In this paper we consider the problem to determine a unique quantum state from given distribution of position (density) and momentum density of particles, namely the so called Pauli problem in quantum physics. In the first part, we will review the method of wave function lifting developed in [
Citation: Hao Zheng. The Pauli problem and wave function lifting: reconstruction of quantum states from physical observables[J]. Mathematics in Engineering, 2024, 6(4): 648-675. doi: 10.3934/mine.2024025
In this paper we consider the problem to determine a unique quantum state from given distribution of position (density) and momentum density of particles, namely the so called Pauli problem in quantum physics. In the first part, we will review the method of wave function lifting developed in [
[1] | P. Antonelli, P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Commun. Math. Phys., 287 (2009), 657–686. https://doi.org/10.1007/s00220-008-0632-0 doi: 10.1007/s00220-008-0632-0 |
[2] | P. Antonelli, P. Marcati, The quantum hydrodynamics system in two space dimensions, Arch. Rational. Mech. Anal., 203 (2012), 499–527. https://doi.org/10.1007/s00205-011-0454-7 doi: 10.1007/s00205-011-0454-7 |
[3] | P. Antonelli, P. Marcati, An introduction to the mathematical theory of quantum fluids, unpublished work. |
[4] | P. Antonelli, P. Marcati, H. Zheng, Genuine hydrodynamic analysis to the 1-D QHD system: existence, dispersion and stability, Commun. Math. Phys., 383 (2021), 2113–2161. https://doi.org/10.1007/s00220-021-03998-z doi: 10.1007/s00220-021-03998-z |
[5] | P. Antonelli, P. Marcati, H. Zheng, An intrinsically hydrodynamic approach to multidimensional QHD systems, Arch. Rational Mech. Anal., 247 (2023), 24. https://doi.org/10.1007/s00205-023-01856-x doi: 10.1007/s00205-023-01856-x |
[6] | S. Bianchini, Exact integrability conditions for cotangent vector fields, Manuscripta Math., 173 (2024), 293–340. https://doi.org/10.1007/s00229-023-01461-y doi: 10.1007/s00229-023-01461-y |
[7] | F. Bethuel, R. L. Jerrard, D. Smets, On the NLS dynamics for infinite energy vortex configurations on the plane, Rev. Mat. Iberoam., 24 (2008), 671–702. https://doi.org/10.4171/rmi/552 doi: 10.4171/rmi/552 |
[8] | G. Bourdaud, Y. Meyer, Fonctions qui opérent sur les espaces de Sobolev, J. Funct. Anal., 97 (1991), 351–360. |
[9] | J. V. Corbett, The pauli problem, state reconstruction and quantum-real numbers, Rep. Math. Phys., 57 (2006), 53–68. https://doi.org/10.1016/S0034-4877(06)80008-X doi: 10.1016/S0034-4877(06)80008-X |
[10] | D. Donatelli, E. Feireisl, P. Marcati, Well/ill posedness for the Euler-Korteweg-Poisson system and related problems, Commun. Part. Diff. Eq., 40 (2015), 1314–1335. https://doi.org/10.1080/03605302.2014.972517 doi: 10.1080/03605302.2014.972517 |
[11] | L. C. Evans, Partial differential equations, 2 Eds., American Mathematical Society, 2010. |
[12] | R. P. Feynman, Chapter Ⅱ application of quantum mechanics to liquid helium, Progr. Low Temp. Phys., 1 (1955), 17–53. https://doi.org/10.1016/S0079-6417(08)60077-3 doi: 10.1016/S0079-6417(08)60077-3 |
[13] | C. L. Gardner, The quantum hydrodynamic model for semincoductor devices, SIAM J. Appl. Math., 54 (1994), 409–427. https://doi.org/10.1137/S0036139992240425 doi: 10.1137/S0036139992240425 |
[14] | J. Giesselmann, C. Lattanzio, A. E. Tzavaras, Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics, Arch. Rational Mech. Anal., 223 (2017), 1427–1484. https://doi.org/10.1007/s00205-016-1063-2 doi: 10.1007/s00205-016-1063-2 |
[15] | I. M. Khalatnikov, An introduction to the theory of superfluidity, 1 Ed., CRC Press, 2000. https://doi.org/10.1201/9780429502897 |
[16] | E. H. Lieb, M. Loss, Analysis, 2 Eds., Vol. 14, Graduate Studies in Mathematics, American Mathematical Society, 2001. |
[17] | E. Madelung, Quantuentheorie in hydrodynamischer form, Z. Physik, 40 (1927), 322. https://doi.org/10.1007/BF01400372 doi: 10.1007/BF01400372 |
[18] | P. Markowich, J. Sierra, Non-uniqueness of weak solutions of the quantum-hydrodynamic system, Kin. Relat. Mod., 12 (2019), 347–356. https://doi.org/10.3934/krm.2019015 doi: 10.3934/krm.2019015 |
[19] | L. Onsager, Statistical hydrodynamics, Nuovo Cim., 6 (1949), 279–287. https://doi.org/10.1007/BF02780991 |
[20] | Y. N. Ovchinnikov, I. M. Sigal, Ginzburg-Landau equation I. Static vortices, In: P. C. Greiner, L. A. Seco, C. Sulem, Partial differential equations and their applications, CRM Proceedings and Lecture Notes, 12 (1997), 199–220. |
[21] | W. Pauli, Die allgemeinen Prinzipien der Wellenmechanik, In: H. Bethe, F. Hund, N. F. Mott, W. Pauli, A. Rubinowicz, G. Wentzel, et al., Quantentheorie, Handbuch der Physik, Berlin: Springer, 24 (1933), 83–272. https://doi.org/10.1007/978-3-642-52619-0_2 |
[22] | L. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP, 13 (1961), 451–454. |
[23] | L. Pitaevskii, S. Stringari, Bose-Einstein condensation and superfluidity, Clarendon Press, 2016. https://doi.org/10.1093/acprof: oso/9780198758884.001.0001 |
[24] | P. H. Roberts, J. Grant, Motions in a Bose condensate Ⅰ. The structure of the large circular vortex, J. Phys. A: Gen. Phys., 4 (1971), 55. https://doi.org/10.1088/0305-4470/4/1/009 doi: 10.1088/0305-4470/4/1/009 |
[25] | S. Weigert, How to determine a quantum state by measurements: the Pauli problem for a particle with arbitrary potential, Phys. Rev. A, 53 (1996), 2078–283. https://doi.org/10.1103/PhysRevA.53.2078 doi: 10.1103/PhysRevA.53.2078 |