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1. Introduction

Many evolutionary processes are characterized by sudden
state changes at some points in time, by being affected
by short-time perturbations. Compared with the duration
of the entire evolutionary process, the duration of these
perturbations is negligible. Therefore, if we assume that
these disturbances take place in relatively short periods
of time, or even instantaneously, in the form of pulses,
the processes can be described by impulsive differential
equations (IDEs, for short). It is well known that
many biological, agricultural, and medical programs and
experiments, such as the control of infectious diseases and
pests, and the change of human hormone levels under
the influence of external factors, involve impulsive effects.
Hence, IDEs can be regarded as the relatively accurate
description of some specific problems in the real world (see
the works [1, 2] and references therein).

On the other hand, some evolution processes, such as
intravenous drug injection, periodic fishing, and pest control,
cannot be described by instantaneous impulsive systems. To
solve this problem, Hernández and O’Regan [3] introduced

a new kind of impulses termed non-instantaneous impulses,
which start at an arbitrary fixed point and keep active in a
finite time interval. Many scholars have conducted extensive
research on these two types of IDEs in recent years. For
instance, Liu and O

′

Regan [4] investigated the functional
differential equations with instantaneous impulses by using
the measure of noncompactness and Mönch fixed-point
theorem. Chen and Zhang [5] dealt with the semilinear
evolution equations with non-instantaneous impulses by
noncompact semigroup. Xu et al. [6] investigated the
controllability of non-autonomous and non-instantaneous
impulsive systems.

Also, every aspect of a dynamical system cannot be fully
understood by considering instantaneous impulse and non-
instantaneous impulses separately. In other words, it is
necessary to consider the two types of impulses in one
system in order to figure out how they affect the system
together. For instance, Kumar and Abdal [7] investigated
a kind of instantaneous and non-instantaneous impulsive
systems using the Sadovskii’s fixed-point theorem. Tian
and Zhang [8] dealt with the existence of solutions for
second-order differential equations with these two kinds
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of impulses using the variational method. Yao [9]
studied the existence and multiplicity of solutions for
three-point boundary value problems with instantaneous
and non-instantaneous impulses. Kumar and Yadav [10]
investigated the approximate controllability of stochastic
delay differential systems driven by Poisson jumps with
instantaneous and non-instantaneous impulses.

On the other hand, many scholars have already paid
close attention to controllability. Li et al. [11] studied
impulsive control method. Liu et al. [12] investigated the
control design of delayed Boolean control networks. Xu
et al. dealt with a class of control networks [6]. Hakkar
et al. studied the approximate controllability of delayed
fractional stochastic differential systems with mixed noise
and impulsive effects [13].

The most effective way to solve this kind of problems is
to transform them into fixed-point problems using proper
operators in a function space. For instance, the Mönch fixed-
point theorem was applied to deal with the controllability of
differential equations by Liu [4]. The ρ-set contractive fixed-
point theorem was used to investigate the controllability for
a kind of fractional non-instantaneous impulsive systems by
Meraj and Pandy in [7].

Compared with classical integer derivatives, the fractional
derivatives defined by integration have the characteristics
of non-local properties and memory properties. Thus, they
are widely used to describe more complex phenomena in
a variety of fields. It was found that various, especially
interdisciplinary, applications can be elegantly modeled with
the help of fractional derivatives [14–17]; see also the recent
works of [18–20].

For example, Ge and Jhuang [21] dealt with chaos,
control, and synchronization of a class of fractional systems.
Cheng and Yuan [22] investigated the stability of the
equilibria of a kind of equation with fractional diffusion.
Jia and Wang [23] studied a fast finite volume method for
a classification of fractional equations. Monje et al. [24]
introduced the fundamentals and applications of fractional-
order systems and controls.

According to the above-mentioned research, we consider
the approximate controllability of the following fractional
semilinear system with instantaneous and non-instantaneous

impulses:

cDqx(t) = Ax(t) + Bz(t) + f (t, x(t)), t ∈
⋃h

s=0 (vs, us+1] ⊂ T,

t , u js+ j
s , j = 1, 2, · · · , ( js+1 − js) ,

x(t) = γs
(
t, x

(
u−s

))
, t ∈

⋃h
s=1 (us, vs] ,

x(0) = x0,

∆x
(
u js+ j

s

)
= I js+ j

s

(
x
(
u js+ j−

s

))
, s = 0, 1, · · · , h,

j = 1, 2, · · · , ( js+1 − js) ,
(1.1)

where j0 = 0, T = [0, b], b > 0 is a constant. cDq

is the Caputo fractional derivative of order q, 0 < q < 1.
A: D(A) ⊂ W → W is a infinitesimal generator of a C0-
semigroup {T (t)}t≥0, where W is a reflexive Banach space,
and

0 = u0 = v0 < u1
0 < u2

0 < · · · < u j1
0 < u1 < v1

< u j1+1
1 < u j1+2

1 < · · · < u j2
1 < u2 < · · · < vh

< u jh+1
h < u jh+2

h < · · · < u jh+1
h < uh+1 = b.

The state variable x(·) ∈ W, z(·) ∈ L2(T ; V) is the control
variable, where V is another Banach space, and B : V → W
is a bounded linear operator. f : T × W → W is a given
function satisfying some hypotheses that will be specified
later, and the functions γs: (us, vs] ×W→W represent non-
instantaneous impulses. The jump in the state x at time t is
defined by

∆x(t) = x
(
t+

)
− x

(
t−

)
.

