This paper is mainly concerned with the existence of mild solutions and approximate controllability for a class of fractional semilinear systems with instantaneous and non-instantaneous impulses. By applying the Kuratowski measure of noncompactness and $ \rho $-set contractive fixed-point theorem, the results for the considered system were obtained. In the end, an example was studied to support the main results.
Citation: Yunhao Chu, Yansheng Liu. Approximate controllability for a class of fractional semilinear system with instantaneous and non-instantaneous impulses[J]. Mathematical Modelling and Control, 2024, 4(3): 273-285. doi: 10.3934/mmc.2024022
This paper is mainly concerned with the existence of mild solutions and approximate controllability for a class of fractional semilinear systems with instantaneous and non-instantaneous impulses. By applying the Kuratowski measure of noncompactness and $ \rho $-set contractive fixed-point theorem, the results for the considered system were obtained. In the end, an example was studied to support the main results.
[1] | V. Lakshmikantham, P. S. Simeonov, Theory of impulsive differential equations, World Scientific Publishing, 1989. https://doi.org/10.1142/0906 |
[2] |
X. Li, T. Caraballo, R. Rakkiyappan, X. Han, On the stability of impulsive functional differential equations with infinite delays, Math. Methods Appl. Sci., 38 (2015), 3130–3140. https://doi.org/10.1002/mma.3303 doi: 10.1002/mma.3303
![]() |
[3] |
E. Hern$\acute{a}$ndez, D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641–1649. https://doi.org/10.1090/s0002-9939-2012-11613-2 doi: 10.1090/s0002-9939-2012-11613-2
![]() |
[4] |
Y. Liu, D. O'Regan, Controllability of impulsive functional differential systems with nonlocal conditions, Electron. J. Differ. Equations, 194 (2013), 1–10. https://doi:10.3934/cpaa.2013.12.2319 doi: 10.3934/cpaa.2013.12.2319
![]() |
[5] | P. Chen, X. Zhang, Y. Li, Existence of mild solutions to partial differential equations with non-instantaneous impulses, Electron. J. Differ. Equations, 241 (2016), 1–11. |
[6] |
X. Xu, Y. Liu, H. Li, F. E. Alsaadi, Robust set stabilization of Boolean control networks with impulsive effects, Nonlinear Anal., 24 (2018), 553–567. https://doi.org/10.15388/na.2018.4.6 doi: 10.15388/na.2018.4.6
![]() |
[7] |
S. Kumar, S. M. Abdal, Approximate controllability for a class of instantaneous and non-instantaneous impulsive semilinear systems, J. Dyn. Control Syst., 28 (2022), 725–737. https://doi.org/10.1007/s10883-021-09540-7 doi: 10.1007/s10883-021-09540-7
![]() |
[8] |
Y. Tian, M. Zhang, Variational method to differential equations with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 94 (2019), 160–165. https://doi.org/10.1016/j.aml.2019.02.034 doi: 10.1016/j.aml.2019.02.034
![]() |
[9] |
W. Yao, Existence and multiplicity of solutions for three-point boundary value problems with instantaneous and noninstantaneous impulses, Bound. Value Probl., 2023 (2023), 15. https://doi.org/10.1186/s13661-023-01702-9 doi: 10.1186/s13661-023-01702-9
![]() |
[10] |
S. Kumar, S. Yadav, Approximate controllability of stochastic delay differential systems driven by Poisson jumps with instantaneous and noninstantaneous impulses, Asian J. Control, 25 (2023), 4039–4057. https://doi.org/10.1002/asjc.3039 doi: 10.1002/asjc.3039
![]() |
[11] |
X. Li, X. Yang, T. Huang, Persistence of delayed cooperative models: impulsive control method, Appl. Math. Comput., 32 (2019), 294–305. https://doi.org/10.1016/j.amc.2018.09.003 doi: 10.1016/j.amc.2018.09.003
![]() |
[12] |
Y. Liu, Y. Zheng, H. Li, F. E. Alsaadi, B. Ahmad, Control design for output tracking of delayed Boolean control networks, J. Comput. Appl. Math., 327 (2018), 188–195. https://doi.org/10.1016/j.cam.2017.06.016 doi: 10.1016/j.cam.2017.06.016
![]() |
[13] |
N. Hakkar, R. Dhayal, A. Debbouche, D. F. M. Torres, Approximate controllability of delayed fractional stochastic differential systems with mixed noise and impulsive effects, Fractal Fract., 7 (2023), 104. https://doi.org/10.3390/fractalfract7020104 doi: 10.3390/fractalfract7020104
![]() |
[14] | R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing, 2000. https://doi.org/10.1142/3779 |
[15] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 1989. https://doi.org/10.1016/s0304-0208(06)x8001-5 |
[16] | I. Podlubny, Mathematics in science and engineering, Academic Press, Inc., 1993. https://doi.org/10.1016/s0076-5392(97)80012-4 |
[17] | Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations, World Scientific Publishing, 2017. https://doi.org/10.1142/9789814579902-0006 |
[18] |
M. Li, A. Debbouche, J. Wang, Relative controllability in fractional differential equations with pure delay, Math. Methods Appl. Sci., 4 (2018), 8906–8914. https://doi.org/10.1002/mma.4651 doi: 10.1002/mma.4651
![]() |
[19] |
R. Dhayal, M. Malik, Approximate controllability of fractional stochastic differential equations driven by Rosenblatt process with non-instantaneous impulses, Chaos Solitons Fract., 151 (2021), 111292. https://doi.org/10.1016/j.chaos.2021.111292 doi: 10.1016/j.chaos.2021.111292
![]() |
[20] |
X. Wang, D. Luo, Q. Zhu, Ulam-Hyers stability of caputo type fuzzy fractional differential equations with time-delays, Chaos Solitons Fract., 156 (2022), 111822. https://doi.org/10.1016/j.chaos.2022.111822 doi: 10.1016/j.chaos.2022.111822
![]() |
[21] |
Z. M. Ge, W. R. Jhuang, Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor, Chaos Solitons Fract., 33 (2007), 270–289. https://doi.org/10.1016/j.chaos.2005.12.040 doi: 10.1016/j.chaos.2005.12.040
![]() |
[22] |
H. Cheng, R. Yuan, The stability of the equilibria of the Allen-Cahn equation with fractional diffusion, Appl. Anal., 98 (2019), 600–610. https://doi.org/10.1080/00036811.2017.1399360 doi: 10.1080/00036811.2017.1399360
![]() |
[23] |
J. Jia, H. Wang, A fast finite volume method for conservative space-time fractional diffusion equations discretized on space-time locally refined meshes, Comput. Math. Appl., 78 (2019), 1345–1356. https://doi.org/10.1016/j.camwa.2019.04.003 doi: 10.1016/j.camwa.2019.04.003
![]() |
[24] | C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, V. Feliu, Fractional-order systems and controls: fundamentals and applications, Springer Science Business Media, 2010. https://doi.org/10.1007/978-1-84996-335-0 |
[25] |
S. Kumar, S. M. Abdal, Approximate controllability for a class of instantaneous and non-instantaneous impulsive semilinear systems, J. Dyn. Control Syst., 28 (2022), 725–737. https://doi.org/10.1007/s10883-021-09540-7 doi: 10.1007/s10883-021-09540-7
![]() |
[26] |
R. Dhayal, M. Malik, S. Abbas, A. Debbouche, Optimal controls for second-order stochastic differential equations driven by mixed-fractional Brownian motion with impulses, Math. Methods Appl. Sci., 43 (2020), 4107–4124. https://doi.org/10.1002/mma.6177 doi: 10.1002/mma.6177
![]() |
[27] |
K. Karthikeyan, A. Debbouche, D. F. M. Torres, Analysis of Hilfer fractional integro-differential equations with almost sectorial operators, Fractal Fract., 5 (2021), 22. https://doi.org/10.3390/fractalfract5010022 doi: 10.3390/fractalfract5010022
![]() |
[28] |
M. Fe$\check{c}$kan, J. R. Wang, Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equations, 8 (2011), 345–361. https://doi.org/10.4310/dpde.2011.v8.n4.a3 doi: 10.4310/dpde.2011.v8.n4.a3
![]() |
[29] |
M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fract., 14 (2002), 433–440. https://doi.org/10.1016/s0960-0779(01)00208-9 doi: 10.1016/s0960-0779(01)00208-9
![]() |
[30] |
N. I. Mahmudov, S. Zorlu, On the approximate controllability of fractional evolution equations with compact analytic semigroup, J. Comput. Appl. Math., 259 (2014), 194–204. https://doi.org/10.1016/j.cam.2013.06.015 doi: 10.1016/j.cam.2013.06.015
![]() |
[31] | J. Banaś, On measures of noncompactness in Banach spaces, Comment. Math. Univ. Carol., 21 (1980), 131–143. |
[32] |
H. P. Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 7 (1983), 1351–1371. https://doi.org/10.1016/0362-546x(83)90006-8 doi: 10.1016/0362-546x(83)90006-8
![]() |
[33] |
D. Bothe, Multivalued perturbations of m-accretive differential inclusions, Isr. J. Math., 108 (1998), 109–138. https://doi.org/10.1007/bf02783044 doi: 10.1007/bf02783044
![]() |
[34] |
X. Zhang, P. Chen, Fractional evolution equation nonlocal problems with noncompact semigroups, Comput. Math. Appl., 36 (2016), 123–137. https://doi.org/10.7494/opmath.2016.36.1.123 doi: 10.7494/opmath.2016.36.1.123
![]() |
[35] |
R. Sakthivel, Y. Ren, N. I. Mahmudov, On the approximate controllability of semilinear fractional differential systems, Math. Methods Appl. Sci., 62 (2011), 1451–1459. https://doi.org/10.1016/j.camwa.2011.04.040 doi: 10.1016/j.camwa.2011.04.040
![]() |
[36] |
J. P. Dauer, N. I. Mahmudov, Approximate controllability of semilinear functional equations in Hilbert spaces, J. Math. Anal. Appl., 273 (2002), 310–327. https://doi.org/10.1016/s0022-247x(02)00225-1 doi: 10.1016/s0022-247x(02)00225-1
![]() |