We provide a new sufficient condition for the existence of a periodic solution of the singular differential equation
$ u''+u = \frac{h(t)}{u^\rho}, $
which is associated with the planar $ L_p $-Minkowski problem. A similar result is valid for the conformal version of the problem.
Citation: Zhibo Cheng, Pedro J. Torres. Periodic solutions of the $ L_p $-Minkowski problem with indefinite weight[J]. Mathematical Modelling and Control, 2022, 2(1): 7-12. doi: 10.3934/mmc.2022002
We provide a new sufficient condition for the existence of a periodic solution of the singular differential equation
$ u''+u = \frac{h(t)}{u^\rho}, $
which is associated with the planar $ L_p $-Minkowski problem. A similar result is valid for the conformal version of the problem.
[1] | E. Lutwak, The Brunn-Minkowski-Firey theory Ⅰ: mixed volumes and the Minkowski problem, J. Differential Geom., 38 (1993), 131–150. https://doi.org/10.4310/jdg/1214454097 doi: 10.4310/jdg/1214454097 |
[2] | J. Ai, K. Chou, J. Wei, Self-similar solutions for the anisotropic affne curve shortening problem, Calc. Var., 13 (2001), 311–337. https://doi.org/10.1007/s005260000075 doi: 10.1007/s005260000075 |
[3] | K. Böröczky, H. Trinnh, The planar $L_p$ Minkowski problem for $0 <p< 1$, Adv. in Appl. Math., 87 (2017), 58–81. https://doi.org/10.1016/j.aam.2016.12.007 doi: 10.1016/j.aam.2016.12.007 |
[4] | W. Chen, $L_p$ Minkowski problem with not necessarily positive data, Adv. Math., 201 (2006), 77–89. |
[5] | J. Dou, M. Zhu, The two dimensional $L_p$ Minkowski problem and nonlinear equations with negative exponents, Adv. Math., 230 (2012), 1209–1221. |
[6] | N. Ivaki, A flow approach to the $L_2$ Minkowski problem, Adv. in Appl. Math., 50 (2013), 445–464. |
[7] | Y. Jiang, Remarks on the 2-dimensional $L_p$ Minkowski problem, Adv. Nonlinear Stud., 10 (2010), 297–313. https://doi.org/10.1515/ans-2010-0204 doi: 10.1515/ans-2010-0204 |
[8] | P. Torres, M. Zamora, On the planar $L_p$ Minkowski problem with sign-changing data, Proc. Amer. Math. Soc., 149 (2021), 3077–3088. https://doi.org/10.1090/proc/15378 doi: 10.1090/proc/15378 |
[9] | V. Umanskiy, On solvability of two-dimensional $L_p$-Minkowski problem, Adv. Math., 180 (2003), 176–186. https://doi.org/10.1016/S0001-8708(02)00101-9 doi: 10.1016/S0001-8708(02)00101-9 |
[10] | C. Loewner, L. Nirenberg, Partial differential equations invariant under conformal or projective transformations. In: Contributions to Analysis, pp. 245-272, Academic Press, New York, 1974. https://doi.org/10.1016/B978-0-12-044850-0.50027-7 |
[11] | Y. Sun, X. Cao, Remarks on a planar conformal curvature problem, Monatsh. Math., 176 (2015), 623–636. https://doi.org/10.1007/s00605-014-0718-z doi: 10.1007/s00605-014-0718-z |
[12] | P. Torres, Mathematical models with singularities-A zoo of singular creatures. Atlantis Briefs in Differential Equations, Atlantis Press, Paris, 2015. |
[13] | P. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem, J. Differential Equations, 190 (2003), 643–662. https://doi.org/10.1016/S0022-0396(02)00152-3 doi: 10.1016/S0022-0396(02)00152-3 |
[14] | D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston, 1988. |
[15] | W. Han, J. Ren, Some results on second-order neutral functional differential equations with infinite distributed delay, Nonlinear Anal., 70 (2009), 1393–1406. https://doi.org/10.1016/j.na.2008.02.018 doi: 10.1016/j.na.2008.02.018 |
[16] | A. Cabada, J. Cid, B. Máquez-Villamar´in, Computation of Green functions for boundary value problems with Mathematica, Appl. Math. Comput., 4 (2012), 1919–1936. https://doi.org/10.1016/j.amc.2012.08.035 doi: 10.1016/j.amc.2012.08.035 |
[17] | R. Ortega, D. Rojas, Periodic oscillators, isochronous centers and resonance, Nonlinearity, 32 (2019), 800–832. https://doi.org/10.1088/1361-6544/aaee9a doi: 10.1088/1361-6544/aaee9a |