Three safe and effective vaccines against SARS-CoV-2 have played a major role in combating COVID-19 in the United States. However, the effectiveness of these vaccines and vaccination programs has been challenged by the emergence of new SARS-CoV-2 variants of concern. A new mathematical model is formulated to assess the impact of waning and boosting of immunity against the Omicron variant in the United States. To account for gradual waning of vaccine-derived immunity, we considered three vaccination classes that represent high, moderate and low levels of immunity. We showed that the disease-free equilibrium of the model is globally-asymptotically, for two special cases, if the associated reproduction number is less than unity. Simulations of the model showed that vaccine-derived herd immunity can be achieved in the United States via a vaccination-boosting strategy which entails fully vaccinating at least 59% of the susceptible populace followed by the boosting of about 72% of the fully-vaccinated individuals whose vaccine-derived immunity has waned to moderate or low level. In the absence of boosting, waning of immunity only causes a marginal increase in the average number of new cases at the peak of the pandemic, while boosting at baseline could result in a dramatic reduction in the average number of new daily cases at the peak. Specifically, for the fast immunity waning scenario (where both vaccine-derived and natural immunity are assumed to wane within three months), boosting vaccine-derived immunity at baseline reduces the average number of daily cases at the peak by about 90% (in comparison to the corresponding scenario without boosting of the vaccine-derived immunity), whereas boosting of natural immunity (at baseline) only reduced the corresponding peak daily cases (in comparison to the corresponding scenario without boosting of natural immunity) by approximately 62%. Furthermore, boosting of vaccine-derived immunity is more beneficial (in reducing the burden of the pandemic) than boosting of natural immunity. Finally, boosting vaccine-derived immunity increased the prospects of altering the trajectory of COVID-19 from persistence to possible elimination.
Citation: Salman Safdar, Calistus N. Ngonghala, Abba B. Gumel. Mathematical assessment of the role of waning and boosting immunity against the BA.1 Omicron variant in the United States[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 179-212. doi: 10.3934/mbe.2023009
[1] | Nattapong Kamsrisuk, Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Quantum calculus with respect to another function. AIMS Mathematics, 2024, 9(4): 10446-10461. doi: 10.3934/math.2024510 |
[2] | Xue-Xiao You, Muhammad Aamir Ali, Ghulam Murtaza, Saowaluck Chasreechai, Sotiris K. Ntouyas, Thanin Sitthiwirattham . Post-quantum Simpson's type inequalities for coordinated convex functions. AIMS Mathematics, 2022, 7(2): 3097-3132. doi: 10.3934/math.2022172 |
[3] | Saowaluck Chasreechai, Muhammad Aamir Ali, Surapol Naowarat, Thanin Sitthiwirattham, Kamsing Nonlaopon . On some Simpson's and Newton's type of inequalities in multiplicative calculus with applications. AIMS Mathematics, 2023, 8(2): 3885-3896. doi: 10.3934/math.2023193 |
[4] | Saad Ihsan Butt, Muhammad Nasim Aftab, Hossam A. Nabwey, Sina Etemad . Some Hermite-Hadamard and midpoint type inequalities in symmetric quantum calculus. AIMS Mathematics, 2024, 9(3): 5523-5549. doi: 10.3934/math.2024268 |
[5] | Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara . New Simpson type inequalities for twice differentiable functions via generalized fractional integrals. AIMS Mathematics, 2022, 7(3): 3959-3971. doi: 10.3934/math.2022218 |
[6] | Humaira Kalsoom, Muhammad Amer Latif, Muhammad Idrees, Muhammad Arif, Zabidin Salleh . Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions. AIMS Mathematics, 2021, 6(12): 13291-13310. doi: 10.3934/math.2021769 |
[7] | Muhammad Uzair Awan, Muhammad Aslam Noor, Tingsong Du, Khalida Inayat Noor . On M-convex functions. AIMS Mathematics, 2020, 5(3): 2376-2387. doi: 10.3934/math.2020157 |
[8] | Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814 |
[9] | Andrea Aglić Aljinović, Domagoj Kovačević, Mehmet Kunt, Mate Puljiz . Correction: Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities. AIMS Mathematics, 2021, 6(2): 1880-1888. doi: 10.3934/math.2021114 |
[10] | Suphawat Asawasamrit, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Jessada Tariboon . Quantum Hermite-Hadamard and quantum Ostrowski type inequalities for s-convex functions in the second sense with applications. AIMS Mathematics, 2021, 6(12): 13327-13346. doi: 10.3934/math.2021771 |
Three safe and effective vaccines against SARS-CoV-2 have played a major role in combating COVID-19 in the United States. However, the effectiveness of these vaccines and vaccination programs has been challenged by the emergence of new SARS-CoV-2 variants of concern. A new mathematical model is formulated to assess the impact of waning and boosting of immunity against the Omicron variant in the United States. To account for gradual waning of vaccine-derived immunity, we considered three vaccination classes that represent high, moderate and low levels of immunity. We showed that the disease-free equilibrium of the model is globally-asymptotically, for two special cases, if the associated reproduction number is less than unity. Simulations of the model showed that vaccine-derived herd immunity can be achieved in the United States via a vaccination-boosting strategy which entails fully vaccinating at least 59% of the susceptible populace followed by the boosting of about 72% of the fully-vaccinated individuals whose vaccine-derived immunity has waned to moderate or low level. In the absence of boosting, waning of immunity only causes a marginal increase in the average number of new cases at the peak of the pandemic, while boosting at baseline could result in a dramatic reduction in the average number of new daily cases at the peak. Specifically, for the fast immunity waning scenario (where both vaccine-derived and natural immunity are assumed to wane within three months), boosting vaccine-derived immunity at baseline reduces the average number of daily cases at the peak by about 90% (in comparison to the corresponding scenario without boosting of the vaccine-derived immunity), whereas boosting of natural immunity (at baseline) only reduced the corresponding peak daily cases (in comparison to the corresponding scenario without boosting of natural immunity) by approximately 62%. Furthermore, boosting of vaccine-derived immunity is more beneficial (in reducing the burden of the pandemic) than boosting of natural immunity. Finally, boosting vaccine-derived immunity increased the prospects of altering the trajectory of COVID-19 from persistence to possible elimination.
Simpson's rules are well-known methods for numerical integration and numerical estimation of definite integral. Thomas Simpson is credited with inventing this process (1710–1761). However, about 100 years earlier, Johannes Kepler used the same approximation, so this form is also known as Kepler's law. The three-point Newton-Cotes quadrature rule is included in Simpson's rule, so estimation based on three steps quadratic kernel is often referred to as Newton type results.
1) Simpson's quadrature formula (Simpson's 1/3 rule)
∫π2π1Π(x)dx≈π2−π16[Π(π1)+4Π(π1+π22)+Π(π2)]. |
2) Simpson's second formula or Newton-Cotes quadrature formula (Simpson's 3/8 rule).
∫π2π1Π(x)dx≈π2−π18[Π(π1)+3Π(2π1+π23)+3Π(π1+2π23)+Π(π2)]. |
In the literature, there are several estimations linked to these quadrature laws, one of which is known as Simpson's inequality:
Theorem 1.1. Suppose that Π:[π1,π2]→R is a four times continuously differentiable mapping on (π1,π2), and let ‖Π(4)‖∞=supx∈(π1,π2)|Π(4)(x)|<∞. Then, one has the inequality
|13[Π(π1)+Π(π2)2+2Π(π1+π22)]−1π2−π1∫π2π1Π(x)dx|≤12880‖Π(4)‖∞(π2−π1)4. |
Many authors have concentrated on Simpson's type inequalities for different classes of functions in recent years. Since convexity theory is an effective and efficient method for solving a large number of problems that exist within various branches of pure and applied mathematics, some mathematicians have worked on Simpson's and Newton's type results for convex mappings. Dragomir et al. [1], presented new Simpson's type inequalities and their applications to numerical integration quadrature formulas. Furthermore, Alomari et al. in [2] derive some Simpson's type inequalities for s-convex functions. Following that, in [3], Sarikaya et al. discovered variants of Simpson's type inequalities dependent on convexity. The authors given some Newton's type inequalities for harmonic and p-harmonic convex functions in [4,5]. Iftikhar et al. also have new Newton's type inequalities for functions whose local fractional derivatives are generalized convex in [6].
On the other hand, in the domain of q analysis, many works are being carried out as initiated by Euler in order to attain adeptness in mathematics that constructs quantum computing q calculus considered as a relationship between physics and mathematics. In different areas of mathematics, it has numerous applications such as combinatorics, number theory, basic hypergeometric functions, orthogonal polynomials, and other sciences, as well as mechanics, the theory of relativity, and quantum theory [7,8]. Quantum calculus also has many applications in quantum information theory, which is an interdisciplinary area that encompasses computer science, information theory, philosophy, and cryptography, among other areas [9,10]. Apparently, Euler invented this important branch of mathematics. He used the q parameter in Newton's work on infinite series. Later, in a methodical manner, the q-calculus, calculus without limits, was firstly given by Jackson [11,12]. In 1966, Al-Salam [13] introduced a q-analogue of the q-fractional integral and q -Riemann–Liouville fractional. Since then, related research has gradually increased. In particular, in 2013, Tariboon [14] introduced the π1Dq-difference operator and qπ1-integral. In 2020, Bermudo et al. [15] introduced the notion of π2Dq derivative and qπ2-integral. Sadjang [16] generalized to quantum calculus and introduced the notions of post-quantum calculus, or briefly (p,q)-calculus. Soontharanon et al. [17] introduced the fractional (p,q)-calculus later on. In [18], Tunç and Göv gave the post-quantum variant of π1Dq-difference operator and qπ1-integral. Recently, in 2021, Chu et al. [19] introduced the notions of π2Dp,q derivative and (p,q)π2-integral.
Many integral inequalities have been studied using quantum and post-quantum integrals for various types of functions. For example, in [15,20,21,22,23,24,25,26,27], the authors used π1Dq,π2Dq-derivatives and qπ1,qπ2-integrals to prove Hermite–Hadamard integral inequalities and their left–right estimates for convex and coordinated convex functions. In [28], Noor et al. presented a generalized version of quantum integral inequalities. For generalized quasi-convex functions, Nwaeze et al. proved certain parameterized quantum integral inequalities in [29]. Khan et al. proved quantum Hermite–Hadamard inequality using the green function in [30]. Budak et al. [31], Ali et al. [32,33], and Vivas-Cortez et al. [34] developed new quantum Simpson's and quantum Newton's type inequalities for convex and coordinated convex functions. For quantum Ostrowski's inequalities for convex and co-ordinated convex functions, one can consult [35,36,37,38]. Kunt et al. [39] generalized the results of [22] and proved Hermite–Hadamard-type inequalities and their left estimates using π1Dp,q difference operator and (p,q)π1 integral. Recently, Latif et al. [40] found the right estimates of Hermite–Hadamard type inequalities proved by Kunt et al. [39]. To prove Ostrowski's inequalities, Chu et al. [19] used the concepts of π2Dp,q difference operator and (p,q)π2 integral.
Inspired by this ongoing studies, we offer some new quantum parameterized Simpson's and Newton's type inequalities for convex functions using the notions of quantum derivatives and integrals.
The structure of this paper is as follows: Section 2 provides a quick review of the ideas of q-calculus, as well as some related works. In Section 3, we present two integral identities that aid in the proof of the key conclusions. We prove quantum Simpson's and quantum Newton's inequalities in sections 4 and 5, respectively. Section 6 finishes with a few suggestions for future research.
In this section, we first present some known definitions and related inequalities in q-calculus. Set the following notation(see, [8]):
[n]q=1−qn1−q=n−1∑k=0qk, q∈(0,1). |
Jackson [11] defined the q-integral of a given function Π from 0 to π2 as follows:
π2∫0Π(x)dqx=(1−q)π2∞∑n=0qnΠ(π2qn), where 0<q<1 | (2.1) |
provided that the sum converges absolutely. Moreover, he defined the q -integral of a given function over the interval [π1,π2] as follows:
π2∫π1Π(x)dqx=π2∫0Π(x)dqx−π1∫0Π(x)dqx. |
Definition 2.1. [14] We consider the mapping Π:[π1,π2]→R. Then, the qπ1-derivative of Π at x∈[π1,π2] is defined by the the following expression
π1DqΠ(x)=Π(x)−Π(qx+(1−q)π1)(1−q)(x−π1),x≠π1. | (2.2) |
If x=π1, we define π1DqΠ(π1)=limx→π1π1DqΠ(x) if it exists and it is finite.
Definition 2.2. [15] We consider the mapping Π:[π1,π2]→R. Then, the qπ2-derivative of Π at x∈[π1,π2] is defined by
π2DqΠ(x)=Π(qx+(1−q)π2)−Π(x)(1−q)(π2−x),x≠π2. | (2.3) |
If x=π2, we define π2DqΠ(π2)=limx→π2π2DqΠ(x) if it exists and it is finite.
Definition 2.3. [14] We consider the mapping Π:[π1,π2]→R. Then, the qπ1-definite integral on [π1,π2] is defined by
π2∫π1Π(x)π1dqx=(1−q)(π2−π1)∞∑n=0qnΠ(qnπ2+(1−qn)π1)=(π2−π1)1∫0Π((1−τ)π1+τπ2)dqτ. | (2.4) |
Remark 2.1. If we set π1=0 in Definition 2.3, then we obtain q-Jackson integral, which is given in expression (2.1).
In [22,27], the authors proved quantum Hermite-Hadamard type inequalities and their estimations by using the notions of qπ1 -derivative and qπ1-integral.
On the other hand, in [15], Bermudo et al. gave the following definition and obtained the related Hermite-Hadamard type inequalities:
Definition 2.4. [15] We consider the mapping Π:[π1,π2]→R. Then, the qπ2-definite integral on [π1,π2] is defined by
π2∫π1Π(x)π2dqx=(1−q)(π2−π1)∞∑n=0qnΠ(qnπ1+(1−qn)π2)=(π2−π1)1∫0Π(τπ1+(1−τ)π2)dqτ. |
Theorem 2.1. [15] Let Π:[π1,π2]→R be a convex function on [π1,π2] and 0<q<1. Then, qπ2-Hermite-Hadamard inequalities are given as follows:
Π(π1+qπ2[2]q)≤1π2−π1π2∫π1Π(x)π2dqx≤Π(π1)+qΠ(π2)[2]q. | (2.5) |
In [24], Budak proved the left and right bounds of the inequality (2.5).
To obtain the key results of this paper, we prove three separate identities in this section.
Let's begin with the following crucial Lemma.
Lemma 3.1. If Π:[π1,π2]⊂R→R is a qπ1-differentiable function on (π1,π2) such that π1DqΠ is continuous and integrable on [π1,π2], then we have the following identity:
qλΠ(π1)+(1−μq)Π(π2)+q(μ−λ)Π(π1q+π2[2]q)−1π2−π1∫π2π1Π(x)π1dqx=q(π2−π1)×[∫1[2]q0(t−λ)π1DqΠ(tπ2+(1−t)π1)dqt+∫11[2]q(t−μ)π1DqΠ(tπ2+(1−t)π1)dqt] | (3.1) |
where q∈(0,1).
Proof. From Definition 2.1, we have
π1DqΠ(tπ2+(1−t)π1)=Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)t. | (3.2) |
By utilizing the properties of quantum integrals, we obtain
∫1[2]q0(t−λ)π1DqΠ(tπ2+(1−t)π1)dqt+∫11[2]q(t−μ)π1DqΠ(tπ2+(1−t)π1)dqt=∫1[2]q0(μ−λ)π1DqΠ(tπ2+(1−t)π1)dqt+∫10(t−μ)π1DqΠ(tπ2+(1−t)π1)dqt=(μ−λ)∫1[2]q0Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)tdqt+∫10Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)dqt−μ∫10Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)tdqt. | (3.3) |
By Definition 2.3, we have the following equalities
∫1[2]q0Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)tdqt=1π2−π1[∞∑n=0Π(qn[2]qπ2+(1−qn[2]q)π1)−∞∑n=0Π(qn+1[2]qπ2+(1−qn+1[2]q)π1)]=1π2−π1[Π(π1q+π2[2]q)−Π(π1)], | (3.4) |
∫10Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)tdqt=1π2−π1[Π(π2)−Π(π1)] | (3.5) |
and
∫10Π(tπ2+(1−t)π1)−Π(qtπ2+(1−qt)π1)(1−q)(π2−π1)dqt=1π2−π1[∞∑n=0qnΠ(qnπ2+(1−qn)π1)−∞∑n=0qnΠ(qn+1π2+(1−qn+1)π1)]=1π2−π1[∞∑n=0qnΠ(qnπ2+(1−qn)π1)−1q∞∑n=1qnΠ(qnπ2+(1−qn)π1)]=1π2−π1[∞∑n=0qnΠ(qnπ2+(1−qn)π1)−1q∞∑n=0qnΠ(qnπ2+(1−qn)π1)+1qΠ(π2)]=1π2−π1[1qΠ(π2)−1q(π2−π1)∫π2π1Π(x)π1dqx]. | (3.6) |
If we substitute the computed integrals (3.4)–(3.6) in (3.3), we establish the required identity (3.1).
Remark 3.1. In Lemma 3.1, if we choose λ=1[6]q and μ=[5]q[6]q, then we have the following identity:
1[6]q[qΠ(α)+q2[4]qΠ(qπ1+π2[2]q)+Π(π2)]−1π2−π1π2∫π1Π(s)π1dqs=q(π2−π1)×[∫1[2]q0(t−1[6]q)π1DqΠ(tπ2+(1−t)π1)dqt+∫11[2]q(t−[5]q[6]q)π1DqΠ(tπ2+(1−t)π1)dqt] |
which is proved by Iftikhar et al. in [41].
Remark 3.2. In Lemma 3.1, if we choose λ=μ=1[2]q, then we obtain [42,Lemma 3.1].
Remark 3.3. In Lemma 3.1, if we choose λ=0 and μ=1q, then Lemma 3.1 reduces to [22,Lemma 11].
Remark 3.4. In Lemma 3.1, if we take the limit q→1−, then we have [43,Lemma 2.1 for m=1].
Lemma 3.2. If Π:[π1,π2]⊂R→R is a qπ1-differentiable function on (π1,π2) such that π1DqΠ is continuous and integrable on [π1,π2], then we have the following identity:
qλΠ(π1)+q(μ−λ)Π(π1q[2]q+π2[3]q)+q(ν−μ)Π(π1q2+π2[2]q[3]q)+(1−νq)Π(π2)−1π2−π1∫π2π1Π(x)π1dqx=(π2−π1)q[∫1[3]q0(t−λ)π1DqΠ(tπ2+(1−t)π1)dqt+∫[2]q[3]q1[3]q(t−μ)π1DqΠ(tπ2+(1−t)π1)dqt+∫1[2]q[3]q(t−ν)π1DqΠ(tπ2+(1−t)π1)dqt] | (3.7) |
where q∈(0,1).
Proof. By the fundamental properties of quantum integrals, we have
∫1[3]q0(t−λ)π1DqΠ(tπ2+(1−t)π1)dqt+∫[2]q[3]q1[3]q(t−μ)π1DqΠ(tπ2+(1−t)π1)dqt+∫1[2]q[3]q(t−ν)π1DqΠ(tπ2+(1−t)π1)dqt=∫1[3]q0(μ−λ)π1DqΠ(tπ2+(1−t)π1)dqt+∫[2]q[3]q0(ν−μ)π1DqΠ(tπ2+(1−t)π1)dqt+∫10(t−ν)π1DqΠ(tπ2+(1−t)π1)dqt. |
By applying the same steps in the proof of Lemma 3.1 for rest of this proof, one can obtain the desired identity (3.7).
Remark 3.5. If we take λ=1[8]q, μ=1[2]q, and ν=[7]q[8]q in Lemma 3.2, then we obtain the following identity
1[8]q[qΠ(π1)+q3[6]q[2]qΠ(π1q[2]q+π2[3]q)+q2[6]q[2]qΠ(π1q2+π2[2]q[3]q)+Π(π2)]−1π2−π1∫π2π1Π(x)π1dqx=q(π2−π1)[∫1[3]q0(t−1[8]q)π1DqΠ(tπ2+(1−t)π1)dqt+∫[2]q[3]q1[3]q(t−1[2]q)π1DqΠ(tπ2+(1−t)π1)dqt+∫1[2]q[3]q(t−[7]q[8]q)π1DqΠ(tπ2+(1−t)π1)dqt] |
which is proved by Erden et al. in [44].
Remark 3.6. If we take λ=μ=ν=1[2]q, in Lemma 3.2, then we obtain [42,Lemma 3.1].
Corollary 3.1. If we take the limit q→1− in Lemma 3.2, then we obtain the following new identity
λΠ(π1)+(μ−λ)Π(2π1+π23)+(ν−μ)Π(π1+2π23)+(1−ν)Π(π2)−1π2−π1∫π2π1Π(x)dx=(π2−π1)[∫130(t−λ)Π′(tπ2+(1−t)π1)dt+∫2313(t−μ)Π′(tπ2+(1−t)π1)dt+∫123(t−ν)Π′(tπ2+(1−t)π1)dt] |
For brevity, let us prove another lemma that will be used frequently in the main results.
Lemma 3.3. The following quantum integrals holds for λ,μ,ν≥0:
Ω11=∫1[2]q0|t−λ|dqt=2λ2q[2]q+1([2]q)3−λ[2]q | (3.8) |
Ω12=∫11[2]q|t−μ|dqt=2μ2q[2]q+([2]q)2+1([2]q)3−μ([2]q+1)[2]q | (3.9) |
Ω13=∫1[3]q0|t−λ|dqt=2λ2q[2]q+1[2]q([3]q)2−λ[3]q | (3.10) |
Ω14=∫[2]q[3]q1[3]q|t−μ|dqt=2μ2q[2]q−μ([2]q+1)[3]q+([2]q)2+1[2]q([3]q)2 | (3.11) |
Ω15=∫1[2]q[3]q|t−ν|dqt=2ν2q[2]q−ν([2]q+[3]q)[3]q+[2]q([3]q)2+1[2]q | (3.12) |
Ω1=∫1[2]q0t|t−λ|dqt=2λ3q2[2]q[3]q+1([2]q)3[3]q−λ([2]q)3 | (3.13) |
Ω2=∫1[2]q0(1−t)|t−λ|dqt=Ω11−Ω1=2λ2q[2]q−2λ3q2[2]q[3]q−λ(([2]q)2−1)([2]q)3+[3]q−1([2]q)3[3]q | (3.14) |
Ω3=∫11[2]qt|t−μ|dqt=2μ3q2[2]q[3]q+1+([2]q)3([2]q)3[3]q−μ(([2]q)2+1)([2]q)3 | (3.15) |
Ω4=∫11[2]q(1−t)|t−μ|dqt==Ω12−Ω3=2μ2q[2]q−2μ3q2[2]q[3]q−μ(([2]q)3−1)([2]q)3+[3]q(1+([2]q)2)−([2]q)3−1([2]q)3[3]q | (3.16) |
Ω5=∫1[3]q0t|t−λ|dqt=2λ3q2[2]q[3]q+1([3]q)4−λ([3]q)2[2]q | (3.17) |
Ω6=∫1[3]q0(1−t)|t−λ|dqt==Ω13−Ω5=2λ2q[2]q−2λ3q2[2]q[3]q+λ(1−[2]q[3]q)([3]q)2[2]q+([3]q)2−[2]q([3]q)4[2]q | (3.18) |
Ω7=∫[2]q[3]q1[3]qt|t−μ|dqt=2μ3q2[2]q[3]q+1+([2]q)3([3]q)4−μ(([2]q)2+1)([3]q)2[2]q | (3.19) |
Ω8=∫[2]q[3]q1[3]q(1−t)|t−μ|dqt=Ω14−Ω7=2μ2q[2]q−2μ3q2[2]q[3]q−μ(([2]q)2([3]q−1)+[2]q[3]q)([3]q)2[2]q+(([2]q)2+1)([3]q)3−[2]q−([2]q)4([3]q)4[2]q | (3.20) |
Ω9=∫1[2]q[3]qt|t−ν|dqt=2ν3q2[2]q[3]q−ν(([2]q)2+([3]q)2)[2]q([3]q)2+([2]q)3+([3]q)3([3]q)4 | (3.21) |
Ω10=∫1[2]q[3]q(1−t)|t−ν|dqt | (3.22) |
=Ω15−Ω9=2υ2q[2]q−2υ3q2[2]q[3]q−υ(([3]q)2([2]q−1)+([2]q)2([3]q−1))([3]q)2[2]q | (3.23) |
+([3]q)2([2]q−[3]q)−([2]q)3([3]q)4 | (3.24) |
Proof. By the definition of q-integral, we have
Ω1=∫1[2]q0t|t−λ|dqt=∫λ0t(λ−t)dqt+∫1[2]qλt(t−λ)dqt=2∫λ0t(λ−t)dqt+∫1[2]q0t(t−λ)dqt=2λ3q2[2]q[3]q+1([2]q)3[3]q−λ([2]q)3 |
and so
Ω1=2λ3q2[2]q[3]q+1([2]q)3[3]q−λ([2]q)3. |
This gives the proof of the equality (3.13). The others can be calculated in similar way.
In this section, we prove a new generalization of quantum Simpson's, Midpoint and Trapezoid type inequalities for quantum differentiable convex functions.
Theorem 4.1. We assume that the given conditions of Lemma 3.1 hold. If the mapping |π1DqΠ| is convex on [π1,π2], then the following inequality holds:
|qλΠ(π1)+(1−μq)Π(π2)+q(μ−λ)Π(π1q+π2[2]q)−1π2−π1∫π2π1Π(x)π1dqx|≤q(π2−π1)[(Ω1+Ω3)|π1DqΠ(π2)|+(Ω2+Ω4)|π1DqΠ(π1)|] | (4.1) |
where Ω1-Ω4 are given in (3.13)-(3.16), respectively.
Proof. By taking the modulus in Lemma 3.1 and using the convexity of |π1DqΠ|, we obtain
qλΠ(π1)+(1−μq)Π(π2)+q(μ−λ)Π(π1q+π2[2]q)−1π2−π1∫π2π1Π(x)π1dqx≤q(π2−π1)×[∫1[2]q0|t−λ||π1DqΠ(tπ2+(1−t)π1)|dqt+∫11[2]q|t−μ||π1DqΠ(tπ2+(1−t)π1)|dqt]≤(π2−π1)q[|π1DqΠ(π2)|{∫1[2]q0t|t−λ|dqt+∫11[2]qt|t−μ|dqt}+|π1DqΠ(π1)|{∫1[2]q0(1−t)|t−λ|dqt+∫11[2]q(1−t)|t−μ|dqt}]=(π2−π1)q[(Ω1+Ω3)|π1DqΠ(π2)|+(Ω2+Ω4)|π1DqΠ(π1)|] |
which is the desired inequality.
Remark 4.1. If we take the limit q→1− in Theorem 4.1, then we have [43,Theorem 2.1 for s=m=1].
Remark 4.2. If we assume λ=μ=1[2]q in Theorem 4.1, then we obtain [42,Theorem 4.1].
Remark 4.3. In Theorem 4.1, if we choose λ=0 and μ=1q, then Theorem 4.1 reduces to [22,Theorem 13].
Remark 4.4. If we assume λ=1[6]q and μ=[5]q[6]q in Theorem 4.1, then we obtain the following inequality
|1[6]q[qΠ(α)+q2[4]qΠ(qπ1+π2[2]q)+Π(π2)]−1π2−π1π2∫π1Π(s)π1dqs|≤q(π2−π1){|π1DqΠ(π2)|[A1(q)+A2(q)]+|π1DqΠ(π1)|[B1(q)+B2(q)]}, |
where
A1(q)=2q2[2]2q+[6]2q([6]q−[3]q)[2]3q[3]q[6]3q,B1(q)=2q[3]q[6]q−q2[2]q[3]q[6]3q+1[2]3q(q+q2[3]q−q2+2q[6]q),A2(q)=2q2[5]3q[2]q[3]q[6]3q+[6]q(1+[2]3q)−[3]q[5]q(1+[2]2q)[2]3q[3]q[6]q,B2(q)=2q[5]2q[6]q[3]q−q2[5]3q[2]q[3]q[6]3q+q2[2]q[3]q−q[5]q[2]q[6]q−1[2]3q[[5]q(2q+q2)[6]q−q+q2[3]q] |
which is proved by Ifitikhar et al. [41].
Theorem 4.2. We assume that the given conditions of Lemma 3.1 hold. If the mapping |π1DqΠ|p1, p1≥1 is convex on [π1,π2], then the following inequality holds:
|λqΠ(π1)+(1−μq)Π(π2)+q(μ−λ)Π(π1q+π2[2]q)−1π2−π1∫π2π1Π(x)π1dqx|≤(π2−π1)q[Ω1−1p111(Ω1|π1DqΠ(π2)|p1+Ω2|π1DqΠ(π1)|p1)1p1+Ω1−1p112(Ω3|π1DqΠ(π2)|p1+Ω4|π1DqΠ(π1)|p1)1p1] | (4.2) |
where Ω11, Ω12 and Ω1-Ω4 are given in (3.8), (3.9), and (3.13)–(3.16), respectively.
Proof. By taking the modulus in Lemma 3.1 and using the power mean inequality, we have
|λqΠ(π1)+(1−μq)Π(π2)+q(μ−λ)Π(π1q+π2[2]q)−1π2−π1∫π2π1Π(x)π1dqx|≤(π2−π1)q[(∫1[2]q0|t−λ|dqt)1−1p1(∫1[2]q0|t−λ||π1DqΠ(tπ2+(1−t)π1)|p1dqt)1p1+(∫11[2]q|t−μ|dqt)1−1p1(∫11[2]q|t−μ||π1DqΠ(tπ2+(1−t)π1)|p1dqt)1p1]. |
By using the convexity of |π1DqΠ|p1, we have
|λqΠ(π1)+(1−μq)Π(π2)+q(μ−λ)Π(π1q+π2[2]q)−1π2−π1∫π2π1Π(x)π1dqx|≤(π2−π1)q[(∫1[2]q0|t−λ|dqt)1−1p1×(|π1DqΠ(π2)|p1∫1[2]q0t|t−λ|dqt+|π1DqΠ(π1)|p1∫1[2]q0(1−t)|t−λ|dqt)1p1+(∫11[2]q|t−μ|dqt)1−1p1×(|π1DqΠ(π2)|p1∫11[2]qt|t−μ|dqt+|π1DqΠ(π1)|p1∫11[2]q(1−t)|t−μ|dqt)1p1]=(π2−π1)q[Ω1−1p111(Ω1|π1DqΠ(π2)|p1+Ω2|π1DqΠ(π1)|p1)1p1+Ω1−1p112(Ω3|π1DqΠ(π2)|p1+Ω4|π1DqΠ(π1)|p1)1p1] |
and the proof is completed.
Remark 4.5. If we take the limit q→1− in Theorem 4.2, then we have [43,Theorem 2.3 for s=m=1].
Remark 4.6. If we assume λ=μ=1[2]q in Theorem 4.2, then we obtain [42,Theorem 4.2].
Remark 4.7. If we assume λ=1[6]q and μ=[5]q[6]q in Theorem 4.2, then we obtain the following inequality
|1[6]q[qΠ(α)+q2[4]qΠ(qπ1+π2[2]q)+Π(π2)]−1π2−π1π2∫π1Π(s)π1dqs|≤q(π2−π1)[(2q[2]q[6]2q+q3[3]q−q[6]q[2]3q)1−1p1×(A1(q)|π1DqΠ(π2)|p1+B1(q)|π1DqΠ(π1)|p1)1p1+(2q[5]2q[2]q[6]2q+1[2]q−[5]q[6]q−[5]q[2]2q−[6]q[6]q[2]3q)1−1p1×(A2(q)|π1DqΠ(π2)|p1+B2(q)|π1DqΠ(π1)|p1)1p1 |
where A1(q),A2(q),B1(q) and B2(q) are defined in Remark 4.4. The above inequality is proved by Ifitikhar et al. [41].
Remark 4.8. In Theorem 4.2, if we choose λ=0 and μ=1q, then Theorem 4.2 reduces to [22,Theorem 16].
Theorem 4.3. We assume that the given conditions of Lemma 3.1 hold. If the mapping |π1DqΠ|p1, p1>1 is convex on [π1,π2], then the following inequality holds:
|λqΠ(π1)+(1−μq)Π(π2)+q(μ−λ)Π(π1q+π2[2]q)−1π2−π1∫π2π1Π(x)π1dqx|≤(π2−π1)q[Ω1r116(|π1DqΠ(π2)|p1([2]q)3+(([2]q)2−1)|π1DqΠ(π1)|p1([2]q)3)1p1+Ω1r117((([2]q)2−1)|π1DqΠ(π2)|p1([2]q)3+(([2]q)3−2([2]q)2+1)|π1DqΠ(π1)|p1([2]q)3)1p1] | (4.3) |
where p−11+r−11=1 and
Ω16=∫1[2]q0|t−λ|r1dqt,Ω17=∫11[2]q|t−μ|r1dqt |
Proof. By taking the modulus in Lemma 3.1 and using the Hölder inequality, we have
|λqΠ(π1)+(1−μq)Π(π2)+q(μ−λ)Π(π1q+π2[2]q)−1π2−π1∫π2π1Π(x)π1dqx|≤(π2−π1)q[(∫1[2]q0|t−λ|r1dqt)1r1(∫1[2]q0|π1DqΠ(tπ2+(1−t)π1)|p1dqt)1p1+(∫11[2]q|t−μ|r1dqt)1r1(∫11[2]q|π1DqΠ(tπ2+(1−t)π1)|p1dqt)1p1]. |
Since |π1DqΠ|p1 is convex on [π1,π2], we have
|λqΠ(π1)+(1−μq)Π(π2)+q(μ−λ)Π(π1q+π2[2]q)−1π2−π1∫π2π1Π(x)π1dqx|≤q(π2−π1)×[(∫1[2]q0|t−λ|r1dqt)1r1(|π1DqΠ(π2)|p1∫1[2]q0tdqt+|π1DqΠ(π1)|p1∫1[2]q0(1−t)dqt)1p1+(∫11[2]q|t−μ|r1dqt)1r1(|π1DqΠ(π2)|p1∫11[2]qtdqt+|π1DqΠ(π1)|p1∫11[2]q(1−t)dqt)1p1]=(π2−π1)q[Ω1r116(|π1DqΠ(π2)|p1([2]q)3+(([2]q)2−1)|π1DqΠ(π1)|p1([2]q)3)1p1+Ω1r117((([2]q)2−1)|π1DqΠ(π2)|p1([2]q)3+(([2]q)3−2([2]q)2+1)|π1DqΠ(π1)|p1([2]q)3)1p1]. |
This completes the proof.
Remark 4.9. If we take the limit q→1− in Theorem 4.3, then Theorem 4.3 becomes [43,Theorem 2.2 for s=m=1].
Remark 4.10. If we assume λ=μ=1[2]q in Theorem 4.3, then we obtain [27,Theorem 3.3].
Remark 4.11. If we assume λ=1[6]q and μ=[5]q[6]q in Theorem 4.3, then we obtain the following inequality
|1[6]q[qΠ(α)+q2[4]qΠ(qπ1+π2[2]q)+Π(π2)]−1π2−π1π2∫π1Π(s)π1dqs|≤q(π2−π1)[(q2r1[4]r1q[2]r1+1q[6]r1q)1r1+([2]r1+1q[5]r1q−qr1[4]r1q[2]r1+1q[6]r1q)1r1×(q2+2q[2]3q|π1DqΠ(π2)|p1+q3+q2−q[2]3q|π1DqΠ(π1)|p1)1p1] |
which is established by Iftikhar et al. in [41].
Remark 4.12. In Theorem 4.2, if we choose λ=0 and μ=1q, then Theorem 4.3 reduces to [22,Theorem 18].
Some new generalized versions of quantum Newton's and Trapezoid type inequalities for quantum differentiable convex functions are offered in this section.
Theorem 5.1. We assume that the given conditions of Lemma 3.2 hold. If the mapping |π1DqΠ| is convex on [π1,π2], then the following inequality holds:
|qλΠ(π1)+q(μ−λ)Π(π1q[2]q+π2[3]q)+q(ν−μ)Π(π1q2+π2[2]q[3]q)+(1−νq)Π(π2)−1π2−π1∫π2π1Π(x)π1dqx|≤(π2−π1)q[(Ω5+Ω7+Ω9)|π1DqΠ(π2)|+(Ω6+Ω8+Ω10)|π1DqΠ(π1)|] | (5.1) |
where Ω5-Ω10 are given in (3.17)-(3.22), respectively.
Proof. By considering Lemma 3.2 and applying the same method that used in the proof of Theorem 4.1, then we can obtain the desired inequality (5.1).
Remark 5.1. If we assume λ=μ=ν=1[2]q in Theorem 5.1, then we obtain [42,Theorem 4.1].
Corollary 5.1. If we take the limit q→1− in Theorem 5.1, then we obtain the following inequality
|λΠ(π1)+(μ−λ)Π(2π1+π23)+(ν−μ)Π(π1+2π23)+(1−ν)Π(π2)−1π2−π1∫π2π1Π(x)dx|≤(π2−π1)q[(Ω∗5+Ω∗7+Ω∗9)|π1DqΠ(π2)|+(Ω∗6+Ω∗8+Ω∗10)|π1DqΠ(π1)|] |
where
Ω∗5=∫130t|t−λ|dt=λ33+181−λ18, |
Ω∗6=∫130(1−t)|t−λ|dt=18λ2−5λ+118−181−λ33, |
Ω∗7=∫2313t|t−μ|dt=μ33−5μ18+19 |
Ω∗8=∫2313(1−t)|t−μ|dt=18μ2+5+5μ18−μ−19−μ33 |
Ω∗9=∫123t|t−ν|dt=ν33−13ν18+3581, |
Ω∗10=∫123(1−t)|t−ν|dt=18ν2+13+13ν18−5ν3−3581−ν33 |
Remark 5.2. If we take λ=1[8]q, μ=1[2]q, and ν=[7]q[8]q in Theorem 5.1, then we obtain the following inequality
|1[8]q[qΠ(π1)+q3[6]q[2]qΠ(π1q[2]q+π2[3]q)+q2[6]q[2]qΠ(π1q2+π2[2]q[3]q)+Π(π2)]−1π2−π1∫π2π1Π(x)π1dqx|≤q(π2−π1)[|π1DqΠ(π2)|[A3(q)+A4(q)+A5(q)]+|π1DqΠ(π1)|[B3(q)+B4(q)+B5(q)]] |
where
A3(q)=2q2[3]3q+[8]2q([8]q[2]q−[3]2q)[8]3q[3]4q[2]q,B3(q)=2q[8]q[3]q−q2[8]3q[2]q[3]q+[3]2q−[2]q[3]4q[2]q+1−[3]q[2]q[8]q[3]2q[2]q,A4(q)=2q2[2]4q[3]q+[2]2q(1+[2]3q)−[3]2q(1+[2]2q)[3]4q[2]2q,B4(q)=2q[2]3q−q[3]2q−q2[3]2q−A4(q),A5(q)=2q2[7]3q[8]3q[2]q[3]q+[2]q[8]q([2]3q+[3]3q)−[7]q[3]2q([2]2q+[3]2q)[3]4q[8]q[2]q, |
and
B5(q)=2q[7]2q[8]q[3]q−q2[7]3q[8]3q[2]q[3]q+q2[2]q[3]q−q[7]q[2]q[8]q+[2]q([3]2q−[2]2q)[3]4q−(q+q2)[7]q[2]q[3]2q[8]q. |
Theorem 5.2. We assume that the given conditions of Lemma 3.2 hold. If the mapping |π1DqΠ|p1, p1≥1 is convex on [π1,π2], then the following inequality holds:
|qλΠ(π1)+q(μ−λ)Π(π1q[2]q+π2[3]q)+q(ν−μ)Π(π1q2+π2[2]q[3]q)+(1−νq)Π(π2)−1π2−π1∫π2π1Π(x)π1dqx|≤(π2−π1)q[Ω1−1p113(Ω5|π1DqΠ(π2)|p1+Ω6|π1DqΠ(π1)|p1)1p1+Ω1−1p114((Ω7|π1DqΠ(π2)|p1+Ω8|π1DqΠ(π1)|p1)1p1)+Ω1−1p115(Ω9|π1DqΠ(π2)|p1+Ω10|π1DqΠ(π1)|p1)1p1] | (5.2) |
where Ω5-Ω10 and Ω13-Ω15 are given in (3.17)–(3.22) and (3.10)–(3.12), respectively. The above inequality established by Erden et al. in [44].
Proof. By applying the steps used in the proof of Theorem 4.2 and taking into account Lemma 3.2, we can obtain the required inequality (5.2).
Corollary 5.2. If we take the limit q→1− in Theorem 5.2, then we obtain the following inequality
|λΠ(π1)+(μ−λ)Π(2π1+π23)+(ν−μ)Π(π1+2π23)+(1−ν)Π(π2)−1π2−π1∫π2π1Π(x)dx|≤(π2−π1)q[Θ1−1p111(Ω∗5|π1DqΠ(π2)|p1+Ω∗6|π1DqΠ(π1)|p1)1p1+Θ1−1p112((Ω∗7|π1DqΠ(π2)|p1+Ω∗8|π1DqΠ(π1)|p1)1p1)+Θ1−1p113(Ω∗9|π1DqΠ(π2)|p1+Ω∗10|π1DqΠ(π1)|p1)1p1] |
where Ω∗5-Ω∗10 are defined in Corollary 5.1 and
Θ11=∫130|t−λ|dt=λ2+19[2]q−λ3, |
Θ12=∫2313|t−μ|dt=18μ2+518−μ, |
Θ13=∫123|t−ν|dt=18ν2+1318−5ν3. |
Remark 5.3. If we take λ=1[8]q, μ=1[2]q, and ν=[7]q[8]q in Theorem 5.2, then we obtain the following inequality
|1[8]q[qΠ(π1)+q3[6]q[2]qΠ(π1q[2]q+π2[3]q)+q2[6]q[2]qΠ(π1q2+π2[2]q[3]q)+Π(π2)]−1π2−π1∫π2π1Π(x)π1dqx|≤q(π2−π1)[(2q[8]2q[2]q+[8]q−[3]q[2]q[3]2q[2]q[8]q)1−1p1×(A3(q)|π1DqΠ(π2)|p1+B3(q)|π1DqΠ(π1)|p1)1p1+(2q[2]3q+q[3]2q[2]q+1−[3]q[2]q[3]2q[2]q)1−1p1×(A4(q)|π1DqΠ(π2)|p1+B4(q)|π1DqΠ(π1)|p1)1p1+(2q[7]2q[8]2q[2]q+[3]2q+[2]2q[2]q[3]2q−[7]q([3]q+[2]q)[8]q[3]q)1−1p1×(A5(q)|π1DqΠ(π2)|p1+B5(q)|π1DqΠ(π1)|p1)1p1 |
where A3(q)−A5(q) and B3(q)−B5(q) are given in Remark 5.2. The above inequality established by Erden et al. in [44].
Remark 5.4. If we assume λ=μ=ν=1[2]q in Theorem 5.2, then we obtain [42,Theorem 4.2].
Theorem 5.3. We assume that the given conditions of Lemma 3.2 hold. If the mapping |π1DqΠ|p1, p1>1 is convex on [π1,π2], then the following inequality holds:
|qλΠ(π1)+q(μ−λ)Π(π1q[2]q+π2[3]q)+q(ν−μ)Π(π1q2+π2[2]q[3]q)+(1−νq)Π(π2)−1π2−π1∫π2π1Π(x)π1dqx|≤(π2−π1)q[Ω1r118(|π1DqΠ(π2)|p1([3]q)2[2]q+([2]q[3]q−1)|π1DqΠ(π1)|p1([3]q)2[2]q)1p1+Ω1r119((([2]q)2−1)|π1DqΠ(π2)|p1([3]q)2[2]q+(([2]q)2([3]q−1)−[3]q[2]q+1)|π1DqΠ(π1)|p13[2]q)1p1+Ω1r120((([3]q)2−([2]q)2)|π1DqΠ(π2)|p1([3]q)2[2]q+(([3]q)2([2]q−1)−([2]q)2([3]q−1))|π1DqΠ(π1)|p1([3]q)2[2]q)1p1] | (5.3) |
where p−11+r−11=1 and
Ω18=∫1[3]q0|t−λ|r1dqt,Ω19=∫[2]q[3]q1[3]q|t−μ|r1dqt,Ω20=∫1[2]q[3]q|t−ν|r1dqt. |
Proof. By applying the steps used in the proof of Theorem 4.3 and taking into account Lemma 3.2, we can obtain the required inequality (5.3).
Remark 5.5. If we assume λ=μ=1[2]q in Theorem 5.3, then we obtain [27,Theorem 3.3].
Remark 5.6. If we take λ=1[8]q, μ=1[2]q, and ν=[7]q[8]q in Theorem 5.3, then we obtain the following inequality
|1[8]q[qΠ(π1)+q3[6]q[2]qΠ(π1q[2]q+π2[3]q)+q2[6]q[2]qΠ(π1q2+π2[2]q[3]q)+Π(π2)]−1π2−π1∫π2π1Π(x)π1dqx|≤q(π2−π1)[(q3r1[5]r1q[3]r1+1q[8]r1q)1r1×(1[3]2q[2]q|π1DqΠ(π1)|p1+[3]q[2]q−1[3]2q[2]q|π1DqΠ(π2)|p1)1p1+(qr1[2]q−q2r1[3]r1+1q[2]r1q)1r1 |
×(q2+2[3]2q[2]q|π1DqΠ(π1)|p1+q[3]q[2]q−(q2+2q)[3]2q[2]q|π1DqΠ(π2)|p1)1p1+(q7r1[8]r1q−[2]q([7]q[3]q−[8]q[2]q)r1[8]r1q[3]r1+1q)1r1×([3]2q−[2]2q[3]2q[2]q|π1DqΠ(π1)|p1+q2[3]q[2]q+[2]2q−[3]2q[3]2q[2]q|π1DqΠ(π2)|p1)1p1] |
which is proved by Iftikhar et al. in [41].
To sum up, we provided some generalisations of quantum Simpson's and quantum Newton's inequalities for quantum differentiable convex functions with two and three parameters, respectively. It is important to note that by considering the limit q→1− and different special choices of the involved parameters in our key results, our results transformed into some new and well-known results. We believe that it is an interesting and innovative problem for future researchers who can obtain similar inequalities for different types of convexity and quantum integrals.
This research was funded by King Mongkut's University of Technology North Bangkok. Contract no.KMUTNB-63-KNOW-22.
The authors declare no conflict of interest.
[1] |
S. T. Liang, L. T. Liang, J. M. Rosen, COVID-19: A comparison to the 1918 influenza and how we can defeat it, Postgrad Med. J., 97 (2021), 273–274. https://doi.org/10.1136/postgradmedj-2020-139070 doi: 10.1136/postgradmedj-2020-139070
![]() |
[2] | Worldometer, COVID-19 coronavirus pandemic, available from: https://www.worldometers.info/coronavirus/ (Accessed May 12, 2022). |
[3] |
E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19 in real time, Lancet Infect. Dis., 20 (2020), 533–534. https://doi.org/10.1016/S1473-3099(20)30120-1 doi: 10.1016/S1473-3099(20)30120-1
![]() |
[4] |
C. N. Ngonghala, E. Iboi, S. Eikenberry, M. Scotch, C. R. MacIntyre, M. H. Bonds, et al., Mathematical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel coronavirus, Math. Biosci., 325 (2020), 108364. https://doi.org/10.1016/j.mbs.2020.108364 doi: 10.1016/j.mbs.2020.108364
![]() |
[5] |
C. N. Ngonghala, E. A. Iboi, A. B. Gumel, Could masks curtail the post-lockdown resurgence of COVID-19 in the US?, Math. Biosci., 329 (2020), 108452. https://doi.org/10.1016/j.mbs.2020.108452 doi: 10.1016/j.mbs.2020.108452
![]() |
[6] |
C. N. Ngonghala, P. Goel, D. Kutor, S. Bhattacharyya, Human choice to self-isolate in the face of the Covid-19 pandemic: a game dynamic modelling approach, J. Theor. Biol., 521 (2021), 110692. https://doi.org/10.1016/j.jtbi.2021.110692 doi: 10.1016/j.jtbi.2021.110692
![]() |
[7] |
S. E. Eikenberry, M. Mancuso, E. Iboi, T. Phan, K. Eikenberry, Y. Kuang, et al., To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic, Infect. Dis. Model., 5 (2020), 293–308. https://doi.org/10.1016/j.idm.2020.04.001 doi: 10.1016/j.idm.2020.04.001
![]() |
[8] |
C. N. Ngonghala, J. R. Knitter, L. Marinacci, M. H. Bonds, A. B. Gumel, Assessing the impact of widespread respirator use in curtailing COVID-19 transmission in the USA, Roy. Soc. Open Sci., 8 (2021), 210699. https://doi.org/10.1098/rsos.210699 doi: 10.1098/rsos.210699
![]() |
[9] | Pfizer, Pfizer and Biontech to submit emergency use authorization request today to the US FDA for COVID-19 vaccine, 2020. |
[10] | US Food and Drug Administration, FDA briefing document, in: Oncology Drug Advisory Committee Meeting, Silver Spring, MD, 2009. |
[11] | E. Mahase, COVID-19: Moderna vaccine is nearly 95% effective, trial involving high risk and elderly people shows, BMJ- Brit. Med. J., 371 (2020), m4471. |
[12] |
W. H. Self, M. W. Tenforde, J. P. Rhoads, M. Gaglani, A. A. Ginde, D. J. Douin, et al., Comparative effectiveness of Moderna, Pfizer-Biontech, and Janssen (Johnson & Johnson) vaccines in preventing COVID-19 hospitalizations among adults without immunocompromising conditions—United States, March-August 2021, Morb. Mort. Wkly Rep., 70 (2021), 1337–1343. https://doi.org/10.15585/mmwr.mm7038e1 doi: 10.15585/mmwr.mm7038e1
![]() |
[13] | US Food and Drug Administration, FDA issues emergency use authorization for third COVID-19 vaccine, FSA News Release, 2021. |
[14] | J. Sargent, S. Kumar, K. Buckley, J. McIntyre, Johnson & Johnson announces real-world evidence and phase 3 data confirming substantial protection of single-shot COVID-19 vaccine in the US additional data show a booster increases protection1, 2021. |
[15] |
F. P. Polack, S. J. Thomas, N. Kitchin, J. Absalon, A. Gurtman, S. Lockhart, et al., Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine, N. Engl. J. Med., 383 (2020), 2603–2615. https://doi.org/10.1056/NEJMoa2034577 doi: 10.1056/NEJMoa2034577
![]() |
[16] |
Y. M. Bar-On, Y. Goldberg, M. Mandel, O. Bodenheimer, L. Freedman, N. Kalkstein, et al., Protection of BNT162b2 vaccine booster against COVID-19 in Israel, N. Engl. J. Med., 385 (2021), 1393–1400. https://doi.org/10.1056/NEJMoa2114255 doi: 10.1056/NEJMoa2114255
![]() |
[17] |
E. Mahase, COVID-19: What new variants are emerging and how are they being investigated?, BMJ-Brit. Med. J., 372 (2021), n158. https://doi.org/10.1136/bmj.n158 doi: 10.1136/bmj.n158
![]() |
[18] |
A. Gómez-Carballa, J. Pardo-Seco, X. Bello, F. Martinón-Torres, A. Salas, Superspreading in the emergence of covid-19 variants, Trends Genet., 37 (2021), 1069–1080. https://doi.org/10.1016/j.tig.2021.09.003 doi: 10.1016/j.tig.2021.09.003
![]() |
[19] |
S. S. A. Karim, Q. A. Karim, Omicron Sars-Cov-2 variant: a new chapter in the COVID-19 pandemic, The Lancet, 398 (2021), 2126–2128. https://doi.org/10.1016/S0140-6736(21)02758-6 doi: 10.1016/S0140-6736(21)02758-6
![]() |
[20] |
D. Duong, What's important to know about the new COVID-19 variants?, CMAJ: Can. Med. Assoc. J., 193 (2021), E141–E142. https://doi.org/10.1503/cmaj.1095915 doi: 10.1503/cmaj.1095915
![]() |
[21] |
T. Koyama, D. Weeraratne, J. L. Snowdon, L. Parida, Emergence of drift variants that may affect COVID-19 vaccine development and antibody treatment, Pathogens, 9 (2020), 324. https://doi.org/10.3390/pathogens9050324 doi: 10.3390/pathogens9050324
![]() |
[22] |
C. Del Rio, S. B. Omer, P. N. Malani, Winter of omicron—the evolving COVID-19 pandemic, JAMA, 327 (2022), 319–320. https://doi.org/10.1001/jama.2021.24315 doi: 10.1001/jama.2021.24315
![]() |
[23] |
E. Callaway, H. Ledford, How bad is Omicron? what scientists know so far, Nature, 600 (2021), 197–199. https://doi.org/10.1038/d41586-021-03614-z doi: 10.1038/d41586-021-03614-z
![]() |
[24] | Center for Disease Control and Prevention, Omicron Variant: What You Need to Know, available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/omicron-variant.html#., (Accessed May 09, 2022). |
[25] |
F. Rahimi, A. T. B. Abadi, The Omicron subvariant BA. 2: Birth of a new challenge during the COVID-19 pandemic, Int. J. Surg., 99 (2022), 106261. https://doi.org/10.1016/j.ijsu.2022.106261 doi: 10.1016/j.ijsu.2022.106261
![]() |
[26] | K. Katella, Omicron and the BA.2 Subvariant: A Guide to What We Know, available from: https://www.yalemedicine.org/news/5-things-to-know-omicron, (Accessed May 09, 2022). |
[27] | C. N. Ngonghala, H. B. Taboe, S. Safdar, A. B. Gumel, Unraveling the dynamics of the Omicron and Delta variants of the 2019 coronavirus in the presence of vaccination, mask usage, and antiviral treatment, medRxiv, (2022), 2022.02.23.22271394. https://doi.org/10.1101/2022.02.23.22271394 |
[28] |
A. B. Gumel, E. A. Iboi, C. N. Ngonghala, G. A. Ngwa, Toward achieving a vaccine-derived herd immunity threshold for COVID-19 in the US, Front. Public Health, 9 (2021), 709369. https://doi.org/10.3389/fpubh.2021.709369 doi: 10.3389/fpubh.2021.709369
![]() |
[29] |
H. E. Fast, E. Zell, B. P. Murthy, N. Murthy, L. Meng, L. G. Scharf, et al., Booster and additional primary dose COVID-19 vaccinations among adults aged ≥ 65 years—United States, August 13, 2021–November 19, 2021, Morb. Mortal. Wkly Rep., 70 (2021), 1735. https://doi.org/10.15585/mmwr.mm7050e2 doi: 10.15585/mmwr.mm7050e2
![]() |
[30] |
E. A. Iboi, C. N. Ngonghala, A. B. Gumel, Will an imperfect vaccine curtail the COVID-19 pandemic in the US?, Infect. Dis. Model., 5 (2020), 510–524. https://doi.org/10.1016/j.idm.2020.07.006 doi: 10.1016/j.idm.2020.07.006
![]() |
[31] |
A. B. Gumel, E. A. Iboi, C. N. Ngonghala, E. H. Elbasha, A primer on using mathematics to understand Covid-19 dynamics: Modeling, analysis and simulations, Infect. Dis. Model., 6 (2020), 148–168. https://doi.org/10.1016/j.idm.2020.11.005 doi: 10.1016/j.idm.2020.11.005
![]() |
[32] | H. B. Taboe, M. Asare-Baah, A. Yesmin, C. N. Ngonghala, Impact of age structure and vaccine prioritization on COVID-19 in West Africa, Infect. Dis. Model., (2022). https://doi.org/10.1016/j.idm.2022.08.006 |
[33] | C. N. Ngonghala, A. B. Gumel, Mathematical assessment of the role of vaccination against COVID-19 in the United States, in Mathematical Modeling, Simulations, and AI for Emergent Pandemic Diseases: Lessons Learned from COVID-19 (eds. Jorge X. Velasco Hernández and Esteban A. Hernandez-Vargas), Elsevier, (2022), 1–30. |
[34] |
S. A. Rella, Y. A. Kulikova, E. T. Dermitzakis, F. A. Kondrashov, Rates of SARS-Cov-2 transmission and vaccination impact the fate of vaccine-resistant strains, Sci. Rep., 11 (2021), 1–10. https://doi.org/10.1038/s41598-021-95025-3 doi: 10.1038/s41598-021-95025-3
![]() |
[35] | B. Curley, How long does immunity from COVID-19 vaccination last?, Healthline, (Accessed on July 25, 2021). |
[36] |
M. Mrityunjaya, V. Pavithra, R. Neelam, P. Janhavi, P. Halami, P. Ravindra, Immune-boosting, antioxidant and anti-inflammatory food supplements targeting pathogenesis of COVID-19, Front. Immunol., 11 (2020), 570122. https://doi.org/10.3389/fimmu.2020.570122 doi: 10.3389/fimmu.2020.570122
![]() |
[37] |
M. Alagawany, Y. A. Attia, M. R. Farag, S. S. Elnesr, S. A. Nagadi, M. E. Shafi, et al., The strategy of boosting the immune system under the COVID-19 pandemic, Front. Vet. Sci., (2021), 712. https://doi.org/10.3389/fvets.2020.570748 doi: 10.3389/fvets.2020.570748
![]() |
[38] | Food and Drug Administration, FDA briefing document, Pfizer-Biontech COVID-19 vaccine, in: Vaccines and Related Biological Products Advisory Committee Meeting, 2020. |
[39] |
S. E. Oliver, J. W. Gargano, M. Marin, M. Wallace, K. G. Curran, et al., The Advisory Committee on Immunization Practices' interim recommendation for use of Pfizer-Biontech COVID-19 vaccine - United States, December 2020, Morb. Mortal. Wkly Rep., 69 (2020), 1922–1924. https://doi.org/10.15585/mmwr.mm6950e2 doi: 10.15585/mmwr.mm6950e2
![]() |
[40] | US Food and Drug Administration and others, Coronavirus (COVID-19) update: FDA issues policies to guide medical product developers addressing virus variants, FDA. February 23, 2021. |
[41] |
L. Childs, D. W. Dick, Z. Feng, J. M. Heffernan, J. Li, G. Röst, Modeling waning and boosting of covid-19 in canada with vaccination, Epidemics, (2022), 100583. https://doi.org/10.1016/j.epidem.2022.100583 doi: 10.1016/j.epidem.2022.100583
![]() |
[42] | Centers for Disease Control and Prevention, CDC expands eligibility for COVID-19 booster shots to all adults, 2021. |
[43] | W. Pacific, S. A. W. Hasan, Interim statement on booster doses for COVID-19 vaccination, Update, 4 (2021). |
[44] | V. Lakshmikantham, A. Vatsala, Theory of differential and integral inequalities with initial time difference and applications, in: Analytic and Geometric Inequalities and Applications, Springer, Dordrecht. 1999, pp. 191–203. https://doi.org/10.1007/978-94-011-4577-0 |
[45] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
![]() |
[46] |
P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
![]() |
[47] |
O. Diekmann, J. A. P. Heesterbeek, J. A. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324
![]() |
[48] | V. Lakshmikantham, S. Leela, A. A. Martynyuk, Stability Analysis of Nonlinear Systems, Springer, 1989. |
[49] |
A. B. Gumel, C. C. McCluskey, P. van den Driessche, Mathematical study of a staged-progression hiv model with imperfect vaccine, Bull. Math. Biol., 68 (2006), 2105–2128. https://doi.org/10.1007/s11538-006-9095-7 doi: 10.1007/s11538-006-9095-7
![]() |
[50] |
R. M. Anderson, The concept of herd immunity and the design of community-based immunization programmes, Vaccine, 10 (1992), 928–935. https://doi.org/10.1016/0264-410X(92)90327-G doi: 10.1016/0264-410X(92)90327-G
![]() |
[51] |
R. M. Anderson, R. M. May, Vaccination and herd immunity to infectious diseases, Nature, 318 (1985), 323–329. https://doi.org/10.1038/318323a0 doi: 10.1038/318323a0
![]() |
[52] | S. Pearson, What is the difference between the pfizer, moderna, and johnson & johnson covid-19 vaccines?, GoodRx (Accessed on June 25, 2021) (2021). |
[53] |
M. Mancuso, S. E. Eikenberry, A. B. Gumel, Will vaccine-derived protective immunity curtail covid-19 variants in the US?, Infect. Dis. Model., 6 (2021), 1110–1134. https://doi.org/10.1016/j.idm.2021.08.008 doi: 10.1016/j.idm.2021.08.008
![]() |
[54] | Center for Disease Control and Prevention, It's Time for a Boost, available from: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/past-reports/05202022.html, (Accessed July 08, 2022). |
[55] |
D.-Y. Lin, Y. Gu, B. Wheeler, H. Young, S. Holloway, S.-K. Sunny, et al., Effectiveness of COVID-19 vaccines over a 9-month period in North Carolina, N. Engl. J. Med., 386 (2022), 933–941. https://doi.org/10.1056/NEJMoa2117128 doi: 10.1056/NEJMoa2117128
![]() |
[56] |
N. Andrews, J. Stowe, F. Kirsebom, S. Toffa, R. Sachdeva, C. Gower, et al., Effectiveness of COVID-19 booster vaccines against COVID-19-related symptoms, hospitalization and death in England, Nat. Med., 28 (2022), 831–837. https://doi.org/10.1038/s41591-022-01699-1 doi: 10.1038/s41591-022-01699-1
![]() |
[57] | S. M. Sidik, Vaccines protect against infection from Omicron subvariant-but not for long, Nature, 2022 Mar. https://doi.org/10.1038/d41586-022-00775-3 |
[58] |
S. H. Tan, A. R. Cook, D. Heng, B. Ong, D. C. Lye, K. B. Tan, Effectiveness of BNT162b2 vaccine against Omicron in children 5 to 11 years of age, N. Engl. J. Med., 387 (2022), 525–532. https://doi.org/10.1056/NEJMoa2203209 doi: 10.1056/NEJMoa2203209
![]() |
[59] | R. Grewal, S. A. Kitchen, L. Nguyen, S. A. Buchan, S. E. Wilson, A. P. Costa, et al., Effectiveness of a fourth dose of COVID-19 mRNA vaccine against the Omicron variant among long term care residents in Ontario, Canada: test negative design study, BMJ, (2022), e071502. https://doi.org/10.1136/bmj-2022-071502 |
[60] |
L. Jansen, B. Tegomoh, K. Lange, K. Showalter, J. Figliomeni, B. Abdalhamid, et al., Investigation of a SARS-Cov-2 B. 1.1. 529 (Omicron) variant cluster—Nebraska, November–December 2021, Morb. Mortal. Wkly Rep., 70 (2021), 1782–1784. https://doi.org/10.15585/mmwr.mm705152e3 doi: 10.15585/mmwr.mm705152e3
![]() |
[61] | B. Curley, "How long does immunity from COVID-19 vaccination last?"Healthline, available from: https://www.healthline.com/health-news/how-long-does-immunity-from-covid-19-vaccination-last, (Accessed March 22, 2022). |
[62] |
N. M. Linton, T. Kobayashi, Y. Yang, K. Hayashi, A. R. Akhmetzhanov, S. Jung, et al., Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data, J. Clin. Med., 9 (2020), 538. https://doi.org/10.3390/jcm9020538 doi: 10.3390/jcm9020538
![]() |
[63] | K. Weintraub, Enormous spread of Omicron may bring 140M new Covid infections to US in the next two months, model predicts, available from: https://www.wusa9.com/article/news/verify/how-long-does-it-take-for-the-vaccine-booster-to-get-to-full-protection/65-aa7344c2-fcd5-4c70-bbcd-046e9f697be7, (Accessed March 22, 2022). |
[64] | M. Gregory, M. Salenetri, How long does immunity from COVID-19 vaccination, available from: https://www.wusa9.com/article/news/verify/how-long-does-it-take-for-the-vaccine-booster-to-get-to-full-protection/65-aa7344c2-fcd5-4c70-bbcd-046e9f697be7, (Accessed March 22, 2022). |
[65] |
M. G. Thompson, Effectiveness of a third dose of mRNA vaccines against COVID-19–associated emergency department and urgent care encounters and hospitalizations among adults during periods of Delta and Omicron variant predominance—VISION Network, 10 States, August 2021–January 2022, Morb. Mortal. Wkly Rep., 71 (2022), 139–145. https://doi.org/10.15585/mmwr.mm7104e3 doi: 10.15585/mmwr.mm7104e3
![]() |
[66] | J. Bosman, J. Hoffman, M. Sanger-Katz, T. Arango, Who are the unvaccinated in America? there's no one answer, The New York Times, 2021. |
[67] |
J. K. Tan, D. Leong, H. Munusamy, N. H. Zenol Ariffin, N. Kori, R. Hod, et al., The prevalence and clinical significance of Presymptomatic COVID-19 patients: how we can be one step ahead in mitigating a deadly pandemic, BMC Infect. Dis., 21 (2021), 1–10. https://doi.org/10.1186/s12879-021-05849-7 doi: 10.1186/s12879-021-05849-7
![]() |
[68] | S. Desmon, COVID and the Heart: It Spares No One, available from: https://publichealth.jhu.edu/2022/covid-and-the-heart-it-spares-no-one, (Accessed August 30, 2022). |
[69] |
V. Thakur, R. K. Ratho, Omicron (b. 1.1. 529): A new SARS-CoV-2 variant of concern mounting worldwide fear, J. Med. Virol., 94 (2022), 1821–1824. https://doi.org/10.1002/jmv.27541 doi: 10.1002/jmv.27541
![]() |
[70] |
J. M. Dan, J. Mateus, Y. Kato, K. M. Hastie, E. D. Yu, C. E. Faliti, et al., Immunological memory to SARS-Cov-2 assessed for up to 8 months after infection, Science, 371 (2021), eabf4063. https://doi.org/10.1126/science.abf4063 doi: 10.1126/science.abf4063
![]() |
[71] |
J. M. Ferdinands, S. Rao, B. E. Dixon, P. K. Mitchell, M. B. DeSilva, S. A. Irving, et al., Waning 2-dose and 3-dose effectiveness of mRNA vaccines against COVID-19–associated emergency department and urgent care encounters and hospitalizations among adults during periods of Delta and Omicron variant predominance—vision network, 10 states, August 2021–January 2022, Morb. Mortal. Wkly Rep., 71 (2022), 255–263. https://doi.org/10.15585/mmwr.mm7107e2 doi: 10.15585/mmwr.mm7107e2
![]() |
[72] | Z. Zhongming, L. Linong, Y. Xiaona, Z. Wangqiang, L. Wei, Omicron largely evades immunity from past infection or two vaccine doses, 2021. |
[73] |
P. Elliott, O. Eales, B. Bodinier, D. Tang, H. Wang, J. Jonnerby, et al., Dynamics of a national Omicron SARS-CoV-2 epidemic during {J}anuary 2022 in England, Nat. Commun., 13 (2022), 1–10. https://doi.org/10.1038/s41467-022-32121-6 doi: 10.1038/s41467-022-32121-6
![]() |
[74] | P. Elliott, O. Eales, N. Steyn, D. Tang, B. Bodinier, H. Wang, et al., Twin peaks: the Omicron SARS-CoV-2 BA. 1 and BA. 2 epidemics in England, Science, (2022), eabq4411. https://doi.org/10.1126/science.abq4411 |
[75] |
D. Kim, S. T. Ali, S. Kim, J. Jo, J.-S. Lim, S. Lee, et al., Estimation of serial interval and reproduction number to quantify the transmissibility of SARS-CoV-2 Omicron variant in South Korea, Viruses, 14 (2022), 533. https://doi.org/10.3390/v14030533 doi: 10.3390/v14030533
![]() |
[76] |
H. F. Tseng, B. K. Ackerson, Y. Luo, L. S. Sy, C. A. Talarico, Y. Tian, et al., Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants, Nat. Med., 28 (2022), 1063–1071. https://doi.org/10.1038/s41591-022-01753-y doi: 10.1038/s41591-022-01753-y
![]() |
[77] |
H. Chemaitelly, H. H. Ayoub, S. AlMukdad, P. Coyle, P. Tang, H. M. Yassine, et al., Duration of mRNA vaccine protection against SARS-CoV-2 Omicron BA. 1 and BA. 2 subvariants in Qatar, Nat. Commun., 13 (2022), 3082. https://doi.org/10.1038/s41467-022-30895-3 doi: 10.1038/s41467-022-30895-3
![]() |
1. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Ibrahim Slimane, Kamsing Nonlaopon, Y. S. Hamed, Some new (p, q)-Dragomir–Agarwal and Iyengar type integral inequalities and their applications, 2022, 7, 2473-6988, 5728, 10.3934/math.2022317 | |
2. | Lulu Zhang, Yu Peng, Tingsong Du, On multiplicative Hermite–Hadamard- and Newton-type inequalities for multiplicatively (P,m)-convex functions, 2024, 534, 0022247X, 128117, 10.1016/j.jmaa.2024.128117 |