Research article Special Issues

The Pauli problem and wave function lifting: reconstruction of quantum states from physical observables

  • Received: 24 January 2024 Revised: 11 August 2024 Accepted: 26 August 2024 Published: 30 August 2024
  • In this paper we consider the problem to determine a unique quantum state from given distribution of position (density) and momentum density of particles, namely the so called Pauli problem in quantum physics. In the first part, we will review the method of wave function lifting developed in [4,5] to construct a complex wave function $ \psi\in H^s({{\mathbf R}}^d) $, $ s = 1, 2 $, associated to given density and momentum density. The second part is focused on the dynamical version of the wave function lifting, namely we study the relation between solutions to quantum fluid models and wave functions solving the nonlinear Schrödinger equation. The uniqueness of the lifted wave function is essentially related to the structure of vacuum regions of the position density.

    Citation: Hao Zheng. The Pauli problem and wave function lifting: reconstruction of quantum states from physical observables[J]. Mathematics in Engineering, 2024, 6(4): 648-675. doi: 10.3934/mine.2024025

    Related Papers:

  • In this paper we consider the problem to determine a unique quantum state from given distribution of position (density) and momentum density of particles, namely the so called Pauli problem in quantum physics. In the first part, we will review the method of wave function lifting developed in [4,5] to construct a complex wave function $ \psi\in H^s({{\mathbf R}}^d) $, $ s = 1, 2 $, associated to given density and momentum density. The second part is focused on the dynamical version of the wave function lifting, namely we study the relation between solutions to quantum fluid models and wave functions solving the nonlinear Schrödinger equation. The uniqueness of the lifted wave function is essentially related to the structure of vacuum regions of the position density.



    加载中


    [1] P. Antonelli, P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Commun. Math. Phys., 287 (2009), 657–686. https://doi.org/10.1007/s00220-008-0632-0 doi: 10.1007/s00220-008-0632-0
    [2] P. Antonelli, P. Marcati, The quantum hydrodynamics system in two space dimensions, Arch. Rational. Mech. Anal., 203 (2012), 499–527. https://doi.org/10.1007/s00205-011-0454-7 doi: 10.1007/s00205-011-0454-7
    [3] P. Antonelli, P. Marcati, An introduction to the mathematical theory of quantum fluids, unpublished work.
    [4] P. Antonelli, P. Marcati, H. Zheng, Genuine hydrodynamic analysis to the 1-D QHD system: existence, dispersion and stability, Commun. Math. Phys., 383 (2021), 2113–2161. https://doi.org/10.1007/s00220-021-03998-z doi: 10.1007/s00220-021-03998-z
    [5] P. Antonelli, P. Marcati, H. Zheng, An intrinsically hydrodynamic approach to multidimensional QHD systems, Arch. Rational Mech. Anal., 247 (2023), 24. https://doi.org/10.1007/s00205-023-01856-x doi: 10.1007/s00205-023-01856-x
    [6] S. Bianchini, Exact integrability conditions for cotangent vector fields, Manuscripta Math., 173 (2024), 293–340. https://doi.org/10.1007/s00229-023-01461-y doi: 10.1007/s00229-023-01461-y
    [7] F. Bethuel, R. L. Jerrard, D. Smets, On the NLS dynamics for infinite energy vortex configurations on the plane, Rev. Mat. Iberoam., 24 (2008), 671–702. https://doi.org/10.4171/rmi/552 doi: 10.4171/rmi/552
    [8] G. Bourdaud, Y. Meyer, Fonctions qui opérent sur les espaces de Sobolev, J. Funct. Anal., 97 (1991), 351–360.
    [9] J. V. Corbett, The pauli problem, state reconstruction and quantum-real numbers, Rep. Math. Phys., 57 (2006), 53–68. https://doi.org/10.1016/S0034-4877(06)80008-X doi: 10.1016/S0034-4877(06)80008-X
    [10] D. Donatelli, E. Feireisl, P. Marcati, Well/ill posedness for the Euler-Korteweg-Poisson system and related problems, Commun. Part. Diff. Eq., 40 (2015), 1314–1335. https://doi.org/10.1080/03605302.2014.972517 doi: 10.1080/03605302.2014.972517
    [11] L. C. Evans, Partial differential equations, 2 Eds., American Mathematical Society, 2010.
    [12] R. P. Feynman, Chapter Ⅱ application of quantum mechanics to liquid helium, Progr. Low Temp. Phys., 1 (1955), 17–53. https://doi.org/10.1016/S0079-6417(08)60077-3 doi: 10.1016/S0079-6417(08)60077-3
    [13] C. L. Gardner, The quantum hydrodynamic model for semincoductor devices, SIAM J. Appl. Math., 54 (1994), 409–427. https://doi.org/10.1137/S0036139992240425 doi: 10.1137/S0036139992240425
    [14] J. Giesselmann, C. Lattanzio, A. E. Tzavaras, Relative energy for the Korteweg theory and related Hamiltonian flows in gas dynamics, Arch. Rational Mech. Anal., 223 (2017), 1427–1484. https://doi.org/10.1007/s00205-016-1063-2 doi: 10.1007/s00205-016-1063-2
    [15] I. M. Khalatnikov, An introduction to the theory of superfluidity, 1 Ed., CRC Press, 2000. https://doi.org/10.1201/9780429502897
    [16] E. H. Lieb, M. Loss, Analysis, 2 Eds., Vol. 14, Graduate Studies in Mathematics, American Mathematical Society, 2001.
    [17] E. Madelung, Quantuentheorie in hydrodynamischer form, Z. Physik, 40 (1927), 322. https://doi.org/10.1007/BF01400372 doi: 10.1007/BF01400372
    [18] P. Markowich, J. Sierra, Non-uniqueness of weak solutions of the quantum-hydrodynamic system, Kin. Relat. Mod., 12 (2019), 347–356. https://doi.org/10.3934/krm.2019015 doi: 10.3934/krm.2019015
    [19] L. Onsager, Statistical hydrodynamics, Nuovo Cim., 6 (1949), 279–287. https://doi.org/10.1007/BF02780991
    [20] Y. N. Ovchinnikov, I. M. Sigal, Ginzburg-Landau equation I. Static vortices, In: P. C. Greiner, L. A. Seco, C. Sulem, Partial differential equations and their applications, CRM Proceedings and Lecture Notes, 12 (1997), 199–220.
    [21] W. Pauli, Die allgemeinen Prinzipien der Wellenmechanik, In: H. Bethe, F. Hund, N. F. Mott, W. Pauli, A. Rubinowicz, G. Wentzel, et al., Quantentheorie, Handbuch der Physik, Berlin: Springer, 24 (1933), 83–272. https://doi.org/10.1007/978-3-642-52619-0_2
    [22] L. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP, 13 (1961), 451–454.
    [23] L. Pitaevskii, S. Stringari, Bose-Einstein condensation and superfluidity, Clarendon Press, 2016. https://doi.org/10.1093/acprof: oso/9780198758884.001.0001
    [24] P. H. Roberts, J. Grant, Motions in a Bose condensate Ⅰ. The structure of the large circular vortex, J. Phys. A: Gen. Phys., 4 (1971), 55. https://doi.org/10.1088/0305-4470/4/1/009 doi: 10.1088/0305-4470/4/1/009
    [25] S. Weigert, How to determine a quantum state by measurements: the Pauli problem for a particle with arbitrary potential, Phys. Rev. A, 53 (1996), 2078–283. https://doi.org/10.1103/PhysRevA.53.2078 doi: 10.1103/PhysRevA.53.2078
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(254) PDF downloads(47) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog