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Abstract: Denote by aK(n) the number of integral ideals in K with norm n, where K is a algebraic number field of degree m over the
rational field Q. Let p be a prime number. In this paper, we prove that, for two distinct quadratic number fields Ki = Q(

√
di), i = 1, 2,

the sets both
{p | aK1 (p) < aK2 (p)} and {p | aK1 (p2) < aK2 (p2)}

have analytic density 1/4, respectively.
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1. Introduction

Suppose that K is an algebraic number field of degree m

over the rational field Q. The Dedekind zeta function ζK(s)
is defined as, for Re s > 1,

ζK(s) =
∑
a

1
N(a)s ,

where a varies over the integral ideals of K and N(a) denotes
the norm of a. Denote by aK(n) the number of integral ideals
in K with norm n, then we can rewrite ζK(s) as

ζK(s) =

∞∑
n=1

aK(n)
ns , Re s > 1.

The arithmetic function aK(n) is one of the research hotspots
in algebraic number theory, since its behavior is not regular.
It is known from Chandraseknaran and Good [1] that aK(n)
is multiplicative and satisfies the upper bound

aK(n) ≤ d(n)m, (1.1)

where d(n) is the divisor function and m = [K : Q].
Let S k(N)new be the space of all cuspidal newforms of

even integral weight k for the congruence subgroup Γ0(N) ⊆

S L2(Z), with trivial nebentypus. Let f ∈ S k(N)new be a
Hecke eigenform, and denote by λ f (n) the corresponding
normalized Hecke eigenvalues, which are studied by many
scholars (see [2–8] etc.). In particular, Chiriac [9] proposed
an interesting problem: Is it possible that for two distinct
newforms f and g the eigenvalues λ f (p) are not less than
λg(p), for almost all primes p? To state Chiriac’s result, we
say that a set Ξ of primes has analytic density (or Dirichlet
density) δ > 0 if and only if

∑
p∈Ξ

1
ps ∼ δ

∑
p

1
ps , as s→ 1+. (1.2)

Chiriac [9] showed that the problem he proposed cannot
occur by proving that for two distinct cusp forms, the set

{p | λ f (p) < λg(p)}

has analytic density at least 1/16. In the same paper,
assuming that f and g do not have complex multiplication,
and that neither is a quadratic twist of the other, Chiriac [9]
also proved that the set

{p | λ2
f (p) < λ2

g(p)}
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has analytic density at least 1/16. Later, some more results
were established in this direction, and we refer to the
references [10–12] for details.

Motivated by the above works, naturally we draw our
attention to the following question: Is it possible that for
two distinct quadratic number fields K1 and K2 the number
of integral ideals aK1 (p) are not less than aK2 (p), for almost
all primes p? We are able to show that the answer to above
question is negative by proving the following result.

Theorem 1.1. Let Ki = Q(
√

di), i = 1, 2 be two quadratic
number fields, where d1, d2 , 0, 1 are two distinct square-
free integers. Then the sets both

{p | aK1 (p) < aK2 (p)} and {p | aK1 (p2) < aK2 (p2)}

have analytic density 1/4, respectively.

Since the structure of the quadratic number field is more
detailed, we can get a precise density result in Theorem 1.1.
One key point of the proof is the famous Čebotarev Density
theorem.

2. Preliminaries

The following lemma is the famous Čebotarev Density
theorem, which can be found in [13, Theorem 31].

Lemma 2.1. Let K, k be algebraic number fields such that
K is Galois over k, let σ be an element of Gal(K/k) and
denote by 〈σ〉 the conjugacy class of σ. Let S be the set
of prime ideals p of k such that for every P above p the
Frobenius element [ K/k

p
] lies in 〈σ〉. Then S has Dirichlet

density card(〈σ〉)/card(Gal(K/k)).

For convenience, we write

Ξ1 = {p | aK1 (p) < aK2 (p)} and Ξ2 = {p | aK1 (p2) < aK2 (p2)}.

Let K = Q(
√

d) be a quadratic number field with a square-
free integer d , 0, 1. It is known that its discriminant is

D =

d, if d ≡ 1 (mod 4),

4d, if d ≡ 2, 3 (mod 4).

Then we have the following proposition.

Proposition 2.2. Let Ki = Q(
√

di), i = 1, 2 be two quadratic
number fields, where d1, d2 , 0, 1 are two distinct square-
free integers. D1 and D2 are the discriminants of K1 and
K2, respectively. Then for p - D1D2, both p ∈ Ξ1 and p ∈

Ξ2 are equivalent to that p is inert in K1 and splits in K2,
respectively.

Proof. We first consider the quadratic number field K =

Q(
√

d). Since p - D, the prime p does not ramify. Thus
the prime p either splits or is inert in K.

When p splits in K, then pOK = p1p2 with p1 , p2. Then
we have that the ideals with norm p are p1, p2 and the ideals
with norm p2 are p2

1, p1p2, p
2
2. When p is inert in K, the pOK

is the only prime ideal with norm p2 of K above p. There
are no ideals with norm p.

Thus we have

aK(p) =

2, if p splits in K,

0, if p is inert in K,

aK(p2) =

3, if p splits in K,

1, if p is inert in K.

Then from the above two formulas we can get this
proposition. �

With the help of Čebotarev Density theorem and
Proposition 2.2, we can complete the proof of Theorem 1.1.

3. Proof of Theorem 1.1

Note that in the quadratic number field K, p ramifies if
and only if p | D. Thus the number of p which ramifies in K

is limited. We just need to focus on the case that p does not
ramifies. From Proposition 2.2, it is sufficient to prove that
the density of primes which are inert in K1 and split in K2 is
1/4.

Let S = K1K2 = Q(
√

d1,
√

d2). Due to the fact that
d1, d2 , 0, 1 are two distinct square-free integers, we have

K1 ∩ K2 = Q, Gal(S/Q) � Gal(K1/Q) × Gal(K2/Q).

We know that S is the splitting field of the polynomial
(x2 − d1)(x2 − d2) with roots ω1 =

√
d1, ω2 = −

√
d1, ω3 =

√
d2, ω4 = −

√
d2. By the ordering of roots we can identify

Gal(S/Q) with the permutation group

V4 = {id, (1, 2), (3, 4), (1, 2)(3, 4)}.
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For a prime p, we write Frobp as Frobenius element of
Gal(S/Q) � V4 corresponding to p. Then p is inert in K1

and splits in K2 if and only if Frobp = (1, 2). From Lemma
2.1, we know that density of primes which are inert in K1

and split in K2 is 1/4. Therefore, we complete the proof of
Theorem 1.1.

4. Conclusions

Let K be a algebraic number field and suppose that aK(n)
denotes the number of integral ideals in K with norm n. In
this paper, for the question: Is it possible that for two distinct
quadratic number fields K1 and K2 the number of integral
ideals aK1 (p) are not less than aK2 (p), for almost all primes
p? We give a negative answer and further show that the sets
both

{p | aK1 (p) < aK2 (p)} and {p | aK1 (p2) < aK2 (p2)}

have analytic density 1/4, respectively.
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4. Y. Jiang, G. Lü, X. Yan, Mean value theorem
connected with Fourier coefficients of Hecke-Maass
forms for S L(m,Z), Mathematical Proceedings of the

Cambridge Philosophical Society, 161 (2016), 339–356.
https://doi.org/10.1017/S030500411600027X

5. H. Liu, R. Zhang, Some problems involving Hecke
eigenvalues, Acta Math. Hung., 159 (2019), 287–298.
https://doi.org/10.1007/s10474-019-00913-w

6. P. Song, W. Zhai, D. Zhang, Power moments
of Hecke eigenvalues for congruence group,
J. Number Theory, 198 (2019), 139–158.
https://doi.org/10.1016/j.jnt.2018.10.006

7. D. Zhang, Y. Wang, Ternary quadratic form with prime
variables attached to Fourier coefficients of primitive
holomorphic cusp form, J. Number Theory, 176 (2017),
211–225. https://doi.org/10.1016/j.jnt.2016.12.018

8. D. Zhang, W. Zhai, On the distribution of Hecke
eigenvalues over Piatetski-Shapiro prime twins, Acta

Mathematica Sinica, English Series, 37 (2021), 1453–
1464. https://doi.org/10.1007/s10114-021-0174-3

9. L. Chiriac, Comparing Hecke eigenvalues of newforms,
Archiv der Mathematik, 109 (2017), 223–229.
https://doi.org/10.1007/s00013-017-1072-x

10. L. Chiriac, On the number of dominating Fourier
coefficients of two newforms, Proceedings of the

American Mathematical Society, 146 (2018), 4221–
4224. https://doi.org/10.1090/proc/14145

11. L. Chiriac, A. Jorza, Comparing Hecke coefficients of
automorphic representations, T. Am. Math. Soc., 372
(2019), 8871–8896. https://doi.org/10.1090/tran/7903

12. H. Lao, On comparing Hecke eigenvalues of cusp
forms, Acta Math. Hung., 160 (2020), 58–71.
https://doi.org/10.1007/s10474-019-00996-5

13. H. P. F. Swinnerton-Dyer, A brief guide to algebraic

number theory, London Mathematical Society Student

Mathematical Modelling and Control Volume 2, Issue 4, 268–271

http://dx.doi.org/https://doi.org/10.1007/BF01323653
http://dx.doi.org/https://doi.org/10.3390/math9111254
http://dx.doi.org/https://doi.org/10.3934/math.2022356
http://dx.doi.org/https://doi.org/10.1017/S030500411600027X
http://dx.doi.org/https://doi.org/10.1007/s10474-019-00913-w
http://dx.doi.org/https://doi.org/10.1016/j.jnt.2018.10.006
http://dx.doi.org/https://doi.org/10.1016/j.jnt.2016.12.018
http://dx.doi.org/https://doi.org/10.1007/s10114-021-0174-3
http://dx.doi.org/https://doi.org/10.1007/s00013-017-1072-x
http://dx.doi.org/https://doi.org/10.1090/proc/14145
http://dx.doi.org/https://doi.org/10.1090/tran/7903
http://dx.doi.org/https://doi.org/10.1007/s10474-019-00996-5


271

Texts, 50, Cambridge: Cambridge University Press,
2001. https://doi.org/10.1017/CBO9781139173360

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Modelling and Control Volume 2, Issue 4, 268–271

http://dx.doi.org/https://doi.org/10.1017/CBO9781139173360
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Proof of Theorem 1.1
	Conclusions

