We study in this paper the global attractivity for a higher order rational difference equation. As application, our results not only include and generalize many known ones, but also formulate some new results for several conjectures presented by Camouzis and Ladas, et al.
Citation: Xianyi Li, Luyao Lv. Global attractivity of a rational difference equation with higher order and its applications[J]. Mathematical Modelling and Control, 2024, 4(3): 260-272. doi: 10.3934/mmc.2024021
We study in this paper the global attractivity for a higher order rational difference equation. As application, our results not only include and generalize many known ones, but also formulate some new results for several conjectures presented by Camouzis and Ladas, et al.
[1] |
G. Ladas, Open problems and conjectures, J. Differ. Equations Appl., 3 (1995), 317–321. https://doi.org/10.1080/10236199508808030 doi: 10.1080/10236199508808030
![]() |
[2] | V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic Publishers, 1993. |
[3] |
V. L. Kocic, G. Ladas, Global attractivity in a nonlinear second-order difference equation, Commun. Pure Appl. Math., 48 (1995), 1115–1122. https://doi.org/10.1002/cpa.3160480907 doi: 10.1002/cpa.3160480907
![]() |
[4] | E. Camouzis, G. Ladas, Dynamics of third-order rational difference equations with open problems and conjectures, Chapman and Hall/CRC, 2007. |
[5] |
K. Cunningham, M. R. S Kulenović, G. Ladas, S. V. Valicenti, On the recursive sequence $x_{n+1} = \frac{\alpha+\beta x_n}{Bx_n+Cx_{n-1}}$, Nonlinear Anal. Theory Methods Appl., 47 (2001), 4603–4614. https://doi.org/10.1016/S0362-546X(01)00573-9 doi: 10.1016/S0362-546X(01)00573-9
![]() |
[6] |
M. Saleh, A. Farhat, Global asymptotic stability of the higher order equation $x_{n+1} = \frac{ax_n+bx_{n-k}}{A+Bx_{n-k}}$, J. Appl. Math. Comput., 55 (2017), 135–148. https://doi.org/10.1007/s12190-016-1029-4 doi: 10.1007/s12190-016-1029-4
![]() |
[7] | M. R. S. Kulenovic, G. Ladas, Dynamics of second-order rational difference equations, with open problems and conjectures, Chapman and Hall/CRC, 2001. |
[8] |
M. J. Douraki, M. Dehghan, J. Mashreghi, Dynamics of the difference equation $x_{n+1} = \frac{x_n+px_{n-k}}{x_n+q}$, Comput. Math. Appl., 56 (2008), 186–198. https://doi.org/10.1016/j.camwa.2007.06.029 doi: 10.1016/j.camwa.2007.06.029
![]() |
[9] |
X. Li, Existence of solutions with a single semicycle for a general second-order rational difference equation, J. Math. Anal. Appl., 334 (2007), 528–533. https://doi.org/10.1016/j.jmaa.2006.12.072 doi: 10.1016/j.jmaa.2006.12.072
![]() |
[10] |
A. A. Muna, S. Mohammad, Dynamics of higher order rational difference equation $x_{n+1} = \frac{\alpha+\beta x_{n-k}}{A+Bx_n+Cx_{n-k}}$, J. Appl. Math. Comput., 8 (2017), 363–379. https://doi.org/10.22075/IJNAA.2017.10822.1526 doi: 10.22075/IJNAA.2017.10822.1526
![]() |
[11] |
L. Hu, W. Li, S. Stević, Global asymptotic stability of a second order rational difference equation, J. Differ. Equations Appl., 14 (2008), 779–797. https://doi.org/10.1080/10236190701827945 doi: 10.1080/10236190701827945
![]() |
[12] |
M. A. Kerker, E. Hadidi, A. Salmi, Qualitative behavior of a higher order nonautonomous rational difference equation, J. Appl. Math. Comput., 64 (2020), 399–409. https://doi.org/10.1007/s12190-020-01360-5 doi: 10.1007/s12190-020-01360-5
![]() |
[13] |
X. Li, H. Zhu, Global dynamics of a rational difference equation with higher order, Acta Math. Sin., 66 (2023), 989–1002. https://doi.org/10.12386/B20220320 doi: 10.12386/B20220320
![]() |
[14] |
M. Saleh, S. Abu-Baha, Dynamics of a higher order rational difference equation, Appl. Math. Comput., 181 (2006), 84–102. https://doi.org/10.1016/j.amc.2006.01.012 doi: 10.1016/j.amc.2006.01.012
![]() |
[15] |
