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Abstract: In this paper, we consider controllability of the initial value problem with non-instantaneous impulse on ordered Banach
spaces. We firstly give a solution expression for initial value problems with non-instantaneous impulses in ordered Banach Spaces by
using Schauder fixed point theorem. Sufficient conditions for controllability results are obtained by Krasnoselskii’s fixed point theorem
in the infinite-dimensional spaces. An example is also given to illustrate the feasibility of our theoretical results.
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1. Introduction

The dynamics of many evolving processes are subject
to abrupt changes, such as shocks, harvesting and natural
disaster. These phenomena involve short term perturbations
from continuous and smooth dynamics, whose duration is
negligible in comparison with the duration of an entire
evolution. Sometimes time abrupt changes may stay for
time intervals such impulses are called non-instantaneous
impulses. The theory of instantaneous impulsive differential
equations is an important branch of differential equation
theory, which has extensive physical, chemical, biological,
engineering background and realistic mathematical model,
and hence has been emerging as an important area of
investigation in the last decades. Hernández and O’Regan
[20] first studied the initial value problem for a new
class of abstract evolution equations with non-instantaneous
impulses in Banach spaces.

Control theory is an area of application-oriented
mathematics which deals with basic principles underlying
the analysis and design of control systems. It is well known

that controllability plays a significant role in modern control
theory and engineering since they are closely related to pole
assignment, structural decomposition and quadratic optimal
control. See functional analysis [1].

The notion of controllability means that it is possible to
steer a dynamic system from an arbitrary initial state to
an arbitrary final state using a set of admissible controls.
There exist many criteria and definitions of controllability.
They depend both on the constraints on the control signal
and the state equation. It should be noticed that in
infinite-dimensional spaces there exist linear subspaces
which are not closed. We can distinguish two concepts
of controllabilityin the case of infinite-dimensionalsystems.
Exact controllability means that the system can be steered to
an arbitrary final state. Approximate controllability enables
us to steer the system to an arbitrary small neighborhood
of the final state. It is self-evident that approximate
controllability is essentially a weaker notion than exact
controllability. As a result, the latter always implies the
former, but the converse statement is not true in general. See
the works of Bashirov and Kerimov (1997)[2], Bashirov and
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Mahmudov (1999)[3], Benchohra and Ouahab (2005)[4].
Controllability of semilinear integrodifferential systems in
Banach spaces was investigatedby Lasiecka and Triggiani
(1991)[5].

For nonlinear systems, controllability results can be
shown via contraction mapping principle, Schauder’s fixed
point theorem and Schaefer’s fixed point theorem by
constructing a suitable control function (see [6–9]). In
particular, it is summarized that the sufficient conditions
for approximate controllability of various types of dynamic
systems using Schauder’s fixed-point theorem in Hilbert
spaces by Babiarz [10]. In 2013, Liu et al. [11] used the
Krasnoselskii’s fixed point theorem to studied controllabily
of nonlinear fractional impulsive evolution systems. Of
course, using Nussbaum’s fixed point theorem can also be
used to investigate the controllability of nonlinear systems
(see [11–13,17–19]). In this paper, on the basis of
previous research[14],[15], the controllability of the initial
value problem is studied, and the fixed point theorem is
applied to nonlinear ordinary differential equations with
non-instantaneous impulses. Our work can be considered
as a contribution to this nascent fields. The results obtained
in this paper are a supplement to the existing literature and
essentially extend some existing results in this area.

Next, we study the following controllability of nonlinear
ordinary differential equation with non-instantaneous
impulses by fixed point theorem in a Banach space E


u′(t) = f (t, u(t)) + Bh(t), t ∈ (si, ti+1], i = 0, 1, 2, · · · ,m,
u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · ,m,
u(0) = u0,

(1.1)
where 0 < t1 < t2 < · · · < tm < tm+1 := a, a > 0
is a constant, J = [0, a], J′ = J\{t1, t2, · · · tm} and s0 =

t0 := 0, si ∈ (ti, ti+1) for each i = 1, 2, · · · ,m. f :
[0, a] × E → E is a continuous nonlinear function, gi :
(ti, si] × E → E, i = 1, 2, · · · ,m is non-instantaneous
impulsive function for all i = 1, 2, · · · ,m, and u0 ∈ E. The
control function h(·) is given in L2(J′,U) with U as a Banach
space and B is bounded linear operator from U into E.

2. Preliminaries

Let E be a Banach space with the norm ‖·‖, whose positive
cone P = {x ∈ E | x ≥ θ} is normal with normal constant
N, where θ is the zero element in E. We denote by C(J, E)
the Banach space of all continuous functions from J into E

endowed with the sup-norm

‖u‖C = sup
t∈J
‖u(t)‖.

Then C(J, E) is an ordered Banach space induced by the
convex cone

PC = {u ∈ C(J, E) | u(t) ≥ θ, t ∈ J}

and PC is also a normal cone with normal constant N. Let

PC(J, E) = {u : J → E | u is continuous at t , ti , left

continuous at t � ti and u(t+i ) exists for all i = 1, 2, · · · ,m.}

be a piecewise continuous function space. It is easy to see
that PC(J, E) is a Banach space endowed with the PC-norm

‖u‖PC = max{sup
t∈J
‖u(t+)‖, sup

t∈J
‖u(t−)‖}, u ∈ PC(J, E).

For any finite number r > 0, let

Ωr = {u ∈ PC(J, E) | ‖u(t)‖ ≤ r, t ∈ J}

be a bounded convex closed set.
Let Lp(J,R)(1 ≤ p ≤ ∞) denote the Banach space of
all Lebesgue measurable functions from J into E with
‖ϕ‖Lp(J,R) := (

∫
J
|ϕ(t)|pdt)

1
p < ∞. And let Lp(J, E) be the

Banach space of functions ϕ : J → E which are Bochner
integrable normed by ‖ϕ‖Lp(J,E).

Definition 2.1. A function u ∈ PC(J, E) is a solution of the
system (1.1), it is equivalent to u satisfies that

u(t) = u0 +
∫ t

0 [ f (s, u(s)) + Bh(s)]ds, t ∈ [0, t1],

u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · ,m,
u(t) = gi(si, u(si)) +

∫ t
si

[ f (s, u(s)) + Bh(s)]ds, t ∈ (si, ti+1, ],

i = 1, 2, · · · ,m.
(2.1)

Lemma 2.2[10] (Schauder’s theorem)(Kulmin, 2004). Every
continuous operator that maps a closed convex subset of a
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Banach space into a compact subset of itself has at least one
fixed point.

Lemma 2.3[11] (Krasnoselskii’s fixed point theorem). Let X

be a Banach space, Ω a bounded closed and convex subset
of X and F1, F2 maps Ω into X such that F1x + F2y ∈ Ω

for every pair x, y ∈ Ω. If F1 is a contraction and F2 is
completely continuous, then the equation F1x + F2x = x has
a solution on Ω.

Definition 2.4. The system (1.1) is said to be completely
controllable on [0, t f ](t f ∈ (0,T ]) if for every u0, ut f ∈ E,
there exist a control h ∈ L2(J′,U) such that the solution u(t)
of the system (1.1) satisfies u(t f ) = ut f .

3. Main results

we need the following additional assumption conditions:
(H1) There are arbitray constant p0 > 0, p1 ≥ 0, and t ∈

J, u ∈ E such that

‖ f (t, u(t))‖ ≤ p1‖u‖ + p0;

(H2) There exist positive constant Li (i =

1, 2, · · · ,m), ∀u, v ∈ E such that

‖gi(t, u) − gi(t, v)‖ ≤
m∑

i=1

Li‖u − v‖, ∀t ∈ (ti, si], i = 1, 2 · · ·m;

(H3) The linear operator B : L2(J′,U) → L(J′,U) is
bounded, W : L2(J′,U)→ E defined by

Wh =

∫ t f

0
[ f (s, u(s)) + Bh(s)]ds,

has an inverse operator W−1 which takes value in L2(J′,U) \
ker W and there exist two positive constants D1,D2 > 0 such
that

‖B‖ ≤ D1, ‖W−1‖ ≤ D2.

Theorem 3.1. Assume that [H1]-[H3] and

m∑
i=1

Li + ap1 < 1

hold, then system (1.1) has a solution u ∈ PC(J, E) on (0,T ].

Proof. Define an operator F : PC(J, E) → PC(J, E) such
that

(zu)(t) =


u0 +
∫ t

0 f (s, u(s))ds, t ∈ [0, t1],
gi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · ,m,
gi(si, u(si)) +

∫ t
si

f (s, u(s))ds, t ∈ (si, ti+1],

i = 1, 2, · · · ,m.
(3.1)

and we define the control function hu(t) by

hu(t) =


W−1[ut f − u0 −

∫ t f

0 f (s, u(s))ds], t ∈ [0, t1],
W−1[ut f − gi(t, u(t))], t ∈ (ti, si], i = 1, 2, · · · ,m,
W−1[ut f − gi(si, u(si)) −

∫ t f

si
f (s, u(s))ds],

t ∈ (si, ti+1], i = 1, 2, · · · ,m.
(3.2)

It is easy to see that the solution of the system (1.1) is
equivalent to the fixed point of operator z defined by (3.1).
Now, we will prove that there exists a constant R > 0, ΩR =

{u ∈ PC(J, E) | ‖u(t)‖ ≤ R, t ∈ J} such that z(ΩR) ⊂ ΩR.
If this is not ture, then for each r > 0, there would exist
ur ∈ Ωr, tr ∈ J such that

‖(zur)(tr )‖ > r.

If ∀tr ∈ [0, t1] then by (3.1), (H1) and (H3), we know that

‖(zur)(tr )‖ = ‖u0 +
∫ tr

0 [ f (s, ur(s)) + B(s)h(s)]ds‖

≤ ‖u0‖ + tr(p1‖ur‖PC + p0) + D1D2

≤ ‖u0‖ + ap1r + ap0 + D1D2.

(3.3)

If ∀tr ∈ [t1, si], i = 1, 2, · · · ,m, then by (3.1) and (H2), we
know that

‖(zur)(tr)‖ = ‖gi(tr, ur(tr))‖

≤
m∑

i=1
Li‖ur(tr)‖ + ‖gi(tr, θ)‖ ≤

m∑
i=1

Lir + N,

(3.4)
where N = max

i=1,2,··· ,m
sup
t∈J
‖gi(t, θ)‖. If ∀tr ∈ (si, ti+1], i =

1, 2, · · · ,m, then by (3.1) and (H1)-(H3), we know that

‖(zur)(tr)‖ = ‖gi(si, ur(si)) +
∫ tr

si
[ f (s, ur(s)) + B(s)h(s)]ds‖

≤
m∑

i=1
Lir + N + ap1r + ap0 + D1D2.

(3.5)
Combining (3.1)-(3.5) with the fact ‖(zur )(tr)‖ > r, we
obtain
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r < ‖(zur)(tr)‖ ≤ ‖u0‖+

m∑
i=1

Lir+N +ap1r+ap0 +D1D2.

(3.6)
Dividing both side of (3.6) by r and taking the lower limit as
r → ∞, we have

1 < ap1 +

m∑
i=1

Li. (3.7)

Next, we prove that F is continuous in ΩR.
Let un ∈ ΩR be a sequence, such that lim

n→∞
un = u in

ΩR. By the continuity of nonlinear term f with respect to
the second variable, for each s ∈ J we have

lim
n→∞

f (s, un(s)) = f (s, u(s)) (3.8)

If ∀s ∈ (ti, ti+1], i = 1, 2, · · · ,m, by (3.4), (3.8) and Lebesgue
dominated convergence theorem, we obtain

‖(zun)(t) − (zu)(t)‖ = ‖
∫ t

si
f (s, un(s))ds −

∫ t
si

f (s, u(s))ds‖

→ 0, (n→ ∞)

Then we concluded that ‖zun−zu‖pc → 0, (n→ ∞). Which
meas that z is continuous in ΩR.

Now, we demonstrate that the operator F : ΩR → ΩR is
equicontinuous. For any u ∈ ΩR and si ≤ t′ < t′′ ≤ ti+1,
i = 0, 1, 2, · · · ,m, we can conclude that

‖(zu)(t′′) − (zu)(t′)‖ = ‖
∫ t′′

si
[ f (s, u(s)) + B(s)h(s)]ds

−
∫ t′

si
[ f (s, u(s)) + B(s)h(s)]ds‖

= ‖
∫ t′′

t′ f (s, u(s))ds‖ + ‖
∫ t′′

t′ B(s)h(s)‖

≤ (t′′ − t′)(p1‖u‖ + p0 + D1D2).
(3.9)

Therefore, when t′′ − t′ → 0, then ‖(zu)(t′′) − (zu)(t′)‖ →
0. As a result, the operator F : ΩR → ΩR is
equicontinuous. It follows the Arzela-Ascoli theorem that
FΩR is sequentially compact in PC(J, E). By Schauder’s
fixed point theorem (Lemma 2.2) F has a fixed point in
FΩR. Therefore, u are a solutions of the system (1.1). This
completes the proof of Theorem 3.1.

Theorem 3.2. Assume that [H2], [H3] and

m∑
i=1

Li < 1

hold, then system (1.1) is completely controllable on [0, t f ]
for some t f ∈ [0,T ].

Proof. Let

(zu)(t) = (z1u)(t) + (z2u)(t), (3.10)

by

(z1u)(t) =


u0, t ∈ [0, t1],
gi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · ,m,
gi(si, u(si)), t ∈ (si, ti+1], i = 1, 2, · · · ,m.

(3.11)

(z2u)(t) =


∫ t

0 f (s, u(s))ds, t ∈ [0, t1],
0, t ∈ (ti, si], i = 1, 2, · · · ,m,∫ t

si
f (s, u(s))ds, t ∈ (si, ti+1], i = 1, 2, · · · ,m.

(3.12)
By (H3), for any u ∈ PC(J, E), From the references [14], we
know that operators F1 : ΩR → ΩR is Lipschitz continuous
and by the proof of Theorem 3.1, we can get that FΩR ⊂

ΩR. According to the definition of completely continuous
and the proof of Theorem 3.1, we get that F2 is completely
continuous Now, we prove that F1 is contraction.

Let any u, u′ ∈ PC(J, E) and t ∈ (si, ti+1], i =

0, 1, 2, · · · ,m, we have

‖(z1u)(t) − (z1u′)(t)‖ ≤ ‖gi(t, u(t)) − gi(t, u′(t))‖

≤
m∑

i=1
Li‖u − u′‖PC .

(3.13)

We derive that
m∑

i=1
Li < 1, which implies F1 is contraction.

According to the Lemma 3, F has a fixed point u ∈ ΩR. Thus,
If t f ∈ [0, t1], it is easy to check that u(t f ) = ut f . Similarly
if t f ∈ (ti, si], t f ∈ (si, ti+1], i = 1, 2, · · · ,m, u(t f ) = ut f .
Consequently, the system (1.1) is completely controllable on
[0, t f ].

4. An example

As an application of the abstract result, we consider the
following controllability of nonlinear differential equations
with non-instantaneous impulses

u′(t) =
∫ 1

0
e(s−t)

10 u(s)ds + 1
50 u(t) + 1 + Bh(t), t ∈ [0, 1

3 ]
⋃

( 2
3 , 1],

u(t) =
t + |u(t)|

1 + t + |u(t)|
, t ∈ ( 1

3 ,
2
3 ],

u(0) = u0,
(4.1)
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Where E = C(I), I = [0, 1], J = [0, 1], t0 = s0 = 0,

t1 =
1
3

, s1 =
2
3

, t2 = 1. u ∈ C(I × J,R). Let f (t, u(t)) =∫ 1
0

e(s−t)

10
u(s)ds+

1
50

u(t)+1, g1(t, u(t)) =
t + |u(t)|

1 + t + |u(t)|
, h(t) =

1
2 e−(t− 1

2 ). And then we’re going to prove that we satisfy our
assumption conditions (H1)-(H3).

Let t ∈ [0,
1
3

]
⋃

(
2
3
, 1], we get

‖ f (t, u(t))‖ ≤ ‖
1

10

∫ 1

0
e(s−t)u(s)ds‖ + ‖

1
50

u(t)‖ + 1

≤ (
1

10

∫ 1

0
e(s−t)ds +

1
50

)‖u‖PC + 1

≤ (
1

10
e −

2
25

)‖u‖PC + 1.

(4.2)

For any u, v ∈ C(I × J,R), t ∈ (
1
3
,

2
3

], we have

‖g1(t, u) − g1(t, v)‖ ≤ ‖
u − v
1 + t

‖ <
3
4
‖u − v‖PC . (4.3)

Next, we define a continuous mapping B : L2(J′,R) →
L2(J′,R), with domain

Bh(t) =

∫ t f

0

1
2

e−(t− 1
2 )dt. (4.4)

A direct calculation gives

‖Bh‖ ≤ −
1
2

e−(t f−
1
2 ) +

1
2

e
1
2 .

To achieve ‖B‖ ≤ 11
20 . Let’s calculate

‖Wh‖ = ‖

∫ t f

0
[ f (s, u(s)) + Bh(s)]ds‖

≤ ‖

∫ t f

0
[

1
10

∫ 1

0
e(s−t)u(s)ds +

1
50

u(t) + 1]‖ds

+
1
2
·

11
20
≤ [(

1
10

e −
2
25

)‖u‖PC + 1]t f +
11
40
.

(4.5)

To achieve ‖W−1‖ ≤ 40
11 . Thus, where p1 =

1
10

e −
2

25
, p0 =

1, K =
3
4
, N =

2
5
, D1 = 11

20 , D2 = 40
11 , the initial value

problem (4.1) satisfies the conditions (H1)-(H3). According
to Formula (4.2)-(4.5) is established. By Theorem 3.2, the
system (4.1) is controllable on [0, 1].

5. Conclusions

In this paper, the existence of solutions of ordinary
differential equations with non-instantaneous impulses in

Banach space is studied by using Schauder fixed point
theory, and sufficient conditions for controllability
results in infinite dimensional space are obtained
by using Krasnoselskii fixed point theorem and the
definition of complete controllability. However, the
necessity of controllability cannot be obtained under this
condition. Subsequent studies can obtain the approximate
controllability of the system (1.1) under the condition that
the controllable function satisfies the presolution formula.
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