Research article Special Issues

Studies on invariant measures of fractional stochastic delay Ginzburg-Landau equations on $ \mathbb{R}^n $

  • Received: 15 December 2023 Revised: 26 February 2024 Accepted: 29 February 2024 Published: 15 March 2024
  • This paper is concerned with invariant measures of fractional stochastic delay Ginzburg-Landau equations on the entire space $ \mathbb{R}^n $. We first derive the uniform estimates and the mean-square uniform smallness of the tails of solutions in corresponding space. Then we deduce the weak compactness of a set of probability distributions of the solutions applying the Ascoli-Arzel$ \grave{a} $. We finally prove the existence of invariant measures by applying Krylov-Bogolyubov's method.

    Citation: Hong Lu, Linlin Wang, Mingji Zhang. Studies on invariant measures of fractional stochastic delay Ginzburg-Landau equations on $ \mathbb{R}^n $[J]. Mathematical Biosciences and Engineering, 2024, 21(4): 5456-5498. doi: 10.3934/mbe.2024241

    Related Papers:

  • This paper is concerned with invariant measures of fractional stochastic delay Ginzburg-Landau equations on the entire space $ \mathbb{R}^n $. We first derive the uniform estimates and the mean-square uniform smallness of the tails of solutions in corresponding space. Then we deduce the weak compactness of a set of probability distributions of the solutions applying the Ascoli-Arzel$ \grave{a} $. We finally prove the existence of invariant measures by applying Krylov-Bogolyubov's method.