X. Li, W. Li, Global asymptotical stability in a rational difference equation, Appl. Math. J. Chin. Univ., 36 (2021), 51–59. https://doi.org/10.1007/s11766-021-3586-y doi: 10.1007/s11766-021-3586-y
![]() |
[16] |
F. J. Palladino, M. A. Radin, A trichotomy result for non-autonomous rational difference equations, Cent. Eur. J. Math., 9 (2011), 1135–1142. https://doi.org/10.2478/s11533-011-0066-3 doi: 10.2478/s11533-011-0066-3
![]() |
[17] |
Z. Nurkanović, M. Nurkanović, M. Garić-Demirović, Stability and Neimark-Sacker bifurcation of certain mixed monotone rational second-order difference equation, Qual. Theory Dyn. Syst., 20 (2021), 75. https://doi.org/10.1007/s12346-021-00515-4 doi: 10.1007/s12346-021-00515-4
![]() |
[18] |
G. Deng, X. Li, Dichotomy of a perturbed Lyness difference equation, Appl. Math. Comput., 236 (2014), 229–234. https://doi.org/10.1016/j.amc.2014.03.078 doi: 10.1016/j.amc.2014.03.078
![]() |
[19] |
G. Deng, X. Li, Q. Lu, L. Qian, Dichotomy between a generalized Lyness difference equation with period-two coefficients and its perturbation, Appl. Math. Lett., 109 (2020), 1–8. https://doi.org/10.1016/j.aml.2020.106522 doi: 10.1016/j.aml.2020.106522
![]() |
[20] | X. Li, C. Wang, On a conjecture of trichotomy and bifurcation in a third order rational difference equation, Ann. Rev. Chaos Theory Bifurc. Dyn. Syst., 2013. |
[21] |
G. Ladas, Open problems and conjectures, J. Differ. Equations Appl., 4 (1998), 497–499. https://doi.org/10.1080/10236199808808157 doi: 10.1080/10236199808808157
![]() |
[22] |
C. Ou, H. Tang, W. Luo, Global stability for a class of difference equation, Appl. Math. J. Chin. Univ., 15 (2000), 33–36. https://doi.org/10.1007/s11766-000-0006-7 doi: 10.1007/s11766-000-0006-7
![]() |
[23] |
H. A. El-Morshedy, The global attractivity of difference equations of nonincreasing nonlinearities with applications, Comput. Appl. Math., 45 (2003), 749–758. https://doi.org/10.1016/S0898-1221(03)00035-X doi: 10.1016/S0898-1221(03)00035-X
![]() |
[24] |
R. D. Nussbaum, Global stability, two conjectures and maple, Nonlinear Anal. Theory Methods Appl., 66 (2007), 1064–1090. https://doi.org/10.1016/j.na.2006.01.005 doi: 10.1016/j.na.2006.01.005
![]() |
[25] |
Y. Liu, X. Li, Dynmics of a discrete predator-prey model with Holling-Ⅱ functional response, Int. J. Biomath., 8 (2021), 14. https://doi.org/10.1142/S1793524521500686 doi: 10.1142/S1793524521500686
![]() |
[26] |
Z. Pan, X. Li, Stability and Neimark-Sacker bifurcation for a discrete Nicholson's blowflies model with proportional delay, J. Differ. Equations Appl., 27 (2021), 250–260. https://doi.org/10.1080/10236198.2021.1887159 doi: 10.1080/10236198.2021.1887159
![]() |
[27] |
J. Dong, X. Li, Bifurcation of a discrete predator-prey model with increasing functional response and constant-yield prey harvesting, Electron. Res. Arch., 30 (2022), 3930–3948. https://doi.org/10.3934/era.2022200 doi: 10.3934/era.2022200
![]() |
[28] |
X. Li, Y. Liu, Transcritical bifurcation and flip bifurcation of a new discrete ratio-dependent predator-prey system, Qual. Theory Dyn. Syst., 21 (2022), 1–30. https://doi.org/10.1007/s12346-022-00646-2 doi: 10.1007/s12346-022-00646-2
![]() |
[29] |
Z. Ba, X. Li, Period-doubling bifurcation and Neimark-Sacker bifurcation of a discrete predator-prey model with Allee effect and cannibalism, Electron. Res. Arch., 31 (2023), 1406–1438. https://doi.org/10.3934/era.2023072 doi: 10.3934/era.2023072
![]() |
[30] |
Y. Zhang, W. Liang, X. Lv, Existence of chaos in controlled first-order partial difference equations with general delay controllers, Chaos Soliton Fract., 168 (2023), 113148. https://doi.org/10.1016/j.chaos.2023.113148 doi: 10.1016/j.chaos.2023.113148
![]() |
[31] |
Q. Din, Complexity and chaos control in a discrete-time prey-predator model, Commun. Nonlinear Sci. Numer. Simul., 49 (2017), 113–134. https://doi.org/10.1016/j.cnsns.2017.01.025 doi: 10.1016/j.cnsns.2017.01.025
![]() |