As far as we know, no one has conducted research
on such class of systems yet. Kumar and Abdal [25]
studied (1.1) only in the form of classical integer derivatives.
Meraj and Pandey [7] dealt with (1.1) without instantaneous
impulses. Compared with previous research, the following
distinguishing features are presented in this article. Firstly,
compared with [25], (1.1) is in the form of fractional
derivatives. In addition, the nonlinear term and the
two types of impulses here are no longer required to
meet Lipschitz conditions. Secondly, compared with [7],
instantaneous impulses are involved in (1.1), and we also
weaken the conditions that the impulses need to satisfy.
Compared with [26, 27], we not only consider the impact
of instantaneous and non-instantaneous impulses at the same
time in (1.1), but also discuss the approximate controllability
of the system. In addition, (1.1) considers the impact of
instantaneous impulses in comparison to [13].
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The rest of the article is organized as follows. In
Section 2, some fundamental concepts and results are listed.
In Section 3, by the ρ-set contractive fixed-point theorem,
the existence of mild solutions for (1.1) is discussed. In
Section 4, we show that (1.1) is approximately controllable.
Finally, in Section 5, a reasonable instance is worked out to
support the main results.

2. Preliminaries

In this section, we first present a set of piecewise
continuous functions. Next, we define a mild solution
of (1.1) and conclude an expression of the resolvent operator.
Some related definitions and lemmas are also listed.

Assume thatW is a Banach space with the norm ∥ · ∥.

Define PC(T ;W) =
{
x : T → W | x is continuous at

t , u js+ j
s , t , us+1, and x

(
u js+ j−

s
)
, x

(
u js+ j+

s
)
, x

(
u−s+1

)
, x

(
u+s+1

)
exist, with x

(
u js+ j−

s
)
= x

(
u js+ j

s
)

and x
(
u−s+1

)
= x

(
us+1

)
, for

s = 0, 1, · · · , h, j = 1, 2, · · · , ( js+1 − js)
}
.

Obviously, PC(T ;W) is a Banach space with the norm

∥x∥PC = sup
t∈T
∥x(t)∥.

Definition 2.1. ([28]) If f (t) ∈ Cn[0,∞), then the Caputo

fractional derivative of f of order α(α > 0) is defined as

follows:

Dα f (t) =
1

Γ(n − α)

∫ t

0

f (n)(s)
(t − s)α−n+1 ds,

where n = [α] + 1, [α] denotes the integral part of α > 0.

Lemma 2.1. ([29]) If f satisfies a uniform Hölder

continuity with exponent β ∈ (0, 1], the unique solution of

the Cauchy problem cDqx(t) = Ax(t) + f (t), t ∈ T,

x(0) = x0 ∈W,

is given by

x(t) = U(t)x0 +

∫ t

0
(t − s)q−1V(t − s) f (s)ds,

where

U(t) =
∫ ∞

0
ζq(θ)T (tqθ) dθ,V(t) = q

∫ ∞

0
θ ζq(θ)T (tqθ) dθ,

ζq(θ) =
1
q
θ−1− 1

q ρq

(
θ−

1
q

)
,

ρq(θ) =
1
π

∞∑
n=0

(−1)n−1θ−qn−1 Γ(nq + 1)
n!

sin(nπq), θ ∈ (0,∞),

and ζq(θ) is a probability density function defined on (0,∞).

Remark 2.1. ζq(θ) ≥ 0, θ ∈ (0,∞),∫ ∞

0
ζq(θ)dθ = 1

and ∫ ∞

0
θζq(θ)dθ =

1
Γ(1 + q)

.

Similar to [7,25], the mild solution of (1.1) can be defined
as follows:

Definition 2.2. For a given z(·) ∈ L2(T ; V), x (· , x0, z):
T → W is called a mild solution of (1.1), if x ∈ PC(T ;W)
and satisfies

x(t) =



U(t)x0 +
∫ t

0 (t − τ)q−1V(t − τ)[ f (τ, x(τ)) + Bz(τ)]dτ
+

∑
0<u j

0<t U(t − u j
0)I j

0(x(u j−

0 )), t ∈ [0, u1],

γs(t, x(u−s )), t ∈ (us, vs], s = 1, 2, · · · , h,
U(t − vs)γs(vs, x(u−s ))
+

∫ t
vs

(t − τ)q−1V(t − τ)[ f (τ, x(τ)) + Bz(τ)]dτ

+
∑

vs<u js+ j
s <t U(t − u j+ js

s )I j+ js
s (x(u js+ j−

s )),

t ∈ (vs, us+1], s = 1, 2, · · · , h.

Definition 2.3. ([30]) Equation (1.1) is said to be

approximately controllable on T if, for any given final state

xb ∈ W and arbitrary ε, there exists a control z ∈ L2(T,V)
and a corresponding solution x(t) of (1.1) such that

∥x(b) − xb∥ < ε.

Represent the adjoint of V and B with V∗ and B∗,

respectively. For arbitrary λ > 0, define the resolvent

operator

R
(
λ,Γb

0

)
=

(
λI + Γb

0

)−1
, (2.1)

where

Γb
0 =

∫ b

0
(b − s)q−1V(b − s)BB∗V∗(b − s)ds.

Now, introduce some relevant results of the Kuratowski

measure of noncompactness X defined on bounded subsets

of the Banach space W. For more detailed information,

please see [5, 31, 32] and references therein.
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Lemma 2.2. ([33]) Let W be a Banach space and W1 is a

bounded subset ofW; then there exists a countable set

D = {xn}
∞
n=1 ⊂ W1,

such that

X(W1) ≤ 2X(D).

Definition 2.4. ([5]) Let W be a Banach space and W1 be

a nonempty subset ofW. If there exists a constant ρ ∈ [0, 1)
such that

X(ν(Ω)) ≤ ρX(Ω)

for every bounded set Ω ⊂ W1, the continuous map ν:W1 →

W is called a ρ-set contractive map.

Theorem 2.1. ([5]) Let W a Banach space and W1 be a

closed bounded and convex subset. Suppose that ν : W1 →

W is a ρ -set contractive map. Then, ν has at least one fixed

point in W1.

3. Main results

3.1. Existence of mild solutions

In this section, we discuss the existence of mild solutions
of (1.1). For this sake, some hypotheses are listed as follows:
(H1) For t > 0, {T (t)} is compact, and there exists P ≥ 1
such that

∥T (t)∥ ≤ P, ∀ t ∈ T .

(H2) f : T × W → W is continuous, and there exists a
constant q1 ∈ (0, q) and a(t) ∈ L

1
q1 (T,R+) such that

∥ f (t, x)∥ ≤ a(t)∥x∥, ∀x ∈W, t ∈ T.

(H3) γs: Ts × W → W, Ts = (us, vs] , s = 1, 2, · · · , h
are continuous, and there are positive constants Gγs and
functionsHγs (t) ∈ L1(T,R+) such that

∥γs(t, x)∥ ≤ Gγs∥x∥, ∀t ∈ Ts, ∀x ∈W

and

X(γs(t,D)) ≤ Hγs (t)X(D)

for any bounded D ⊂W and ∀t ∈ Ts.

(H4) I js+ j
s : W → W are continuous for s = 0, 1, · · · , h,

and j = 1, 2, · · · , ( js+1 − js), and there are positive constants
I

js+ j
s andH js+ j

s such that

∥∥∥∥I js+ j
s (x)

∥∥∥∥ ≤ I js+ j
s ∥x∥, ∀x ∈W

and

X(I js+ j
s (D)) ≤ H js+ j

s X(D)

for any bounded D ⊂W.

(H5) λR
(
λ, Γb

0

)
tends to 0 as λ → 0+ in the strong operator

topology.

For convenience, denote

M =

(1 − q1

q − q1
b

1−q1
q−q1

)1−q1

,

F = ∥a(t)∥
L

1
q1 (T,R+)

,

ϱ =
q − 1
1 − q1

∈ (0, 1).

Now we introduce the following results to get the
approximate controllability of (1.1) and its corresponding
linear system.

Lemma 3.1. ([30]) The following conditions are

equivalent:

(1) (H5) holds.

(2) System

 cDqx(t) = Ax(t) + Bz(t), t ∈ T,

x(0) = x0,

is approximately controllable on T .

Lemma 3.2. ([34]) The operators U and V have the

following properties:

(i) U(t) and V(t) are strongly continuous for t ≥ 0.

(ii) U(t) and V(t) are linear and bounded operators for

arbitrary fixed t ≥ 0 and they satisfy

∥U(t)x∥ ≤ P∥x∥, ∥V(t)x∥ ≤
P

Γ(q)
∥x∥

for arbitrary x ∈W.

(iii) If T (t)(t > 0) is a compact semigroup, U(t) and V(t) are

compact operators onW for t > 0.
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For an arbitrary λ > 0, we define the following control
zλ(t, µ, x):

zλ(t, µ, x) =



B∗V∗ (b − t) R
(
λ,Γb

0

) [
µ − U (b) x0−∫ b

0 (b − τ)q−1V (b − τ) f (τ, x(τ))dτ

−
∑

0<u j
0<b U

(
b − u j

0

)
I j
0

(
x
(
u j−

0

)) ]
, t ∈ [0, u1] ,

B∗V∗ (b − t) R
(
λ,Γb

0

) [
µ − U (b − vs) γs

(
vs, x

(
u−s

))
−

∫ b
vs

(b − τ)q−1V (b − τ) f (τ, x(τ))dτ

−
∑

vs<u js+ j
s <b U

(
b − u js+ j

s

)
I js+ j

s

(
x
(
u js+ j−

s

)) ]
,

t ∈ (vs, us+1] ,
(3.1)

where s = 1, · · · , h, for t ∈ T, µ ∈W and x ∈ PC(T,W).

Lemma 3.3. For arbitrary λ > 0 and µ ∈ W, the set{
zλ(t, µ, x) : x ∈ Bδ

}
is bounded on T , where

Bδ = {x ∈ PC(T ;W) : ∥x∥PC ≤ δ}.

Proof. Notice that, by Lemma 3.2,∥∥∥zλ(t, µ, x)
∥∥∥ =∥∥∥∥∥B∗V∗ (b − t) R

(
λ,Γb

0

) [
µ − U (b) x0

−

∫ b

0
(b − τ)q−1V (b − τ) f (τ, x(τ))dτ

−
∑

0<u j
0<b

U
(
b − u j

0

)
I j
0

(
x
(
u j−

0

)) ]∥∥∥∥∥
≤
∥B∥P
λΓ(q)

[
∥µ∥ + P∥x0∥ +

PF δ

Γ(q)
M +

j1∑
j=1

PI
j
0δ

]
for t ∈ (0, u1].

Similarly,∥∥∥zλ(t, µ, x)
∥∥∥ =∥∥∥∥∥B∗V∗ (b − t) R

(
λ,Γb

0

) [
µ − U (b − vs) γs

(
vs, x

(
u−s

))
−

∫ b

vs

(b − τ)q−1V (b − τ) f (τ, x(τ))dτ

−
∑

vs<u js+ j
s <b

U
(
b − u js+ j

s

)
I js+ j

s

(
x
(
u js+ j−

s

)) ]∥∥∥∥∥
≤
∥B∥P
λΓ(q)

[
∥µ∥ + PGγsδ +

PδF

Γ(q)
M +

js+1− js∑
j=1

PI
js+ j
s δ

]
for t ∈ (vs, us+1], where s = 1, · · · , h.

Now we are in the position to give the existence results
for (1.1).

Theorem 3.1. Suppose that (H1)–(H4) hold. Then, for

every λ > 0, there exists at least one solution of (1.1) on

T provided that

Gγs ≤ 1,

P0 :=
P2∥B∥2tq

λ(Γ(q))2q

[
PF

Γ(q)
M +

j1∑
j=1

PI
j
0

]
+
PF

Γ(q)
M +

∑
0<u j

0<t

PI
j
0 ∈ (0, 1),

Ps :=PGγs +
P2∥B∥2tq

λ(Γ(q))2q

[
PGγs +

PF

Γ(q)
M +

js+1− js∑
j=1

PI
js+ j
s

]
+
PF1

Γ(q)
M +

∑
vs<u js+ j

s <t

PI
js+ j
s ∈ (0, 1)

and

Λ := 2
( js+1− js∑

j=1

PH
js+ j
s + PHγs (t)

)
< 1,

where s = 1, 2, · · · , h and t ∈ T.

Proof. First, for an arbitrary λ > 0, define the following
operator Υλ on PC(T,W).

(
Υλx

)
(t) =



U(t)x0 +
∫ t

0 (t − τ)q−1V(t − τ)[ f (τ, x(τ))+
Bzλ(τ)]dτ +

∑
0<u j

0<t U(t − u j
0)I j

0(x(u j−

0 )),

t ∈ [0, u1],
γs(t, x(u−s )), t ∈ (us, vs],
U(t − vs)γs(vs, x(u−s ))
+

∫ t
vs

(t − τ)q−1V(t − τ)[ f (τ, x(τ)) + Bzλ(τ)]dτ

+
∑

vs<u js+ j
s <t U(t − u j+ js

s )I j+ js
s (x(u js+ j−

s )),

t ∈ (vs, us+1],

where s = 1, 2, · · · , h, zλ(t) = zλ(t, µ, x) is defined as
in (3.1).

It is obvious that the existence of fixed points of Υλ is
equivalent to the existence of mild solutions of (1.1).

For convenience, rewrite Υλ as follows:

(Υλx)(t) = (Υ1x)(t) + (Υ2x)(t), t ∈ T,

where

(Υ1x)(t) =



U(t)x0 +
∑

0<u j
0<t U(t − u j

0)I j
0(x(u j−

0 )),

t ∈ [0, u1], γs(t, x(u−s )), t ∈ (us, vs],
U(t − vs)γs(vs, x(u−s ))
+

∑
vs<u js+ j

s <t U(t − u j+ js
s )I j+ js

s (x(u js+ j−
s )),

t ∈ (vs, us+1],

(Υ2x)(t) =



∫ t
0 (t − τ)q−1V(t − τ)[ f (τ, x(τ)) + Bzλ(τ)]dτ,
t ∈ [0, u1],
0, t ∈ (us, vs],∫ t

vs
(t − τ)q−1V(t − τ)[ f (τ, x(τ)) + Bzλ(τ)]dτ,

t ∈ (vs, us+1],
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where s = 1, 2, · · · , h.

Next, we prove the existence of fixed points of Υλ. The
process is divided into four steps.

Step 1. Show that, for an arbitrary λ > 0, there exists a
constant δ = δ(λ) > 0 such that Υλ(Bδ) ⊂ Bδ.

Choose δ satisfying:

δ ≥ max
1≤s≤h

[
Q0

1 − P0
,

Qs

1 − Ps

]
, (3.2)

where

Q0 = P∥x0∥ +
P2∥B∥2tq

λ(Γ(q))2q

(
∥µ∥ + P∥x0∥

)
,

Qs =
P2∥B∥2(t − vs)q

λ(Γ(q))2q
∥µ∥.

It is time to claim that Υλ(Bδ) ⊂ Bδ, which is equivalent
to show that, for an arbitrary x ∈ Bδ, ∥Υλx(t)∥ ≤ δ on T.

By (H1)–(H4) and (3.2), one can get that

∥Υλx(t)∥ ≤P∥x0∥ +
P2∥B∥2tq

λ(Γ(q))2q

[
∥µ∥ + P∥x0∥ +

PF δ

Γ(q)
M

+

j1∑
j=1

PI
j
0δ

]
+
PδF

Γ(q)
M +

∑
0<u j

0<t

PI
j
0δ,

(3.3)

for t ∈ [0, u1]. So,

∥Υλx(t)∥ ≤ Q0 + P0δ ≤ δ

for t ∈ [0, u1].

Similarly,

∥(Υλx)(t)∥ ≤ ∥γs(t, x(u−s ))∥ ≤ Gγsδ ≤ δ, (3.4)

for t ∈ (us, vs], s = 1, 2, · · · , h. Thus,

∥Υλx(t)∥ ≤ Qs + Psδ ≤ δ

for t ∈ [us, vs].

In addition,

∥(Υλx)(t)∥ ≤PGγsδ +
P2∥B∥2tq

λ(Γ(q))2q

[
∥µ∥ + PGγsδ +

PδF

Γ(q)
M

+

js+1− js∑
j=1

PI
js+ j
s δ

]
+
PδF1

Γ(q)
M +

∑
vs<u js+ j

s <t

PI
js+ j
s δ,

(3.5)

for t ∈ (vs, us+1], s = 1, 2, · · · , h. Thus,

∥Υλx(t)∥ ≤ Qs + Psδ ≤ δ

for t ∈ [vs, us+1].
Combining (3.3)–(3.5), one can obtain that

∥Υλζ(t)∥ ≤ Qs + Psδ ≤ δ

for t ∈ T . That is, Υλ(Bδ) ⊂ Bδ.
Step 2. Claim that Υλ is continuous on Bδ.

We first show that the control zλ(t, µ, x) is continuous with
respect to x on Bδ. Let {xn}

∞
n=1 ⊂ Bδ be a sequence such that

xn → x as n→ ∞, then

∥zλ(t, µ, xn) − zλ(t, µ, x)∥

≤
∥B∥P
λΓ(q)

{bq−1P

Γ(q)

∫ b

0

∥∥∥∥∥ f (τ, xn(τ)) − f (τ, x(τ))
∥∥∥∥∥dτ

+
∑

0<u j
0<b

P

[
I j
0

(
xn

(
u j−

0

))
− I j

0

(
x
(
u j−

0

)) ]} (3.6)

for t ∈ [0, u1].

∥zλ(t, µ, xn) − zλ(t, µ, x)∥

≤
∥B∥P
λΓ(q)

{
P

∥∥∥∥∥γs
(
vs, x

(
u−s

))
− γs

(
vs, xn

(
u−s

)) ∥∥∥∥∥
+

(b − vs)q−1P

Γ(q)

∫ b

vs

∥∥∥∥∥ f (τ, xn(τ)) − f (τ, x(τ))
∥∥∥∥∥dτ

+
∑

vs<u js+ j
s <b

P

∥∥∥∥∥I js+ j
s

(
xn

(
u js+ j−

s

))
− I js+ j

s

(
x
(
u js+ j−

s

)) ∥∥∥∥∥}
(3.7)

for t ∈ [vs, us+1], where s = 1, 2, · · · , h.
By (3.6) and (3.7) together with (H2)–(H4), one can get

∥zλ(t, µ, xn) − zλ(t, µ, x)∥ → 0, as n→ ∞.

Therefore, the control zλ(t, µ, x) is continuous with respect
to x on Bδ.

Next, we show that Υλ is continuous on Bδ. Let {xn}
∞
n=1 be

a sequence on Bδ such that xn → x as n→ ∞.
Notice that, from (H2)–(H4),

∥(Υλxn)(t) − (Υλx)(t)∥ ≤
uq

1P

qΓ(q)

[
∥B∥∥zλ(t, µ, xn(t)) − zλ(t, µ, x(s))∥

+ ∥ f (t, xn(t)) − f (t, x(t))∥
]

+
∑

0<u j
0<t

P

∥∥∥∥∥I j
0(xn(u j−

0 ) − x(u j−

0 ))
∥∥∥∥∥

→ 0,

(3.8)
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as n→ ∞, for t ∈ [0, u1].

∥(Υλxn)(t) − (Υλx)(t)∥ = ∥γs(t, xn(u−s )) − γs(t, x(u−s ))∥

→ 0
(3.9)

as n→ ∞, for t ∈ (us, vs], where s = 1, 2, · · · , h.

∥(Υλxn)(t) − (Υλx)(t)∥

≤ P∥γs(t, xn(u−s )) − γs(t, x(u−s ))∥

+
(us+1 − vs)qP

qΓ(q)

[
∥B∥∥zλ(t, µ, xn(s)) − zλ(t, µ, x(t))∥

+ ∥ f (t, xn(t)) − f (t, x(t))∥
]

+
∑

vs<u js+ j
s <t

P

∥∥∥∥∥I js+ j
s (xn(u js+ j

s )) − I js+ j
s (x(u js+ j

s ))
∥∥∥∥∥

→ 0

(3.10)

as n→ ∞, for t ∈ (vs, us+1], where s = 1, 2, · · · , h.

According to (3.8)–(3.10), one can obtain that

∥(Υλxn) − (Υλx)∥PC → 0

as n→ ∞. Therefore, Υλ is continuous on Bδ.

Step 3. Claim that Υ2 is compact on Bδ.

We first show that, for an arbitrary t ∈ T , the set {(Υ2x)(t) :
x ∈ Bδ} is relatively compact inW. For t = 0 and t ∈ (us, vs],
(Υ2x)(t) = 0, where s = 1, 2, · · · , h.

Let t ∈ (vs, us+1], s = 0, 1, 2, · · · , h be fixed. For an
arbitrary ε ∈ (0, t − vs), define Υε,σ2 on Bδ as follows:

(
Υ
ε,σ
2 x

)
(t)

=q
∫ t−ε

vs

∫ ∞

σ

θ(t − τ)q−1ζq(θ)T
(
(t − τ)q(θ)

)[
f (τ, x(τ))

+ Bzλ(τ)
]
dθdτ

=T (εqσ)q
∫ t−ε

vs

∫ ∞

σ

θ(t − τ)q−1ζq(θ)T
(
(t − τ)q(θ)

− εqσ
)[

f (τ, x(τ)) + Bzλ(τ)
]
dθdτ

:=T (εqσ)y(t, ε).

Because {y(t, ε): x ∈ Bδ} is bounded inW andT (ε)(ε > 0)
is compact, the set {(Υε,σ2 x)(t): x ∈ Bδ} is relatively compact
inW.

In addition,

∥(Υ2x)(t) − (Υε,σ2 x)(t)∥

= q
∥∥∥∥∥ ∫ t

vs

∫ σ

0
θ(t − τ)q−1ζq(θ)T

(
(t − τ)q(θ)

)[
f (τ, x(τ))

+ Bzλ(τ)
]
dθdτ +

∫ t

vs

∫ ∞

σ

θ(t − τ)q−1ζq(θ)T
(
(t − τ)q(θ)

)
[

f (τ, x(τ)) + Bzλ(τ)
]
dθdτ

−

∫ t−ε

vs

∫ ∞

σ

θ(t − τ)q−1ζq(θ)T
(
(t − τ)q(θ)

)[
f (τ, x(τ))

+ Bzλ(τ)
]
dθdτ

∥∥∥∥∥
= q

∥∥∥∥∥ ∫ t

vs

∫ σ

0
θ(t − τ)q−1ζq(θ)T

(
(t − τ)q(θ)

)[
f (τ, x(τ))

+ Bzλ(τ)
]
dθdτ

+

∫ t

t−ε

∫ ∞

σ

θ(t − τ)q−1ζq(θ)T
(
(t − τ)q(θ)

)[
f (τ, x(τ))

+ Bzλ(τ)
]
dθdτ

∥∥∥∥∥
≦ (K1 + K2),

(3.11)

where

K1 =

∥∥∥∥∥ ∫ t

vs

∫ σ

0
θ(t − τ)q−1ζq(θ)T

(
(t − τ)q(θ)

)[
f (τ, x(τ))

+ Bzλ(τ)
]
dθdτ

∥∥∥∥∥
≤P

( ∫ σ

0
θζq(θ)dθ

)[∥∥∥∥∥ ∫ t

vs

(t − τ)q−1 f (τ, x(τ))dτ
∥∥∥∥∥

+

∥∥∥∥∥ ∫ t

vs

(t − τ)q−1Bzλ(τ)dτ
∥∥∥∥∥]

≤P
( ∫ σ

0
θζq(θ)dθ

)[
FMδ +

(b − vs)q

q
∥B∥∥zλ(τ)∥

]
,

(3.12)

K2 =

∥∥∥∥∥ ∫ t

t−ε

∫ ∞

σ

θ(t − τ)q−1ζq(θ)T
(
(t − τ)q(θ)

)[
f (τ, x(τ))

+ Bzλ(τ)
]
dθdτ

∥∥∥∥∥
≤P

( ∫ ∞

σ

θζq(θ)dθ
)[∥∥∥∥∥ ∫ t

t−ε
(t − τ)q−1 f (τ, x(τ))dτ

∥∥∥∥∥
+

∥∥∥∥∥ ∫ t

t−ε
(t − τ)q−1Bzλ(τ)dτ

∥∥∥∥∥]
≤P

( ∫ ∞

σ

θζq(θ)dθ
)[
F δ

(1 − q1

q − q1
ε

q−q1
1−q1

)1−q1

+
εq

q
∥B∥∥zλ(τ)∥

]
.

(3.13)

This, together with (3.11) and (3.12), guarantees that

∥(Υ2x)(t) − (Υε,σ2 x)(t)∥ → 0

as ε → 0 and δ → 0. That is,
{
(Υ2x)(t): x ∈ Bδ

}
is relatively

compact inW for an arbitrary t ∈ T .
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Next, it is time to claim that
{
(Υ2x): x ∈ Bδ

}
are

equicontinuous. For any x ∈ Bδ and vs ≤ t1 < t2 ≤ us+1

for s = 0, 1, 2, · · · , h,

∥(Υ2x)(t2) − (Υ2x)(t1)∥

=

∥∥∥∥∥ ∫ t2

vs

(t2 − τ)q−1V(t2 − τ)
[

f (τ, x(τ)) + Bzλ(τ)
]
dτ

−

∫ t1

vs

(t1 − τ)q−1V(t1 − τ)
[

f (τ, x(τ)) + Bzλ(τ)
]
dτ

∥∥∥∥∥
≤

∥∥∥∥∥ ∫ t2

t1
(t2 − τ)q−1V(t2 − τ) f (τ, x(τ))dτ

∥∥∥∥∥
+

∥∥∥∥∥ ∫ t2

t1
(t2 − τ)q−1V(t2 − τ)Bzλ(τ)dτ

∥∥∥∥∥
+

∥∥∥∥∥ ∫ t1

vs

[
(t2 − τ)q−1 − (t1 − τ)q−1

]
V(t2 − τ) f (τ, x(τ))dτ

∥∥∥∥∥
+

∥∥∥∥∥ ∫ t1

vs

[
(t2 − τ)q−1 − (t1 − τ)q−1

]
V(t2 − τ)Bzλ(τ)dτ

∥∥∥∥∥
+

∥∥∥∥∥ ∫ t1

vs

(t1 − τ)q−1
[
V(t2 − τ) − V(t1 − τ)

]
f (τ, x(τ))dτ

∥∥∥∥∥
+

∥∥∥∥∥ ∫ t1

vs

(t1 − τ)q−1
[
V(t2 − τ) − V(t1 − τ)

]
Bzλ(τ)dτ

∥∥∥∥∥
= L1 + L2 + L3 + L4 + L5 + L6.

(3.14)
Now, we only need to show that L1–L6 tend to 0

independently of x ∈ Bδ when
(
t2 − t1

)
→ 0.

By Lemma 3.2 and (H1)–(H4), one can obtain that

L1 ≤
PF δ

Γ(q)
·

[1 − q1

q − q1
(t2 − t1)

q−q1
1−q1

]1−q1

,

L2 ≤
∥B∥∥zλ(t)∥P
Γ(q)

·

[1 − q1

q − q1
(t2 − t1)

q−q1
1−q1

]1−q1

,

L3 ≤
PF δ

Γ(q)
·

(t2 − t1)(ϱ+1)(1−q1)

(1 + ϱ)1−q1
,

L4 ≤
∥B∥∥zλ(t)∥P
Γ(q)

·
(t2 − t1)(ϱ+1)(1−q1)

(1 + ϱ)1−q1
,

L5 ≤F δ
[1 − q1

q − q1
(t1 − vs)

q−q1
1−q1

]1−q1

sup
τ∈(vs, t1]

∥V(t2 − τ)

− V(t1 − τ)∥,

L6 ≤∥B∥∥zλ(t)∥
[1 − q1

q − q1
(t1

− vs)
q−q1
1−q1

]1−q1

sup
τ∈(vs, t1]

∥V(t2 − τ) − V(t1 − τ)∥.

(3.15)

Through calculation,

Li → 0 as (t2 − t1)→ 0

for i = 1, 2, · · · , 6. That is,

∥(Υ2x)(t2) − (Υ2x)(t1)∥ → 0

as
(
t2 − t1

)
→ 0. So, {(Υ2x) : x ∈ Bδ} are equicontinuous on

[vs, us+1], where s = 0, 1, 2, · · · , h.
It is obvious that {(Υ2x) : x ∈ Bδ} is bounded. Thus, Υ2 is

compact on Bδ by Arzelà-Ascoli theorem.
Step 4. Claim that Υλ is a Λ-set contractive map.
First, clearly, Υ2 is a completely continuous operator on

Bδ according to Steps 2 and 3.
Next, for an arbitrary bounded set D ⊂ Bδ, by Lemma 2.2,

there exists a countable set

D0 = {xn}
∞
n=1 ⊂ D,

such that

X (Υ1(D)) ≤ 2X (Υ1 (D0)) . (3.16)

Notice that

∥xn(t) − xm(t)∥ ≤ ∥xn − xm∥PC , t ∈ T,

which implies

X({xn(t)}∞n=1) ≤ XPC({xn}
∞
n=1), t ∈ T, (3.17)

where XPC(·) denotes the Kuratowski measure of
noncompactness of a bounded set in PC(T,W).

According to (H2)–(H4),

X
(
{(Υ1xn)(t)}∞n=1

)
≤

js+1− js∑
j=1

P
(
X({(I js+ j

s xn)(t)}∞n=1)
)

+ PX
(
γs(t, {xn(t)}∞n=1)

)
≤

js+1− js∑
j=1

PH
js+ j
s X({xn(t)}∞n=1)

+ PHγs (t)X({xn(t)}∞n=1)

=

( js+1− js∑
j=1

PH
js+ j
s + PHγs (t)

)
X({xn(t)}∞n=1)

(3.18)

for t ∈ [vs, us+1], s = 0, 1, 2, · · · , h.
Similar to the procedure in Step 3, one can obtain that
Υ1 (D0) is equicontinuous on [vs, us+1], s = 0, 1, 2, . . . , h.
Meanwhile, the boundedness of Υ1 (D0) is obvious.
Therefore (from a well-known result on measures of
noncompactness),

XPC

(
{Υ1xn}

∞
n=1

)
= sup

t∈[vs,us+1], s=0,1,2,...,h
X

(
{(Υ1xn)(t)}∞n=1

)
.

(3.19)
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This, together with (3.16)–(3.18) and (H1), guarantees
that

XPC
(
Υ1(D)

)
≤ 2 XPC

(
Υ1(D0)

)
= 2 XPC

(
{Υ1xn}

∞
n=1

)
≤ 2

( js+1− js∑
j=1

PH
js+ j
s + PHγs (t)

)
X
(
{xn(t)}∞n=1

)
≤ 2

( js+1− js∑
j=1

PH
js+ j
s + PHγs (t)

)
XPC

(
{xn}

∞
n=1

)
= 2

( js+1− js∑
j=1

PH
js+ j
s + PHγs (t)

)
XPC

(
D0

)
≤ 2

( js+1− js∑
j=1

PH
js+ j
s + PHγs (t)

)
XPC

(
D
)

= Λ XPC(D),

where s = 1, 2, · · · , h.

Therefore, Υλ: Bδ → Bδ is a Λ-set contractive map. By
Theorem 2.1, Υλ has at least one fixed point x ∈ Bδ, which
is a mild solution of (1.1) on T .

Theorem 3.2. Suppose that (H5) and the hypotheses of

Theorem 3.1 hold. Then, (1.1) is approximately controllable

on T .

Proof. By Theorem 3.1, for an arbitrary desired final state
xb ∈ W, there exists at least one solution denoted by xλ(t)
of (1.1) corresponding to the following control:

zλ(t, xb, xλ) =



B∗V∗ (b − t) R
(
λ, Γb

0

) [
xb − U (b) x0

−
∫ b

0 (b − τ)q−1V (b − τ) f (τ, xλ(τ))dτ

−
∑

0<u j
0<b U

(
b − u j

0

)
I j
0

(
xλ

(
u j−

0

)) ]
,

t ∈ [0, u1] ,

B∗V∗ (b − t) R
(
λ, Γb

0

) [
xb

−U (b − vs) γs

(
vs, xλ

(
u−s

))
−

∫ b
vs

(b − τ)q−1V (b − τ) f (τ, xλ(τ))dτ

−
∑

vs<u js+ j
s <b U

(
b − u js+ j

s

)
I js+ j

s

(
xλ

(
u js+ j−

s

)) ]
,

t ∈ (vs, us+1] , s = 1, · · · , h.

Then, consider

xb − xλ (b) =xb − U(b − vs)γs(vs, xλ(u−s ))

−

∫ b

vs

(b − τ)q−1V(b − τ) f (τ, xλ(τ))dτ

−
∑

vs<u js+ j
s <b

U(b − u j+ js
s )I j+ js

s (xλ(u js+ j−
s ))

− Γb
0R

(
λ,Γb

0

) [
xb − U(b − vs)γs(vs, xλ(u−s ))

−

∫ b

vs

(b − τ)q−1V(b − τ) f (τ, xλ(τ))dτ

−
∑

vs<u js+ j
s <b

U(b − u j+ js
s )I j+ js

s (xλ(u js+ j−
s ))

]
.

(3.20)

Combining (2.1) and (3.20),

xb − xλ (b) =λR
(
λ,Γb

0

) [
xb − U(b − vs)γs(vs, xλ(u−s ))

−

∫ b

vs

(b − τ)q−1V(b − τ) f (τ, xλ(τ))dτ

−
∑

vs<u js+ j
s <b

U(b − u j+ js
s )I j+ js

s (xλ(u js+ j−
s ))

]
.

According to (H2), one can obtain that f is bounded.
Therefore, there exists a subsequence that is represented in
the form of

{
f
(
t, xλ(t)

)}
again weakly converging to f1(t) in

W as λ→ 0+.
Now, define

ℓ =xb − U(b − vs)γs(vs, xλ(u−s ))

−

∫ b

vs

(b − τ)q−1V(b − τ) f1(τ)dτ

−
∑

vs<u js+ j
s <b

U(b − u j+ js
s )I j+ js

s (xλ(u js+ j−
s )),

(3.21)

ℏ(xλ) =xb − U(b − vs)γs(vs, xλ(u−s ))

−

∫ b

vs

(b − τ)q−1V(b − τ) f (τ, xλ(τ))dτ

−
∑

vs<u js+ j
s <b

U(b − u j+ js
s )I j+ js

s (xλ(u js+ j−
s )).

(3.22)

Similar to [35], it is clear that

y(·) −→
∫ ·

0
(· − τ)q−1V(· − τ)y(τ)dτ

is compact. It follows that

∥ℏ(xλ) − ℓ∥ → 0 as λ→ 0+.
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This, together with (H5), (3.21), and (3.22), implies that

∥∥∥xb − xλ (b)
∥∥∥ ≤ ∥∥∥∥λR (

λ,Γb
0

)
ℓ
∥∥∥∥ + ∥∥∥∥λR (

λ,Γb
0

)∥∥∥∥ ∥ ℏ(xλ) − ℓ∥.

Thus,

∥xb − xλ (b) ∥ → 0

as λ→ 0+, which means (1.1) is approximately controllable
on T .

To illustrate the effectiveness of the obtained results, now,
we work out an example:

Example 3.1. Consider the following fractional semilinear

system with instantaneous and non-instantaneous impulses:

cD
1
2 x(t, ι)

= ∂2

∂ι2
x(t, ι) + z(t, ι) + 1

10
e−t x(t,ι)
e−t+et +

1
3

∫ t
0 e−(s−t)x(s, ι)ds,

ι ∈ (0, 1), t ∈ (0, 1
4 ] ∪ ( 3

4 , 1],

x(t, ι) = e−(t− 1
4 )

5
x(t,ι)

1+x(t,ι) , t ∈ ( 1
4 ,

3
4 ], ι ∈ (0, 1),

x(t, 0) = x(t, 1) = 0,
x(0, ι) = x0(ι), ι ∈ [0, 1],

∆x
( 1

6
)
(ι) =

∫ 1
6

0 cos
(

1
6 − s

)
x(s, ι)ds, ι ∈ (0, 1),

(3.23)
where t ∈ T = [0, 1].

Conclusion of example: Equation (3.23) is approximately
controllable on T .

Proof. Equation (3.23) can be regarded as a system of the
form (1.1), where

q =
1
2
, b = u2 = 1, u0 = v0 = 0,

u1 =
1
4
, v1 =

3
4
, u1

0 =
1
6
, j = 1,

f (t, x(t)) =
1

10
e−t x(t, ι)
e−t + et +

1
3

∫ t

0
e−(s−t)x(s, ι)ds,

γ1(t, x) =
e−(t− 1

4 )

5
x(t, ι)

1 + x(t, ι)
,

I1
0
(
x(

1
6

−

)
)
=

∫ 1
6

0
cos

(
1
6
− s

)
x(s, ι)ds.

Let

W = L2([0, 1])

be equipped with the norm defined by

∥x∥ =
( ∫ 1

0
|x(t)|2dt

) 1
2

, x ∈W.

Define Ax = x′′, and

D(A) =
{
x ∈W : x, x′ are absolutely continuous and

x′′ ∈W, x(0) = x(1) = 0
}
.

Thus,

Ax =
∞∑

n=1

−n2⟨x, en⟩en, x ∈ D(A),

where

en(ι) =

√
2
π

sin(nι), 0 ≤ ι ≤ 1, n = 1, 2, · · · .

It is well-known that A generates a compact semigroup
T (t)(t > 0) that is given by

T (t)x =
∞∑

n=1

e−n2t⟨x, en⟩en, x ∈W.

Obviously,
∥T (t)∥ ≤ 1,

for arbitrary t ≥ 0. Put

x(t) = x(t, ι),

that is
x(t)(ι) = x(t, ι), t ∈ [0, 1], ι ∈ [0, 1].

B: V→W, which is defined as

Bz(t) = z(t, ι),

is a bounded linear operator.
Clearly,

∥ f (t, x(t))∥ ≤
1

10

∥∥∥∥∥e−t x(t, ι)
e−t + et

∥∥∥∥∥ + 1
3

∥∥∥∥∥ ∫ t

0
e−(s−t)x(s, ι)ds

∥∥∥∥∥
≤

1
10
∥x∥ +

et

3
∥x∥ (3.24)

=

( 1
10
+

et

3

)
∥x∥,

∥γ1(t, x)∥ ≤
1
5
∥x∥, (3.25)

∥I1
0
(
x(

1
6

−

)
)
∥ ≤ sin

1
6
∥x∥. (3.26)

Combining (3.24)–(3.26), the assumptions (H1)–(H4)
hold with

a(t) =
1
10
+

et

3
, F =

( e2

18
+

e
15
−

101
900

) 1
2

,
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Gγ1 =
1
5
, I1

0 = sin
1
6
.

Furthermore, similar to [36], the linear system
corresponding to (3.23) is approximately controllable
on [0,1] which concludes that (H5) also holds. That is, by
Theorems 3.1 and 3.2, (3.23) is approximately controllable
on T .

4. Conclusions

This paper is mainly concerned with the existence of
mild solutions and approximate controllability for a class of
fractional semilinear systems with instantaneous and non-
instantaneous impulses. The results for the considered
system are obtained by applying the Kuratowski measure
of noncompactness and the ρ-set contractive fixed-point
theorem. The conclusions of this paper are important for
fractional systems with instantaneous and non-instantaneous
impulses. In the future, the controllability for fractional
systems of order 1 < q < 2 with instantaneous and non-
instantaneous impulses can be considered on this basis.
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