    加载中


    [1] H. Lu, P. W. Bates, S. Lü, M. Zhang, Dynamics of the 3-D fractional complex Ginzburg-Landau equation, J. Differ. Equations, 259 (2015), 5276–5301. https://doi.org/10.1016/j.jde.2015.06.028 doi: 10.1016/j.jde.2015.06.028
    [2] V. E. Tarasov, G. M. Zaslavsky, Fractional Ginzburg-Landau equation for fractal media, Physica A, 354 (2005), 249–261. https://doi.org/10.1016/j.physa.2005.02.047 doi: 10.1016/j.physa.2005.02.047
    [3] V. E. Tarasov, G. M. Zaslavsky, Fractional dynamics of coupled oscillators with long-range interaction. Chaos, 16 (2006), 023110. https://doi.org/10.1063/1.2197167 doi: 10.1063/1.2197167
    [4] H. Weitzner, G. M. Zaslavsky, Some applications of fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., 8 (2003), 273–281.
    [5] A. I. Saichev, G. M. Zaslavsky, Fractional kinetic equations: solutions and applications, Chaos, 7 (1997), 753–764. https://doi.org/10.1063/1.166272 doi: 10.1063/1.166272
    [6] M. F. Shlesinger, G. M. Zaslavsky, J. Klafter, Strange kinetics, Nature, 363 (1993), 31–37. https://doi.org/10.1038/363031a0 doi: 10.1038/363031a0
    [7] Y. Sire, E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842–1864. https://doi.org/10.1016/j.jfa.2009.01.020 doi: 10.1016/j.jfa.2009.01.020
    [8] G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371 (2002), 461–580. https://doi.org/10.1016/S0370-1573(02)00331-9 doi: 10.1016/S0370-1573(02)00331-9
    [9] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford, 2005.
    [10] G. M. Zaslavsky, M. Edelman, Weak mixing and anomalous kinetics along filamented surfaces, Chaos, 11 (2001), 295–305. https://doi.org/10.1063/1.1355358 doi: 10.1063/1.1355358
    [11] C. Guo, J. Shu, X. Wang, Fractal dimension of random attractors for non-autonomous fractional stochastic Ginzburg-Landau equations, Acta Math. Sin. Engl. Ser., 36 (2020), 318–336. https://doi.org/10.1007/s10114-020-8407-4 doi: 10.1007/s10114-020-8407-4
    [12] H. Lu, P. W. Bates, J. Xin, M. Zhang, Asymptotic behavior of stochastic fractional power dissipative equations on $\mathbb{R}^n$, Nonlinear Anal., 128 (2015), 176–198. https://doi.org/10.1016/j.na.2015.06.033 doi: 10.1016/j.na.2015.06.033
    [13] H. Lu, J. Li, M. Zhang, Stochastic dynamics of non-autonomous fractional Ginzburg-Landau equations on $\mathbb{R}^3$, Discrete Contin. Dyn. Syst. - Ser. B, 27 (2022), 6943–6968. https://doi.org/10.3934/dcdsb.2022028 doi: 10.3934/dcdsb.2022028
    [14] H. Lu, L. Wang, L. Zhang, M. Zhang, The asymptotic behavior of non-autonomous stochastic Ginzburg-Landau equations on thin domains, J. Appl. Anal. Comput., 11 (2021), 2313–2333. https://doi.org/10.11948/20200378 doi: 10.11948/20200378
    [15] H. Lu, L. Wang, M. Zhang, Dynamics of fractional stochastic Ginzburg-Landau equation on unbounded domains driven by nonlinear noise, Mathematics, 10 (2022), 4485. https://doi.org/10.3390/math10234485 doi: 10.3390/math10234485
    [16] H. Lu, M. Zhang, Dynamics of non-autonomous fractional Ginzburg-Landau equations driven by colored noise, Discrete Contin. Dyn. Syst. - Ser. B, 25 (2020), 3553–3576. https://doi.org/10.3934/dcdsb.2020072 doi: 10.3934/dcdsb.2020072
    [17] J. Shu, X. Huang, J. Zhang, Asymptotic behavior for non-autonomous fractional stochastic Ginzburg-Landau equations on unbounded domains, J. Math. Phys., 61 (2020), 072704. https://doi.org/10.1063/1.5143404 doi: 10.1063/1.5143404
    [18] Y. Kuang, Delay Differential Equations: with Applications in Population Dynamics, Academic Press, New York, 1993.
    [19] T. Caraballo, M. Garrido-Atienza, T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal. Theory Methods Appl., 74 (2011), 3671–3684. https://doi.org/10.1016/j.na.2011.02.047 doi: 10.1016/j.na.2011.02.047
    [20] X. Wang, K. Lu, B. Wang, Random attractors for delay parabolic equations with additive noise and deterministic nonautonomous forcing, SIAM J. Appl. Dyn. Syst., 14 (2015), 1018–1047. https://doi.org/10.1137/140991819 doi: 10.1137/140991819
    [21] F. Wu, G. Yin, H. Mei, Stochastic functional differential equations with infinite delay: existence and uniqueness of solutions, solution maps, Markov properties, and ergodicity, J. Differ. Equations, 262 (2017), 1226–1252. https://doi.org/10.1016/j.jde.2016.10.006 doi: 10.1016/j.jde.2016.10.006
    [22] J. Kim, On the stochastic Burgers equation with polynomical nonlinearity in the real line, Discrete Contin. Dyn. Syst. - Ser. B, 6 (2006), 835–866. https://doi.org/10.3934/dcdsb.2006.6.835 doi: 10.3934/dcdsb.2006.6.835
    [23] J. Kim, On the stochastic Benjamin-Ono equation, J. Differ. Equations, 228 (2006), 737–768. https://doi.org/10.1016/j.jde.2005.11.005 doi: 10.1016/j.jde.2005.11.005
    [24] O. Misiats, O. Stanzhytskyi, N. Yip, Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains, J. Theor. Probab., 29 (2016), 996–1026. https://doi.org/10.1007/s10959-015-0606-z doi: 10.1007/s10959-015-0606-z
    [25] Z. Brzezniak, E. Motyl, M. Ondrejat, Invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains, Ann. Prabab., 45 (2017), 3145–3201. https://doi.org/10.1214/16-AOP1133 doi: 10.1214/16-AOP1133
    [26] Z. Brzezniak, M. Ondrejat, J. Seidler, Invariant measures for stochastic nonlinear beam and wave equations, J. Differ. Equations, 260 (2016), 4157– 4179. https://doi.org/10.1016/j.jde.2015.11.007 doi: 10.1016/j.jde.2015.11.007
    [27] J. Kim, Periodic and invariant measures for stochastic wave equations, Electron. J. Differ. Equations, 5 (2004), 1–30.
    [28] E. D. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
    [29] L. Tang, Dynamical behavior and multiple optical solitons for the fractional Ginzburg-Landau equation with $\beta-$derivative in optical fibers, Opt. Quantum Electron., 56 (2024), 175.
    [30] X. Mao, Stochastic Differential Equations and Applications, Second Edition, Woodhead Publishing Limited, Cambridge, 2011.
    [31] G. D. Prato, J. Zabczyk, Stochastic Equations in Infinite Dimension, Cambridge University Press, Cambridge, 1992.
    [32] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, New York, 1981. https://doi.org/10.1007/BFb0089647
    [33] Z. Chen, B. Wang, Invariant measures of fractional stochastic delay reaction-diffusion equations on unbounded domains, Nonlinearity, 34 (2021), 3969–4016. https://doi.org/10.1088/1361-6544/ac0125 doi: 10.1088/1361-6544/ac0125
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(986) PDF downloads(119) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog