Research article

Stochastic persistence and global attractivity of a two-predator one-prey system with S-type distributed time delays

  • Received: 14 October 2022 Revised: 25 November 2022 Accepted: 07 December 2022 Published: 27 December 2022
  • In this paper, well-posedness and asymptotic behaviors of a stochastic two-predator one-prey system with S-type distributed time delays are studied by using stochastic analytical techniques. First, the existence and uniqueness of global positive solution with positive initial condition is proved. Second, sufficient conditions for persistence in mean and extinction of each species are obtained. Then, sufficient conditions for global attractivity are established. Finally, some numerical simulations are provided to support the analytical results.

    Citation: Zeyan Yue, Lijuan Dong, Sheng Wang. Stochastic persistence and global attractivity of a two-predator one-prey system with S-type distributed time delays[J]. Mathematical Modelling and Control, 2022, 2(4): 272-281. doi: 10.3934/mmc.2022026

    Related Papers:

  • In this paper, well-posedness and asymptotic behaviors of a stochastic two-predator one-prey system with S-type distributed time delays are studied by using stochastic analytical techniques. First, the existence and uniqueness of global positive solution with positive initial condition is proved. Second, sufficient conditions for persistence in mean and extinction of each species are obtained. Then, sufficient conditions for global attractivity are established. Finally, some numerical simulations are provided to support the analytical results.



    加载中


    [1] H. Freedman, P. Waltman, Mathematical analysis of some three-species food-chain models, Math. Biosci., 33 (1977), 257–276. http://doi.org/10.1016/0025-5564(77)90142-0 doi: 10.1016/0025-5564(77)90142-0
    [2] H. Freedman, P. Waltman, Persistence in models of three interacting predator-prey populations, Math. Biosci., 68 (1984), 213–231. http://doi.org/10.1016/0025-5564(84)90032-4 doi: 10.1016/0025-5564(84)90032-4
    [3] J. Roy, D. Barman, S. Alam, Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment, Biosystems, 197 (2020), 104176. http://doi.org/10.1016/j.biosystems.2020.104176 doi: 10.1016/j.biosystems.2020.104176
    [4] Q. Zhang, D. Jiang, Dynamics of stochastic predator-prey systems with continuous time delay, Chaos Solitons Fractals, 152 (2021), 111431. http://doi.org/10.1016/j.chaos.2021.111431 doi: 10.1016/j.chaos.2021.111431
    [5] Y. Cai, S. Cai, X. Mao, Analysis of a stochastic predator-prey system with foraging arena scheme, Stochastics, 92 (2020), 193–222. http://doi.org/10.1080/17442508.2019.1612897 doi: 10.1080/17442508.2019.1612897
    [6] F. A. Rihan, H. J. Alsakaji, Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species, Discret. Contin. Dyn. Syst. Ser., 15 (2022), 245. http://doi.org/10.3934/dcdss.2020468 doi: 10.3934/dcdss.2020468
    [7] H. J. Alsakaji, S. Kundu, F. A. Rihan, Delay differential model of one-predator two-prey system with Monod-Haldane and holling type Ⅱ functional responses, Appl. Math. Comput., 397 (2021), 125919. http://doi.org/10.1016/j.amc.2020.125919 doi: 10.1016/j.amc.2020.125919
    [8] J. Geng, M. Liu, Y.Q. Zhang, Stability of a stochastic one-predator-two-prey population model with time delays, Commun. Nonlinear Sci. Numer. Simul., 53 (2017), 65–82. http://doi.org/10.1016/j.cnsns.2017.04.022 doi: 10.1016/j.cnsns.2017.04.022
    [9] K. Golpalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Dordrecht: Kluwer Academic Publishers, 1992. https://doi.org/10.1007/978-94-015-7920-9
    [10] S. Wang, L. Wang, T. Wei, Optimal harvesting for a stochastic logistic model with S-type distributed time delay, J. Differ. Equ. Appl., 23 (2017), 618–632. http://doi.org/10.1080/10236198.2016.1269761 doi: 10.1080/10236198.2016.1269761
    [11] L. C. Hung, Stochastic delay population systems, Appl. Anal., 88 (2009), 1303–1320. http://doi.org/10.1080/00036810903277093 doi: 10.1080/00036810903277093
    [12] S. Wang, L. Wang, T. Wei, Optimal Harvesting for a Stochastic Predator-prey Model with S-type Distributed Time Delays, Methodol. Comput. Appl. Probab., 20 (2018), 37–68. http://doi.org/10.1007/s11009-016-9519-2 doi: 10.1007/s11009-016-9519-2
    [13] M. Liu, K. Wang, Q. Wu, Survival Analysis of Stochastic Competitive Models in a Polluted Environment and Stochastic Competitive Exclusion Principle, Bull. Math. Biol., 73 (2011), 1969–2012. http://doi.org/10.1007/s11538-010-9569-5 doi: 10.1007/s11538-010-9569-5
    [14] X. Mao, Stochastic differential equations and applications, England: Horwood Publishing Limited, 2007.
    [15] I. Barbalat, Systems dequations differentielles d'osci d'oscillations, Rev. Roumaine Math. Pures Appl., 4 (1959), 267–270.
    [16] D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. http://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1035) PDF downloads(104) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog