Denote by $ a_{K}(n) $ the number of integral ideals in $ K $ with norm $ n $, where $ K $ is a algebraic number field of degree $ m $ over the rational field $ \mathcal{Q} $. Let $ p $ be a prime number. In this paper, we prove that, for two distinct quadratic number fields $ K_i = \mathcal{Q}(\sqrt{d_i}), \ i = 1, 2 $, the sets both
$ \{p\ |\ a_{K_1}(p)< a_{K_2}(p)\} \text{ and } \{p\ |\ a_{K_1}(p^2)< a_{K_2}(p^2)\} $
have analytic density $ 1/4 $, respectively.
Citation: Qian Wang, Xue Han. Comparing the number of ideals in quadratic number fields[J]. Mathematical Modelling and Control, 2022, 2(4): 268-271. doi: 10.3934/mmc.2022025
Denote by $ a_{K}(n) $ the number of integral ideals in $ K $ with norm $ n $, where $ K $ is a algebraic number field of degree $ m $ over the rational field $ \mathcal{Q} $. Let $ p $ be a prime number. In this paper, we prove that, for two distinct quadratic number fields $ K_i = \mathcal{Q}(\sqrt{d_i}), \ i = 1, 2 $, the sets both
$ \{p\ |\ a_{K_1}(p)< a_{K_2}(p)\} \text{ and } \{p\ |\ a_{K_1}(p^2)< a_{K_2}(p^2)\} $
have analytic density $ 1/4 $, respectively.
[1] | K. Chandraseknaran, A. Good, On the number of integeral ideals in Galois extensions, Monatshefte für Mathematik, 95 (1983), 99–109. https://doi.org/10.1007/BF01323653 doi: 10.1007/BF01323653 |
[2] | X. Han, X. Yan, D. Zhang, On fourier coefficients of the symmetric square $L$-function at Piatetski-Shapiro prime twins, Mathematics, 9 (2021), 1254. https://doi.org/10.3390/math9111254 doi: 10.3390/math9111254 |
[3] | J. Huang, T. Li, H. Liu, F. Xu, The general two-dimensional divisor problems involving Hecke eigenvalues, AIMS Mathematics, 7 (2022), 6396–6403. https://doi.org/10.3934/math.2022356 doi: 10.3934/math.2022356 |
[4] | Y. Jiang, G. Lü, X. Yan, Mean value theorem connected with Fourier coefficients of Hecke-Maass forms for $SL(m, \mathbb{Z})$, Mathematical Proceedings of the Cambridge Philosophical Society, 161 (2016), 339–356. https://doi.org/10.1017/S030500411600027X doi: 10.1017/S030500411600027X |
[5] | H. Liu, R. Zhang, Some problems involving Hecke eigenvalues, Acta Math. Hung., 159 (2019), 287–298. https://doi.org/10.1007/s10474-019-00913-w doi: 10.1007/s10474-019-00913-w |
[6] | P. Song, W. Zhai, D. Zhang, Power moments of Hecke eigenvalues for congruence group, J. Number Theory, 198 (2019), 139–158. https://doi.org/10.1016/j.jnt.2018.10.006 doi: 10.1016/j.jnt.2018.10.006 |
[7] | D. Zhang, Y. Wang, Ternary quadratic form with prime variables attached to Fourier coefficients of primitive holomorphic cusp form, J. Number Theory, 176 (2017), 211–225. https://doi.org/10.1016/j.jnt.2016.12.018 doi: 10.1016/j.jnt.2016.12.018 |
[8] | D. Zhang, W. Zhai, On the distribution of Hecke eigenvalues over Piatetski-Shapiro prime twins, Acta Mathematica Sinica, English Series, 37 (2021), 1453–1464. https://doi.org/10.1007/s10114-021-0174-3 doi: 10.1007/s10114-021-0174-3 |
[9] | L. Chiriac, Comparing Hecke eigenvalues of newforms, Archiv der Mathematik, 109 (2017), 223–229. https://doi.org/10.1007/s00013-017-1072-x doi: 10.1007/s00013-017-1072-x |
[10] | L. Chiriac, On the number of dominating Fourier coefficients of two newforms, Proceedings of the American Mathematical Society, 146 (2018), 4221–4224. https://doi.org/10.1090/proc/14145 doi: 10.1090/proc/14145 |
[11] | L. Chiriac, A. Jorza, Comparing Hecke coefficients of automorphic representations, T. Am. Math. Soc., 372 (2019), 8871–8896. https://doi.org/10.1090/tran/7903 doi: 10.1090/tran/7903 |
[12] | H. Lao, On comparing Hecke eigenvalues of cusp forms, Acta Math. Hung., 160 (2020), 58–71. https://doi.org/10.1007/s10474-019-00996-5 doi: 10.1007/s10474-019-00996-5 |
[13] | H. P. F. Swinnerton-Dyer, A brief guide to algebraic number theory, London Mathematical Society Student Texts, 50, Cambridge: Cambridge University Press, 2001. https://doi.org/10.1017/CBO9781139173360 |