In this paper, we consider controllability of the initial value problem with non-instantaneous impulse on ordered Banach spaces. We firstly give a solution expression for initial value problems with non-instantaneous impulses in ordered Banach Spaces by using Schauder fixed point theorem. Sufficient conditions for controllability results are obtained by Krasnoselskii's fixed point theorem in the infinite-dimensional spaces. An example is also given to illustrate the feasibility of our theoretical results.
Citation: Zhen Xin, Yuhe Yang, Qiaoxia Li. Controllability of nonlinear ordinary differential equations with non-instantaneous impulses[J]. Mathematical Modelling and Control, 2022, 2(1): 1-6. doi: 10.3934/mmc.2022001
In this paper, we consider controllability of the initial value problem with non-instantaneous impulse on ordered Banach spaces. We firstly give a solution expression for initial value problems with non-instantaneous impulses in ordered Banach Spaces by using Schauder fixed point theorem. Sufficient conditions for controllability results are obtained by Krasnoselskii's fixed point theorem in the infinite-dimensional spaces. An example is also given to illustrate the feasibility of our theoretical results.
[1] | Y. Chang, W. Li, J. Nieto, Controllability of evolution differential inclusions in Banach spaces, Nonlin. Anal., 67 (2007), 623–632. https://doi.org/10.1016/j.na.2006.06.018 doi: 10.1016/j.na.2006.06.018 |
[2] | A. Bashirov, K. Kerimov, On controllability conception for stochastic systems, SIAM J. Control Optim., 35 (1997), 384–398. https://doi.org/10.1137/S0363012994260970 doi: 10.1137/S0363012994260970 |
[3] | A. Bashirov, N. Mahmudov, On concepts of controllability for deterministic and stochastic systems, SIAM J. Control Optim., 37 (1999), 1808–1821. https://doi.org/10.1137/S036301299732184X doi: 10.1137/S036301299732184X |
[4] | M. Benchohra, A. Ouahab, Controllability results for functional semilinear differential inclusions in Frechet spaces, Nonlinear Analysis: Theory, Meth. Appl., 61 (2005), 405–423. https://doi.org/10.1016/j.na.2004.12.002 doi: 10.1016/j.na.2004.12.002 |
[5] | I. Lasiecka, R. Triggiani, Exact controllability of semilinear abstract systems with application to waves and plates boundary control problems, Appl. Math. Optim., 23 (1991), 109–154. https://doi.org/10.1007/BF01442394 doi: 10.1007/BF01442394 |
[6] | K. Balachandran, R. Sakthivel, Controllability of functional semilinear integrodifferential systems in Banach spaces, J. Math. Anal. Appl., 255 (2001), 447–457. https://doi.org/10.1006/jmaa.2000.7234 doi: 10.1006/jmaa.2000.7234 |
[7] | M. Feckan, J. Wang, Y. Zhou, Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators, J. Optim. Theory Appl., 156 (2013), 79–95. https://doi.org/10.1007/s10957-012-0174-7 doi: 10.1007/s10957-012-0174-7 |
[8] | K. Balachandran, V. Govindaraj, L. Rodriguez-Germa, et al., Controllability results for nonlinear fractional-order dynamical systems, J. Optim. Theory Appl., 156 (2013), 33–44. https://doi.org/10.1007/s10957-012-0212-5 doi: 10.1007/s10957-012-0212-5 |
[9] | N. Mahmudov, Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces, SIAM J. Control Optim., 42 (2003), 1604–1622. https://doi.org/10.1137/S0363012901391688 doi: 10.1137/S0363012901391688 |
[10] | A. Babiarz, J. Klamka, M. Niezabitowski, Schauder's fixed-point theorem in approximate controllability problems, Int. J. Appl. Math. Comput. Sci., 26 (2016), 263–275. https://doi.org/10.1515/amcs-2016-0018 doi: 10.1515/amcs-2016-0018 |
[11] | Z. Liu, X. Li, J. Sun, Controllability of nonlinear fractional impulsive evolution systems, J. Integral Equ. Appl., 25 (2013), 395–406. https://doi.org/10.1216/JIE-2013-25-3-395 doi: 10.1216/JIE-2013-25-3-395 |
[12] | Z. Liu, X. Li, On the controllability of impulsive fractional evolution inclusions in Banach spaces, J. Optim. Theory Appl., 156 (2013), 167–182. https://doi.org/10.1007/s10957-012-0236-x doi: 10.1007/s10957-012-0236-x |
[13] | J. Klamka, Controllability problem of neutral equation with Nussbaum fixed-point theorem, in: Proceedings of IEEE 21st International Conference on Methods and Models in Automation and Robotics (MMAR), (2016), 500–504. |
[14] | Z. Xin, P. Y. Chen, Existence of solutions to ordinary differential equations with non-instantaneous impulses in Banach space, Journal of Jilin University (Science Edition), 57 (2019), 229–234. |
[15] | X. Zhang, Z. Xin, Existence, uniqueness and UHR stability of solutions to nonlinear ordinary differential equations with non-instantaneous impulses, Int. J. Nonlinear Sci. Numer. Simul., 21 (2020), 195–203. https://doi.org/10.1515/ijnsns-2018-0374 doi: 10.1515/ijnsns-2018-0374 |
[16] | J. R. Wang, Y. Zhou, A class of factional evolution equations and optimal controls, Nonlin. Anal., 12 (2011), 262–272. https://doi.org/10.1016/j.nonrwa.2010.06.013 doi: 10.1016/j.nonrwa.2010.06.013 |
[17] | Z. Tai, Controllability of fractional impulsive neutral integro-differential systems with a nonlocal Cauchy condition in Banach spaces, Appl. Math. Lett., 24 (2011), 2158–2161. https://doi.org/10.1016/j.aml.2011.06.018 doi: 10.1016/j.aml.2011.06.018 |
[18] | P. Balasubramaniam, Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations, Chaos Solitons Fractals, 152 (2021), 111276. https://doi.org/10.1016/j.chaos.2021.111276 doi: 10.1016/j.chaos.2021.111276 |
[19] | H. Gou, Y. Li, Controllability of impulsive fractional integro-differential evolution equations, Acta. Appl. Math., 175 (2021), 1–27. https://doi.org/10.1007/s10440-021-00433-2 doi: 10.1007/s10440-021-00433-2 |
[20] | E. Hernández, D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., 141 (2013), 1641–1649. https://doi.org/10.1090/S0002-9939-2012-11613-2 doi: 10.1090/S0002-9939-2012-11613-2 |