng, Y. Jin, M. Olhofer, B. Sendhoff, A reference vector guided evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput., 20 (2016), 773-791. doi: 10.1109/TEVC.2016.2519378
    [22] M. A. Jan, R. A. Khanum, A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D, Appl. Soft Comput., 13 (2013), 128-148. doi: 10.1016/j.asoc.2012.07.027
    [23] Z. Z. Liu, Y. Wang, P. Q. Huang, AnD: A many-objective evolutionary algorithm with angle-based selection and shift-based density estimation, Inf. Sci., 509 (2020), 400-419. doi: 10.1016/j.ins.2018.06.063
    [24] Z. Fan, Y. Fang, W. Li, X. Cai, C. Wei, E. Goodman, MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems, Appl. Soft Comput. J., 74 (2019), 621-633. doi: 10.1016/j.asoc.2018.10.027
    [25] M. Asafuddoula, T. Ray, R. Sarker, A decomposition-based evolutionary algorithm for many objective optimization, IEEE Trans. Evol. Comput., 19 (2014), 445-460.
    [26] S. Z. Martinez, C. A. C. Coello, A multi-objective evolutionary algorithm based on decomposition for constrained multi-objective optimization, In: 2014 IEEE Congress on evolutionary computation (CEC), IEEE, (2014), 429-436.
    [27] F. Qian, B. Xu, R. Qi, H. Tianfield, Self-adaptive differential evolution algorithm with α-constrained-domination principle for constrained multi-objective optimization, Soft Comput., 16 (2012), 1353-1372. doi: 10.1007/s00500-012-0816-6
    [28] C. Peng, H. L. Liu, E. D. Goodman, Handling multi-objective optimization problems with unbalanced constraints and their effects on evolutionary algorithm performance, Swarm Evol. Comput., 55 (2020), 100676. doi: 10.1016/j.swevo.2020.100676
    [29] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, et al., Push and pull search for solving constrained multi-objective optimization problems, Swarm Evol. Comput., 44 (2019), 665-679. doi: 10.1016/j.swevo.2018.08.017
    [30] Z. Fan, Z. Wang, W. Li, Y. Yuan, Y. You, Z. Yang, et al., Push and pull search embedded in an M2M framework for solving constrained multi-objective optimization problems, Swarm Evol. Comput., 54 (2020), 100651. doi: 10.1016/j.swevo.2020.100651
    [31] K. Li, R. Chen, G. Fu, X. Yao, Two-archive evolutionary algorithm for constrained multiobjective optimization, IEEE Trans. Evol. Comput., 23 (2018), 303-315.
    [32] Y. Tian, T. Zhang, J. Xiao, X. Zhang, Y. Jin, A coevolutionary framework for constrained multi-objective optimization problems, IEEE Trans. Evol. Comput., 25 (2021), 102-116. doi: 10.1109/TEVC.2020.3004012
    [33] J. Yi, J. Bai, H. He, J. Peng, D. Tang, ar-MOEA: A novel preference-based dominance relation for evolutionary multiobjective optimization, IEEE Trans. Evol. Comput., 23 (2018), 788-802.
    [34] Q. Zhang, H. Li, MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11 (2007), 712-731. doi: 10.1109/TEVC.2007.892759
    [35] K. Li, K. Deb, Q. Zhang, S. Kwong, An evolutionary many-objective optimization algorithm based on dominance and decomposition, IEEE Trans. Evol. Comput., 19 (2014), 694-716.
    [36] H. L. Liu, F. Gu, Q. Zhang, Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems, IEEE Trans. Evol. Comput., 18 (2013), 450-455.
    [37] J. Yuan, H. L. Liu, F. Gu, Q. Zhang, Z. He, Investigating the properties of indicators and an evolutionary many-objective algorithm based on a promising region, IEEE Trans. Evol. Comput., 25 (2021), 75-86. doi: 10.1109/TEVC.2020.2999100
    [38] J. Yuan, H. L. Liu, F. Gu, A cost value based evolutionary many-objective optimization algorithm with neighbor selection strategy, In: 2018 IEEE Congress on Evolutionary Computation (CEC), IEEE, (2018), 1-8.
    [39] X. Chen, Z. Hou, J. Liu, Multi-objective optimization with modified pareto differential evolution, In: 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA), IEEE, (2008), 90-95.
    [40] K. Deb, M. Goyal, A combined genetic adaptive search (GeneAS) for engineering design, Comput. Sci. Inf., 26 (1996), 30-45.
    [41] K. Deb, A. Pratap, T. Meyarivan, Constrained test problems for multi-objective evolutionary optimization, In: International Conference on Evolutionary Multi-Criterion Optimization, Springer, (2001), 284-298.
    [42] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, et al., Difficulty adjustable and scalable constrained multi-objective test problem toolkit, Evol. Comput., 28 (2020), 339-378. doi: 10.1162/evco_a_00259
    [43] Z. Ma, Y. Wang, Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons, IEEE Trans. Evol. Comput., 23 (2019), 972-986. doi: 10.1109/TEVC.2019.2896967
    [44] Z. Z. Liu, Y. Wang, Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces, IEEE Trans. Evol. Comput., 23 (2019), 870-884. doi: 10.1109/TEVC.2019.2894743
    [45] P. A. Bosman, D. Thierens, The balance between proximity and diversity in multiobjective evolutionary algorithms, IEEE Trans. Evol. Comput., 7 (2003), 174-188. doi: 10.1109/TEVC.2003.810761
    [46] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach, IEEE Trans. Evol. Comput., 3 (1999), 257-271. doi: 10.1109/4235.797969
    [47] I. Das, J. E. Dennis, Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems, SIAM J. Optim., 8 (1998), 631-657.
  • This article has been cited by:

    1. Haitham Qawaqneh, Hasanen A. Hammad, Hassen Aydi, Exploring new geometric contraction mappings and their applications in fractional metric spaces, 2024, 9, 2473-6988, 521, 10.3934/math.2024028
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2915) PDF downloads(213) Cited by(10)

Figures and Tables

Figures(4)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog