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Abstract: Three safe and effective vaccines against SARS-CoV-2 have played a major role in com-
bating COVID-19 in the United States. However, the effectiveness of these vaccines and vaccination
programs has been challenged by the emergence of new SARS-CoV-2 variants of concern. A new
mathematical model is formulated to assess the impact of waning and boosting of immunity against
the Omicron variant in the United States. To account for gradual waning of vaccine-derived immunity,
we considered three vaccination classes that represent high, moderate and low levels of immunity. We
showed that the disease-free equilibrium of the model is globally-asymptotically, for two special cases,
if the associated reproduction number is less than unity. Simulations of the model showed that vaccine-
derived herd immunity can be achieved in the United States via a vaccination-boosting strategy which
entails fully vaccinating at least 59% of the susceptible populace followed by the boosting of about
72% of the fully-vaccinated individuals whose vaccine-derived immunity has waned to moderate or
low level. In the absence of boosting, waning of immunity only causes a marginal increase in the
average number of new cases at the peak of the pandemic, while boosting at baseline could result in
a dramatic reduction in the average number of new daily cases at the peak. Specifically, for the fast
immunity waning scenario (where both vaccine-derived and natural immunity are assumed to wane
within three months), boosting vaccine-derived immunity at baseline reduces the average number of
daily cases at the peak by about 90% (in comparison to the corresponding scenario without boosting
of the vaccine-derived immunity), whereas boosting of natural immunity (at baseline) only reduced
the corresponding peak daily cases (in comparison to the corresponding scenario without boosting of
natural immunity) by approximately 62%. Furthermore, boosting of vaccine-derived immunity is more
beneficial (in reducing the burden of the pandemic) than boosting of natural immunity. Finally, boost-
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ing vaccine-derived immunity increased the prospects of altering the trajectory of COVID-19 from
persistence to possible elimination.

Keywords: COVID-19; SARS-CoV-2; Omicron; vaccination; waning and boosting immunity; repro-
duction number; vaccine-derived herd immunity

1. Introduction

Since December 2019, the world has been experiencing a devastating pandemic of a novel coro-
navirus (COVID-19), caused by SARS-CoV-2, on a scale never before seen since the 1918/1919 in-
fluenza pandemic [1]. As of mid July 2022, the SARS-CoV-2 pandemic has caused over 555 million
confirmed cases and over 6.35 million deaths globally [2, 3] (with the United States bearing the brunt
of the burden, with over 88.6 million confirmed cases and over 1 million COVID-19 deaths) [3]. For
most parts of the year 2020, the control and mitigation efforts against SARS-CoV-2 in the United States
were restricted to the use of nonpharmaceutical interventions, such as social-distancing, quarantine of
suspected cases, isolation of those with symptoms of SARS-CoV-2, use face coverings, community
lockdowns, contact-tracing, etc. [4–8], until the Food and Drug Administration (FDA) provided Emer-
gency Use Authorization (EUA) to two safe and highly-efficacious vaccines (developed by Pfizer Inc.
and Moderna Inc.) in December of 2020 [9,10]. Both of the approved vaccines were primarily admin-
istered in two-dose regiments with three to four weeks apart, and each offer an estimated protective
efficacy against symptomatic COVID-19 infection of about 95% [11, 12]. Another vaccine, developed
by Johnson & Johnson (administered as a single dose), received FDA-EUA in late February 2021 [13]
(this vaccine has an estimated 75% efficacy in preventing severe/critical illness caused by COVID-
19 [14]). The rapid development and administrative deployment of effective vaccines has played an
extremely vital role in minimizing and mitigating the global burden of the pandemic [15, 16]. Our
study is focused on these three vaccines being used and administered in the United States.

Despite the rapid development and deployment of the effective vaccines, COVID-19 cases and
mortality continued to rise in the United States for most part of 2021 (and even early 2022). This is
largely due to emergence of deadly and highly-contagious SARS-CoV-2 variants of concern (notably
the Alpha, Beta, Gamma, Delta and Omicron variants) [17–21]. Specifically, the emergence of the
Omicron variant (B.1.1.529), in November of 2021, has dramatically changed the trajectory of the
pandemic [22]. It is believed to be at least three times more contagious than Delta [22,23]. A subvariant
of Omicron, BA.2 was first identified in the United States from a sample collected on December 14,
2021, in New Jersey [24]. It is believed to be more contagious than Omicron i.e. BA.1 [25, 26].

Numerous clinical studies have shown that the efficacy of the SARS-CoV-2 vaccines wane over
time (with estimated waning time of about 9 months) [8, 27, 28]. Consequently, the FDA approved the
administration of booster shots, for all three vaccines, during August-November of 2021. Primarily,
a booster dose (for persons aged 18 years and above), were approved because of waning vaccine
effectiveness over time [29]. In late March 2022, the FDA authorized a second booster shot of COVID-
19 vaccines for vulnerable populations in the U.S. (i.e., for people 50 years of age and older, and for
individuals with certain immuno-compromising conditions who are at higher risk of severe disease,
hospitalization and death). A second booster shot is equivalent to a fourth dose for people who received
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a Pfizer-BioNTech or Moderna mRNA series or a third dose for those who received the single-shot
Johnson & Johnson vaccine . The goal of this study is to use mathematical modeling and analysis
to assess the population-level impact of vaccination and booster shots (keeping in mind the waning
efficacies of all the approved vaccinations) programs, based on using the three FDA-approved vaccines,
on the dynamics of the Omicron SARS-CoV-2 variant in the United States. The focus of the study is
on determining the minimum vaccination coverage (i.e., vaccine-derived herd immunity) needed to
effectively curtail the spread of the highly-contagious Omicron variant in the United States.

Numerous mathematical models, of various types, have been formulated and used to gain insight
and understanding on the dynamics of the COVID-19 pandemic (with majority being of the form of
deterministic systems of nonlinear differential equations [4,5,7,27,30–33]). Here, too, a deterministic
model will be developed and used to study the dynamics of the disease. A notable feature of the model
to be developed is that it incorporates numerous pertinent aspects of the vaccination program and the
current knowledge of the epidemiology of the COVID-19 pandemic, including the waning and boosting
of both the vaccine-derived and natural immunity. The model will be parameterized using cumulative
case data for the COVID-19 pandemic during the onset of the Omicron variant in the United States. The
rest of the paper is organized as follows. The model is formulated in Section 2. The basic qualitative
features of the model are also derived. Rigorous analysis of the model, with respect to the existence
and asymptotic stability of its disease-free equilibrium, is carried out in Section 3. Expressions for
vaccine-derived herd immunity thresholds are also derived in Section 3. The model is fitted with
observed cumulative COVID-19 case data in Section 4. The methodology for implementing the data-
fitting process and estimating the unknown parameters of the model is also described. Numerical
simulations of the model are carried out in Section 5.

2. Model formulation

To formulate the model for the transmission dynamics of SARS-CoV-2 in the presence of boost-
ing and waning of both vaccine-derived and natural immunity, we split the total population at time t,
denoted by N(t), into mutually exclusive compartments of unvaccinated susceptible individuals (S (t)),
fully-vaccinated susceptible individuals with high vaccine-derived immunity (V1(t)), vaccinated sus-
ceptible individuals with moderate vaccine-derived immunity (V2(t)) [34], vaccinated susceptible indi-
viduals with low vaccine-derived immunity (V3(t)), exposed individuals (i.e., newly-infected individu-
als who are not yet infectious; E(t)), pre-symptomatic infectious individuals (Ip(t)), symptomatically-
infectious individuals (Is(t)), asymptomatically-infectious individuals (Ia(t)), hospitalized individuals
(Ih(t)), recovered individuals with high infection-acquired natural immunity (Rn1(t)), recovered indi-
viduals with moderate infection-acquired natural immunity (Rn2(t)), recovered individuals with low
infection acquired natural immunity (Rn3(t)), recovered individuals with high infection-acquired nat-
ural and vaccine-derived immunity (Rnv1(t)), recovered individuals with moderate infection-acquired
natural and vaccine-derived immunity (Rnv2(t)) and recovered individuals with low infection-acquired
natural and vaccine-derived immunity (Rnv3(t)). Thus,

N(t) = S (t) + E(t) +
∑3

i=1
[
Vi(t) + Rni(t) + Rnvi(t)

]
+

∑
j=p,s,a,h I j(t).

Numerous clinical studies show that the vaccine-derived immunity against SARS-CoV-2 begin to
wane after nine months of the receipt of the full vaccine doses [27,28,35]. Consequently, in our model
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formulation, individuals in the V1 class (who enjoy high level of the protective efficacy of the vaccine)
are those that are within nine months of receipt of full vaccine doses. Furthermore, individuals in
the V2 class are those who have received the full doses between 9 months to a year ago (hence, the
vaccine efficacy is moderate). Finally, individuals in the V3 class are assumed to have received the full
vaccine doses from a year to two years ago (and the vaccine efficacy is very low). This study allows
for the waning and boosting of vaccine-derived and natural immunity (boosting of natural immunity is
assumed to occur due to treatment or the use of other immune-boosting supplements [36, 37]).

The model is given by the following deterministic system of nonlinear differential equations, where
a dot represents differentiation with respect to time t (a streamlined/abbreviated flow diagram of the
model is depicted in Figure 1, and the state variables and parameters of the model are described in
Tables 1 and 2, respectively):



Ṡ = Π + ωv3V3 + ωn3Rn3 + ωnv3Rnv3 − (λ + ξv + µ)S ,

V̇1 = ξvS + ρv2V2 − [(1 − εv1)λ + ωv1 + µ]V1,

V̇2 = ωv1V1 + ρv3V3 − [(1 − εv2)λ + ωv2 + ρv2 + µ]V2,

V̇3 = ωv2V2 − [(1 − εv3)λ + ωv3 + ρv3 + µ]V3,

Ė = λS + λ
∑3

i=1
[
(1 − εvi)Vi(t) + (1 − εni)Rni(t) + (1 − εnvi)Rnvi(t)

]
− (σE + µ)E,

İp = σEE − (σp + γp + µ + δp)Ip,

İs = rσpIp − (ϕs + γs + µ + δs)Is,

İa = (1 − r)σpIp − (γa + µ + δa)Ia,

İh = ϕsIs − (γh + µ + δh)Ih,

Ṙn1 = γpIp + γsIs + γaIa + γhIh + ρn2Rn2 − [(1 − εn1)λ + ξv + ωn1 + µ]Rn1 ,

Ṙn2 = ωn1Rn1 + ρn3Rn3 − [(1 − εn2)λ + ξv + ωn2 + ρn2 + µ]Rn2 ,

Ṙn3 = ωn2Rn2 − [(1 − εn3)λ + ξv + ωn3 + ρn3 + µ]Rn3 ,

Ṙnv1 = ξvRn1 + ρnv2Rnv2 − [(1 − εnv1)λ + ωnv1 + µ]Rnv1 ,

Ṙnv2 = ξvRn2 + ωnv1Rnv1 + ρnv3Rnv3 − [(1 − εnv2)λ + ωnv2 + ρnv2 + µ]Rnv2 ,

Ṙnv3 = ξvRn3 + ωnv2Rnv2 − [(1 − εnv3)λ + ωnv3 + ρnv3 + µ]Rnv3 ,

(2.1)

where,

λ = (β)
(
ηpIp + ηsIs + ηaIa + ηhIh

N

)
, (2.2)

is the infection rate. In (2.2), β is the effective contact rate for individuals and η j (with j = p, s, a, h)
is the modification parameter for the heterogeneity in the infectiousness of infected individuals in the
presymptomatic (Ip), symptomatic (Is), asymptomatic (Ia) and hospitalized (Ih) class, respectively.
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In the model (2.1), Π is the recruitment of individuals into the population, ωvi (i = 1, 2, 3) is the
vaccine waning rate for vaccinated individuals in stage Vi, ωni is the waning rate of natural immunity
for recovered individuals in stage Rni , ωnvi is the waning rate of both vaccine-derived and natural
immunity for individuals in stage Rnvi , λ is the infection rate (defined in (2.2)), ξv is the per capita
vaccination rate and µ is the natural death rate. Vaccinated individuals in V2 and V3 classes receive
booster doses at the rate ρvi (i = 2, 3) and revert to the higher efficacy vaccination stage V1 and V2,
respectively. Similarly, recovered individuals in the Rn2 and Rn3 classes receive immune booster at a
rate ρn2 and ρn3, respectively (and revert, respectively, to stages Rn1 and Rn2). Individuals in Rnv2 and
Rnv3 (that have both the vaccine-derived and natural immunity) receive a booster at a rate ρnv2 and ρnv3,
respectively (and revert to Rnv1 and Rnv2, respectively).

The parameter εvi is the average protective efficacy of the vaccine for vaccinated susceptible indi-
viduals in the Vi (i = 1, 2, 3) compartment, while εni (i = 1, 2, 3) is the efficacy of natural immunity
to prevent recovered individuals (in the Rni class) from acquiring future SARS-CoV-2 infection and
εnvi (i = 1, 2, 3) is the efficacy of natural and vaccine-derived immunity to prevent future SARS-CoV-2
infection of recovered individuals (in the Rnvi, i = 1, 2, 3, classes). Exposed individuals progress to
the pre-symptomatic stage at the rate σE, and pre-symptomatic individuals progress to either become
symptomatically-infectious, at a rate rσp (where 0 ≤ r ≤ 1 is the proportion of these individuals that
show clinical symptoms), or become asymptomatically-infectious, at the rate (1 − r)σp. Symptomatic
individuals are hospitalized at a rate ϕs, and infectious individuals in stage I j (with j = p, s, a, h) re-
cover at a rate γ j ( j = p, s, a, h). Finally, disease-induced mortality occur in the Ip, Is, Ia and Ih classes
at a rate δ j ( j = p, s, a, h).

Some of the main assumptions made in the formulation of the model (2.1) include:

(a) Homogeneous mixing: we assumed a well-mixed population, such that every member of the
community is equally likely to mix with (and acquire infection from) every other member of the
community.

(b) Vaccinated susceptible individuals (in the V1, V2 and V3 classes) are assumed to have received the
full required doses (i.e., two doses for Pfizer or Moderna vaccine, one dose for the Johnson &
Johnson vaccine), and that enough time has elapsed for the body to develop immunity.

(c) The three SARS-CoV-2 vaccines that received FDA’s Emergency Use Authorization (Pfizer, Mod-
erna and Johnson & Johnson) are imperfect [10, 13, 38]. That is, the vaccines offer partial pro-
tective immunity (with average efficacy 0 < εvi < 1), which wanes over time (at a rate ωvi),
for i = 1, · · · , 3 [28, 35]. In other words, vaccinated individuals can experience breakthrough
infection [39, 40].

(d) We assumed gradual waning of both vaccine-derived and natural immunity over time, resulting,
ultimately, in reverting to the wholly-susceptible class S [28]. Moreover, the overall transitions
from V1 to S , Rn1 to S and Rnv1 to S hold gamma distribution [41].

(e) Vaccination is only offered to wholly-susceptible individuals or those who recovered naturally
from COVID-19 infection but their natural immunity has waned completely or those recovered in-
dividuals who had acquired natural plus vaccine-derived immunity after recovering from COVID-
19 infection but the immunity has completely waned over time. In other words, individuals who
are currently infected are not vaccinated.

(f) Immunity level can be increased or strengthened, by using immunity boosters [36,37,42,43], for
the individuals in the Vi,Rni and Rnvi (i = 1, · · · , 3) classes.
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Figure 1. (a) Streamlined flow diagram of the model (2.1). (b-I) - (b-IV) depict sub-flow
diagrams of the model illustrating the transitions within the compartments for fully vacci-
nated (Vi) with high, moderate and low vaccine-derived immunity, infectious (I j), recovered
with high, moderate and low natural immunity (Rni) and recovered with both natural and
vaccine-derived immunity at high, moderate and low levels (Rnvi) individuals, respectively
(for i = 1, 2, 3 and j = {p, s, a, h}). The streamlined flow diagram is drawn to simplify and
enhance the readability of the general structure of the model (the full version of the flow
diagram of the model is given in Appendix A).

2.1. Basic qualitative analysis

Before carrying out the asymptotic analysis and numerical simulations of the model (2.1), it is in-
structive to explore its basic qualitative features with respect to its well-posedness (i.e., with respect to
the non-negativity, boundedness and invariance of its solutions). First of all, since the model (2.1) mon-
itors the temporal dynamics of human populations, all its parameters are non-negative. It is convenient
to define the following biologically-feasible region for the model (2.1):

Ω =

{
(S ,V1,V2,V3, E, Ip, Is, Ia, Ih,Rn1 ,Rn2 ,Rn3 ,Rnv1 ,Rnv2 ,Rnv3) ∈ R

15
+ : N(t) ≤

Π

µ

}
,

where N(t) is the total population. For the model (2.1) to be mathematically- and biologically-
meaningful, it is necessary that the solutions of the model (2.1) remain non-negative for all non-
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Table 1. Description of the state variables of the model (2.1).

Variable Description
S Population of unvaccinated (wholly) susceptible individuals
V1 Population of vaccinated susceptible individuals with high vaccine-derived immunity
V2 Population of vaccinated susceptible individuals with moderate vaccine-derived immunity
V3 Population of vaccinated susceptible individuals with low vaccine-derived immunity
E Population of exposed (newly-infected individuals)
Ip Population of pre-symptomatic infectious individuals
Is Population of infectious individuals with clinical symptoms of the disease
Ia Population of asymptomatically-infectious individuals
Ih Population of hospitalized individuals

Rn1 Population of recovered individuals with high natural immunity
Rn2 Population of recovered individuals with moderate natural immunity
Rn3 Population of recovered individuals with low natural immunity
Rnv1 Population of recovered individuals with high natural and vaccine-derived immunity
Rnv2 Population of recovered individuals with moderate natural and vaccine-derived immunity
Rnv3 Population of recovered individuals with low natural and vaccine-derived immunity

negative initial conditions. That is, solutions that start in Ω remain in Ω for all time t > 0 (i.e., Ω
is positively-invariant with respect to the model (2.1)). Furthermore, let

X(0) = (S (0),Vi(0), E(0), Ip(0), Is(0), Ia(0), Ih(0),Rni(0),Rnvi(0))T ,

with i = 1, 2, 3, be the vector of initial solutions of the model (2.1). We claim the following result.

Theorem 2.1. Consider the model (2.1) with non-negative initial data X(0). The regionΩ is positively-
invariant and bounded with respect to the model (2.1).

Proof. Adding all the equations of the model (2.1) gives

Ṅ = Π − µN − δpIp − δsIs − δaIa − δhIh. (2.3)

By the non-negativity of parameters for model (2.1), it follows from (2.3) that

Ṅ ≤ Π − µN. (2.4)

Hence, if N > Π
µ

, then Ṅ < 0. Thus, it follows, by applying a standard comparison theorem [44] on
(2.4), that:

N(t) ≤ N(0)e−µt +
Π

µ

(
1 − e−µt

)
.

Hence, if N(0) ≤ Π
µ

, then N(t) ≤ Π
µ

. Thus, the solutions of the model (2.1) are bounded. Therefore,
every solution of the model (2.1) with initial conditions inΩ remains inΩ for all time t. In other words,
the region Ω is positively-invariant and attracts all initial solutions of the model (2.1). □
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Table 2. Description of the parameters of the model (2.1).

Parameter Description
Π Recruitment rate
β Effective contact rate of individuals

η j( j = p, s, a, h) Modification parameter for the infectiousness of the individuals in Ip, Is, Ia, and
Ih classes

ξv Vaccination rate
µ Natural death rate
r Proportion of individuals who show clinical symptoms of the disease

ωvi(i = 1, 2, 3) Waning rate of vaccinated individuals in stage Vi

ωni(i = 1, 2, 3) Waning rate of natural immunity in individuals in stage Rni

ωnvi(i = 1, 2, 3) Waning rate of natural plus vaccine-derived immunity in individuals in stage Rnvi

ρv2(ρv3) Boosting rate of vaccine-derived immunity of the individuals in stage V2(V3)
ρn2(ρn3) Boosting rate of natural immunity of the individuals in stage Rn2(Rn3)
ρnv2(ρnv3) Boosting rate of vaccine-derived and natural immunity of those in stage Rnv2(Rnv3)
εvi(i = 1, 2, 3) Average vaccine efficacy for vaccinated individuals in V1,V2 and V3 classes,

respectively
εni(i = 1, 2, 3) Efficacy of natural immunity to prevent infection of recovered individuals in Rn1 ,

Rn2 and Rn3

εnvi(i = 1, 2, 3) Efficacy of natural and vaccine derived immunity to prevent infection of recovered
individuals in Rnv1 ,Rnv2 and Rnv3

σE Progression rate from exposed class to pre-symptomatic class
σp Progression rate from pre-symptomatic class to either symptomatic or

asymptomatic class
γ j( j = p, s, a, h) Recovery rate for individuals in the Ip, Is, Ia and Ih classes, respectively

ϕs Hospitalization rate of individuals with clinical symptoms of the disease
δ j( j = p, s, a, h) Disease-induced mortality rate for individuals in the Ip, Is, Ia and Ih classes,

respectively

The consequence of Theorem 2.1 is that it is sufficient to consider the dynamics of the flow gen-
erated by (2.1) in Ω, since the model (2.1) is epidemiologically and mathematically well-posed [45]
there.

3. Asymptotic stability analysis of disease-free equilibrium

The disease-free equilibrium (DFE) of the model (2.1) is given by:

E0 =
(
S ∗,V∗1 ,V

∗
2 ,V

∗
3 , E

∗, I∗p, I
∗
s , I
∗
a, I
∗
h,R

∗
n1
,R∗n2
,R∗n3
,R∗nv1
,R∗nv2
,R∗nv3

)
, (3.1)

where,
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S ∗ =
Π

[
µρv2 A1 + A2

(
µρv3 + A3A4

)]
D1

,

V∗1 =
Πξv

[
ρv2 A1 + µρv3 + A3A4

]
D2

,

V∗2 =
Πξvωv1 A1

D2
,

V∗3 =
Πξvωv1ωv2

D2
,

(3.2)

with,

A1 =
(
µ + ρv3 + ωv3

)
, A2 =

(
µ + ωv1

)
, A3 =

(
µ + ωv2

)
, A4 =

(
µ + ωv3

)
, B1 = (µ + ξv) ,

B2 =
(
µ + ρv3 + ωv2

)
, B3 =

(
µ + ρv3

)
, B4 =

(
µ + ρv2 + ωv1

)
, B5 =

(
µ + ξv + ωv1

)
,

D1 = µ
[
ξv

(
(A2) (B2) + ρv2 (A1) + ωv3

(
µ + ωv1 + ωv2

))
+ µρv2 (A1) + (A2)

(
µρv3 + (A3) (A4)

)]
,

D2 = µ (B1)
[
(A2) (B2) + ρv2 (B3)

]
+ µωv3

[
(B1) (B4) + ωv2 (B5)

]
,

and all other components (for the infected and recovered compartments of the model) take the value
zero.

The asymptotic stability property of the DFE (E0) can be explored using the next generation oper-
ator method [46, 47]. Using the notation in [46], it follows that the associated non-negative matrix of
new infection terms (F) and the M-matrix of the linear transition terms (V) are given, respectively, by:

F =


0 f1 f2 f3 f4

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


and V =


K1 0 0 0 0
−σE K2 0 0 0

0 −rσp K3 0 0
0 −(1 − r)σp 0 K4 0
0 0 −ϕs 0 K5


, (3.3)

where f1 = βηp

(
S ∗ + A∗

N∗

)
, f2 = βηs

(
S ∗ + A∗

N∗

)
, f3 = βηa

(
S ∗ + A∗

N∗

)
, f4 = βηh

(
S ∗ + A∗

N∗

)
, with

A∗ = (1 − εv1)V
∗
1 + (1 − εv2)V

∗
2 + (1 − εv3)V

∗
3 ,K1 = σE + µ,K2 = σp + γp + µ + δp,

K3 = ϕs + γs + µ + δs,K4 = γa + µ + δa and K5 = γh + µ + δh.

It is convenient to define the quantity (where ρ is the spectral radius):

Rv = ρ(FV−1) =


βσE (S ∗ + A∗) [K3K4K5ηp + K3K5ηaσp(1 − r) + K4K5ηsrσp + K4ηhϕsrσp]

(N∗)
(

5∏
i=1

Ki

)
 . (3.4)

The result below follows from Theorem 2 of [46].
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Theorem 3.1. The disease-free equilibrium (E0) of the model (2.1) is locally-asymptotically stable
(LAS) if Rv < 1, and unstable if Rv > 1.

The threshold quantity Rv is the vaccination reproduction number of the model (2.1), which mea-
sures the average number of new COVID-19 cases generated by a single infectious individual intro-
duced into a population where a certain proportion is vaccinated. The epidemiological interpretation
of Theorem 3.1 is that a small influx of COVID-19 cases will not generate a large outbreak in the
community if the vaccination reproduction number (Rv) is brought to, and maintained at a, value less
than unity.

In the absence of vaccination and other public health interventions, the vaccination reproduction
number (Rv) reduces to the basic reproduction number (denoted by R0). That is,

R0 = Rv|V∗1=V∗2=V∗3=0 =


βσE[K3K4K5ηp + K3K5ηaσp(1 − r) + K4K5ηsrσp + K4ηhϕsrσp]

5∏
i=1

Ki

 .
3.1. Global asymptotic stability of DFE: Special Case

Consider the special case of the model (2.1) with perfect vaccine protective efficacy against primary
infection and re-infection and no waning of vaccine-derived and natural immunity (i.e., we consider
the model (2.1) with εvi = εni = εnvi = 1, ωni = ωnvi = 0, with i = 1, 2, 3). It is convenient to let:

S̃ = S + V1 + V2 + V3. (3.5)

Substituting εvi = εni = εnvi = 1 and ωni = ωnvi = 0 (with i = 1, 2, 3) into the model (2.1), it follows
that the equation for the rate of change of the new compartment S̃ (defined in (3.5)) is given by (where
the infection rate, λ, is as defined in (2.2)):

dS̃
dt
= Π − µS̃ − λS . (3.6)

It can be shown that the special case of the model is positively-invariant and bounded in the region (as
shown in Section 2.1)

Ω∗ =

{
(S̃ , E, Ip, Is, Ia, Ih,Rn1 ,Rn2 ,Rn3 ,Rnv1 ,Rnv2 ,Rnv3) ∈ R

12
+ : N(t) ≤

Π

µ

}
.

Furthermore, the disease-free equilibrium of the special case of the model is given by:

E0R =
(
S̃ ∗, E∗, I∗p, I

∗
s , I
∗
a, I
∗
h,R

∗
n1
,R∗n2
,R∗n3
,R∗nv1
,R∗nv2
,R∗nv3

)
=

(
Π

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
. (3.7)

For the aforementioned special case of the model, it can be seen that the associated next generation
matrix of new infection terms, denoted by F̃, is given by (note that, for this special case, the next
generation matrix of linear transition terms, V , remains the same, as given in (3.3). Further, N∗ = Π/µ):
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F̃ =



0 βηp

(
S̃ ∗

N∗

)
βηs

(
S̃ ∗

N∗

)
βηa

(
S̃ ∗

N∗

)
βηh

(
S̃ ∗

N∗

)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


.

Thus,

R̃v = ρ(F̃V−1) =


βσES̃ ∗[K3K4K5ηp + K3K5ηaσp(1 − r) + K4K5ηsrσp + K4ηhϕsrσp]

(N∗)
(

5∏
i=1

Ki

)
 . (3.8)

We claim the following result:

Theorem 3.2. Consider the special case of the model (2.1) with εvi = εni = εnvi = 1 and ωni = ωnvi =

0 (for i = 1, 2, 3). The disease-free equilibrium of the special case of the model (E0R) is globally-
asymptotically stable in Ω∗ whenever R̃v < 1.

Proof. Consider the model (2.1) with εvi = εni = εnvi = 1 and ωni = ωnvi = 0 (i = 1, 2, 3). Further,
let R̃v < 1. The proof is based on using a comparison theorem [48]. It can be shown, first of all, that
the region Ω∗ is positively-invariant and attracts all solutions of the aforementioned special case of the
model (2.1) (as shown in Section 2.1). The equations for the infected compartments of the special case
of the model (2.1) can be re-written in terms of the next generation matrices (F̃ and V) as below:

d
dt


E(t)
Ip(t)
Is(t)
Ia(t)
Ih(t)


= (F̃ − V)


E(t)
Ip(t)
Is(t)
Ia(t)
Ih(t)


− M


E(t)
Ip(t)
Is(t)
Ia(t)
Ih(t)


, (3.9)

where,

F̃ − V =



−(σE + µ) βηp

(
S̃ ∗

N∗

)
βηs

(
S̃ ∗

N∗

)
βηa

(
S̃ ∗

N∗

)
βηh

(
S̃ ∗

N∗

)
σE −(σp + γp + µ + δp) 0 0 0
0 rσp −(ϕs + γs + µ + δs) 0 0
0 σp (1 − r) 0 −(γa + µ + δa) 0
0 0 ϕs 0 −(γh + µ + δh)


,

and,

M = β
(
1 −

S
N

)

0 ηp ηs ηa ηh

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


. (3.10)
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Since S (t) ≤ N(t) for all t > 0 in Ω∗, it follows that the matrix M, defined in (3.10), is non-negative.
Hence, Eq (3.9) can be re-written in terms of the following inequality:

d
dt


E(t)
Ip(t)
Is(t)
Ia(t)
Ih(t)


≤ (F̃ − V)


E(t)
Ip(t)
Is(t)
Ia(t)
Ih(t)


. (3.11)

It should be recalled from the local asymptotic stable result for the DFE (given in Theorem 3.1) that
all eigenvalues of the next generation matrix F̃V−1 are negative if R̃v < 1 (i.e., F̃−V is a stable matrix).
Thus, it can be concluded that the linearized differential inequality system (3.11) is stable whenever
ρ(F̃V−1) < 1. Hence, it follows that (for the linear system of ordinary differential equations (3.11)):

(E(t), Ip(t), Is(t), Ia(t), Ih(t))→ (0, 0, 0, 0, 0), as t → ∞.

Substituting E(t) = Ip(t) = Is(t) = Ia(t) = Ih(t) = 0 into the differential equations for the rate of change
of the Rni(t), Rnvi(t) and S̃ (with i = 1, 2, 3) compartments of the model (2.1) shows that (where S̃ ∗ is
defined in (3.7)):

Rni(t)→ 0,Rnvi(t)→ 0 (with i = 1, · · · , 3) and S̃ (t)→ S̃ ∗, as t → ∞.

Thus, the DFE (E0R) of the special case of the model (2.1), with εvi = εni = εnvi = 1 and ωni =

ωnvi = 0 (i = 1, 2, 3), is globally-asymptotically stable in Ω∗ whenever R̃v < 1. □

Epidemiologically-speaking, Theorem 3.2 shows that, for the special case of the model (2.1) with
εvi = εni = εnvi = 1 and ωni = ωnvi = 0 (i = 1, 2, 3), the disease can be eliminated from the community
if the threshold quantity, R̃v, can be brought to (and maintained at) a value less than unity.

The global asymptotic stability of the disease-free equilibrium of the model (2.1) can also be estab-
lished for another special case, as described below. Consider the special case of the model (2.1) in the
absence of disease-induced mortality (i.e. δp = δs = δa = δh = 0) and no reinfection (i.e., εni = εnvi = 1
with i = 1, 2, 3). Setting δp = δs = δa = δh = 0 in the model (2.1), and adding all the equations of the

model shows that
dN
dt
= Π − µN, from which it follows that N(t) →

Π

µ
as t → ∞. From now on, we

replace N(t) with its limiting value, N∗ = Π/µ (i.e., the standard incidence formulation for the infection
rate is now replaced by a mass action incidence). Furthermore, it is convenient to define the following
feasible region for the special case of the model (where S ∗ and V∗i , with i = 1, 2, 3, are as defined in
Section 3):

Ω∗∗ =
{
(S ,V1,V2,V3, E, Ip, Is, Ia, Ih,Rn1 ,Rn2 ,Rn3 ,Rnv1 ,Rnv2 ,Rnv3) ∈ Ω : S ≤ S ∗,Vi ≤ V∗i , i = 1, 2, 3

}
.

It can be shown that the regionΩ∗∗ is positively-invariant with respect to the aforementioned special
case of the model [49]. Further, for this special case of the model, it can be shown that the associated
next generation matrices are given, respectively, by:
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F̂ =


0 f̂1 f̂2 f̂3 f̂4

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


and V̂ =


K̂1 0 0 0 0
−σE K̂2 0 0 0

0 −rσp K̂3 0 0
0 −(1 − r)σp 0 K̂4 0
0 0 −ϕs 0 K̂5


,

where (with S ∗ and A∗ as defined in Section 3),

f̂1 = βηp (S ∗ + A∗) , f̂2 = βηs (S ∗ + A∗) , f̂3 = βηa (S ∗ + A∗) , f̂4 = βηh (S ∗ + A∗) ,

and,

K̂1 = σE + µ, K̂2 = σp + γp + µ, K̂3 = ϕs + γs + µ, K̂4 = γa + µ and K̂5 = γh + µ.

It is convenient to define the following threshold quantity:

R̂v = ρ(F̂ ˆV−1) =


βσE(S ∗ + A∗)[K̂3K̂4K̂5ηp + K̂3K̂5ηaσp(1 − r) + K̂4K̂5ηsrσp + K̂4ηhϕsrσp](

5∏
i=1

K̂i

)
 .
(3.12)

We claim the following result:

Theorem 3.3. Consider the special case of the model (2.1) in the absence of disease-induced mortality
(i.e., δp = δs = δa = δh = 0) and no reinfection of recovered individuals (i.e., εni = εnvi = 1 with
i = 1, 2, 3). The disease-free equilibrium of the special case of the model (E0) is globally-asymptotically
stable in Ω∗∗ whenever R̂v < 1.

The proof of Theorem 3.3, based on using a comparison theorem, is given in Appendix B.

3.2. Derivation of vaccine-induced herd immunity threshold

Herd immunity, which is a measure of the minimum percentage of the number of susceptible indi-
viduals that need to be protected against the infection in order to eliminate community transmission
of an infectious disease, can be attained through two main ways, namely natural immunity route (fol-
lowing natural recovery from infection with the disease) or by vaccination (which is widely considered
to be the safest and the fastest way) [50, 51]. For vaccine-preventable diseases, such as COVID-19,
it is not practically possible to vaccinate every susceptible individual in the community due to vari-
ous reasons, such as individuals with certain underlying medical conditions, infants, individuals who
are pregnant, breastfeeding women or those who are unwilling to be vaccinated for COVID-19 due to
some other reasons [30]. Therefore, it is crucial to determine the minimum proportion of the suscep-
tible population that need to be vaccinated in order to protect those that cannot be vaccinated (so that
vaccine-induced herd immunity is achieved in the population). Since we have three vaccination classes
(V1, V2 and V3), accounting for the three levels of vaccine-derived immunity (high, moderate and low),
we will compute vaccine-derived herd immunity thresholds for the United States with respect to each
of the vaccination classes. Specifically, we let
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fv1 =
V∗1
N∗
, fv2 =

V∗2
N∗
, fv3 =

V∗3
N∗
, with N∗ =

Π

µ
. (3.13)

Here, fv1 represents the proportion of susceptible members of the population that have been fully-
vaccinated (using any of the three approved vaccines), fv2 represents proportion of V2 boosted and fv3

represents proportion of V3 boosted, at the disease-free equilibrium (E0). Using the definition (3.13) in
(3.4) gives:

Rv =


βσE[1 −

(
εv1 fv1 + εv2 fv2 + εv3 fv3

)
]
[
K3K4K5ηp + K3K5ηaσp (1 − r) + K4K5ηsrσp + K4ηhϕrσp

](
5∏

i=1
Ki

)
 ,

which can be expressed in terms of the basic reproduction number (R0) as:

Rv =

1 − 3∑
i=1

εvi fvi

R0. (3.14)

Setting Rv = 1 (i.e., the bifurcation point) in Eq (3.14), and simplifying, gives:

3∑
i=1

εvi fvi =

(
1 −

1
R0

)
, (3.15)

from which we can solve for the fraction fully-vaccinated (those in V1 class), or received booster doses
(i.e., those in V2 and V3 classes), at steady-state for each vaccinated class (denoted by fviwith i =
1, · · · , 3), in terms of the basic reproduction number, giving:

fv1 =
1
εv1

[(
1 −

1
R0

)
− (εv2 fv2 + εv3 fv3)

]
= f c

v1
(for R0 > 1),

fv2 =
1
εv2

[(
1 −

1
R0

)
− (εv1 fv1 + εv3 fv3)

]
= f c

v2
(for R0 > 1),

fv3 =
1
εv3

[(
1 −

1
R0

)
− (εv1 fv1 + εv2 fv2)

]
= f c

v3
(for R0 > 1).

(3.16)

It follows from Eq (3.16) that Rv < (>)1 if fvi > (<) f c
vi

(with i = 1, 2, 3). Furthermore, Rv = 1 whenever
fvi = f c

vi
(with i = 1, 2, 3). This result is summarized below:

Theorem 3.4. Vaccine-induced herd immunity (i.e., COVID-19 elimination) can be achieved in the
United States, using any of the approved anti-COVID vaccine, if vaccination of susceptible individuals
and boosting of vaccine-derived immunity resulted in fvi > f c

vi (i.e., if Rv < 1) for each corresponding
i, for all i = 1, 2, 3. If fvi < f c

vi (i.e., if Rv > 1), then the vaccination program will fail to eliminate the
COVID-19 pandemic.

Epidemiologically-speaking, Theorem 3.4 implies that the use of any of the approved COVID-19
vaccines can lead to the elimination of the pandemic in the United States if the proportion of susceptible
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individuals fully-vaccinated and with high level of vaccine-derived immunity (i.e., those in V1 class)
and boosted (i.e., those in V2 and V3 classes) at steady-state reached or exceeded the aforementioned
critical threshold values. In other words, the SARS-CoV-2 pandemic is predicted to be eliminated
in the United States if fvi > f c

vi for each corresponding i, for all i = 1, 2, 3. On the contrary, the
Vaccination program will fail to eliminate the pandemic if the proportion vaccinated (and boosted) at
the disease-free equilibrium falls below the aforementioned critical herd immunity thresholds.

It should be mentioned that since the Pfizer and Moderna vaccines offer protective efficacy of about
95% and 94%, respectively [52], and the Johnson & Johnson vaccine offers a protective efficacy of
about 67% [53], we set the average vaccine protective efficacy for individuals in the V1 class to be

εv1 =
0.95 + 0.94 + 0.67

3
≈ 0.85. (3.17)

It is worth mentioning that the expression (3.17), for the average vaccine protective efficacy, is a
dynamic quantity that depends on the actual combinations of SARS-CoV-2 vaccines adopted in the
community at time t (it should be mentioned that, in deriving the estimate for εv1 in Eq (3.17), we used
the values of the respective efficacies of the three vaccines estimated in [52,53] during the period around
October, 2020 to January, 2021). Table 5 summarizes the assumed baseline efficacy levels for average
vaccine-derived and natural immunity to be used in our numerical simulations. Using the baseline
values of the fixed and fitted parameters in Tables 3 and 4, together with the baseline average vaccine-
derived and natural immunity protective efficacy levels in Table 5, it follows from Eq (3.16) that the
critical vaccine-derived herd immunity threshold for each of the vaccinated compartment is given,
respectively, by f c

v1
= 0.59, f c

v2
= 0.42 and f c

v3
= 1.01. In other words, based on the parameterization of

the model (2.1) with the recent case data for Omicron BA.1 variant in the United States, population-
level herd immunity can be achieved in the United States if the following conditions hold:

(a) at least 59% of the wholly-susceptible individuals are fully vaccinated (i.e., 59% of individuals in
the S class are fully-vaccinated and moved to the V1 class);

(b) 42% of vaccinated individuals with moderate vaccine-derived immunity (i.e., those in V2 class)
are boosted;

(c) almost all of the vaccinated individuals whose level of vaccine-derived immunity is low (i.e.,
those in V3) are boosted.

Hence, vaccine-derived herd immunity will be achieved via the aforementioned vaccination-boosting
strategy that entails having at least 59% of the wholly-susceptible population to be fully-vaccinated
followed by the boosting of an average of (42%+101%)/2 = 71.5% of the fully-vaccinated individuals
with moderate and low vaccine-derived immunity.
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Figure 2. Contour plots of the vaccine reproduction number (Rv) of the model (2.1), as a
function of vaccine coverage or boosting at steady- state ( fvi; i = 1, 2, 3) and average vaccine
efficacy (εvi; i = 1, 2, 3), for the United States. (a) Vaccination of wholly-susceptible indi-
viduals (S (t); fv1 is proportion of wholly-susceptible individuals who are fully-vaccinated at
steady-state). (b) Boosting of vaccinated individuals with moderate vaccine-derived immu-
nity (V2(t); fv2 is the proportion of vaccinated individuals in the V2 class who are boosted).
(c) Boosting of vaccinated individuals with low vaccine-derived immunity (V3(t); fv3 is the
proportion of vaccinated individuals in the V3 class who are boosted). Parameter values used
in these simulations are as given by their respective baseline values in Tables 3–5.

Figure 2 depicts contour plots of the vaccination reproduction number (Rv), as a function of vac-
cination efficacy (εvi) and coverage of fully-vaccinated or boosted individuals at steady-state ( fvi), for
i = 1, 2, 3. It follows from these plots that, for the overall average vaccine-protective efficacy set at 85%
(as stated above), at least 59% of the wholly-susceptible population need to be vaccinated at steady-
state to bring the vaccination reproduction number (Rv) below one (Figure 2(a)). For the case when
the average vaccine-protective efficacy has waned to 50% (i.e., fully-vaccinated individuals now have
moderate vaccine-derived immunity; here, εv2 = 0.5, as given in Table 5), up to 42% of individuals
in the V2 class need to be boosted to bring the vaccination reproduction number to a value below one
(Figure 2(b)). Finally, when vaccine-derived immunity has waned to the low level of 20%, the contour
plot in Figure 2(c) shows that all of the fully-vaccinated individuals with low vaccine-derived immu-
nity (i.e., individuals in the V3 class) need to be boosted to bring the reproduction number to a value
less than one. In summary, the results depicted in Figure 2 show that population-level herd immunity
can be achieved in the United States via the implementation a vaccination program (based on using
any of the three approved vaccines) that emphasizes the full vaccination of a sizable proportion of the
susceptible pool (at least 59%) followed by the administration of booster doses to individuals in whom
their vaccine-derived immunity has waned to moderate (at least 42%) or low (at least 100%) levels.
Overall, our study shows that, for the case where the protective immunity offered by the vaccine for
fully-vaccinated individuals in the V1 class is 85%, vaccine-derived herd immunity can be achieved
in the United States if at least 59% of the susceptible population is fully-vaccinated (with any of the
three approved vaccines) followed by the boosting of at least 71.5% of the fully-vaccinated individuals
whose vaccine-derived immunity has waned to moderate or low level.
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It should be mentioned that for the case when the high level of the average vaccine-induced efficacy
for individuals in the V1 class is decreased to 55%, for instance (while the average vaccine protective
efficacy for individuals in the V2 and V3 classes remain at the baseline level), our simulations showed
that at least 91% of the wholly-susceptible population need to be fully-vaccinated, followed by the
(marginal) boosting (about 4%) of the vaccinated individuals whose vaccine-derived immunity has
waned to moderate or low level. Thus, this study shows that lower average protective efficacy of the
vaccines (for fully-vaccinated individuals) incurs higher requirement for the vaccination coverage of
the susceptible population (followed by a correspondingly low level of boosting for the vaccinated
individuals whose average vaccine protective efficacy has waned to moderate or low level) to achieve
herd immunity. Vaccinating 91% of the wholly-susceptible population is, of course, not realistically
feasible in large populations, such as the United States. Hence, it is imperative that highly efficacious
vaccines are developed and used, and combined with boosting (at moderate to high levels) of vacci-
nated individuals whose immunity has waned to moderate or low level. In other words, using vaccines
with higher protective efficacy (e.g., vaccines with 85% average protective efficacy, as computed in
Eq (3.17)) incurs lower, and realistically attainable, requirement for the vaccination coverage (about
59%) and attainable (moderate to high) boosting level (about 71.5%) for the fully-vaccinated individ-
uals whose vaccine-derived immunity has waned to moderate or low level. As of May 20, 2022, data
from the CDC shows that about 66.5% of the U.S. population is fully-vaccinated, and about 46.4% of
the population of fully-vaccinated individuals is boosted [54]. Thus, this study shows that, even for the
scenario where the three vaccines offer such high average protective efficacy, a sizable proportion of
the fully-vaccinated individuals need to be boosted in order to achieve vaccine-derived herd immunity
in the United States (using the aforementioned combined vaccination-boosting strategy).

4. Data fitting and parameter estimation

In this section, we fit the model (2.1) by using the available data for the observed cumulative
COVID-19 cases for the U.S. (for the period November 28, 2021–February 23, 2022). The model (2.1)
has several parameters, some of which are known from the literature (as tabulated in Table 3) and the
remaining unknown parameters are obtained by fitting the model (2.1) with the cumulative case data
obtained from the Johns Hopkins University COVID-19 repository [3]. The model was fitted using a
standard nonlinear least squares approach, which involved using the inbuilt MATLAB minimization
function “lsqcurvefit” to minimize the sum of the squared differences between each observed cumu-
lative cases data points and the corresponding cumulative cases points obtained from the model (2.1)
(i.e., rσpIp). The unknown parameters which are estimated from the fitting are presented in Table 4.

The data fitting is done by splitting the available COVID-19 cumulative case data for the United
States for the period from November 28, 2021 (when Omicron first emerged) to March 23, 2022 into
two segments. The first segment of the data, from November 28, 2021 to February 23, 2022 (i.e.,
the region to the left of the dashed vertical cyan line), was used to fit the model (2.1) and to estimate
the unknown parameters. The results obtained, depicted in Figure 3(a), show a very good fit for the
model output (blue curve) and the observed cumulative case data (red dots). The data for the second
segment of the data, for the period from February 24th, 2022 to March 23, 2022, was used for the
cross validation of the fitted data. This also shows a very good fit for the model output (green curve)
and for the remaining data points of the observed data (red dots) of Figure 3(a). This segment of the
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Figure 3(a) clearly shows that the model (2.1) cross validates the observed cumulative case data for
the period from February 23, 2022 to March 23, 2022 perfectly (solid green curve). Furthermore, we
show, in this figure, the prediction of the model for the cumulative COVID-19 cases for approximately
a five-week period after March 24, 2022 (i.e., the region to the right of the dashed vertical black line),
as illustrated by the solid magenta curve in Figure 3(a). The model was then simulated (using the fixed,
fitted and assumed parameter baseline values in Tables 3, 4 and 5), and compared with the observed
new daily cases data. The results obtained, depicted in Figure 3(b), show a very good fit for the daily
new COVID-19 cases in the United States.

Furthermore, in fitting the model to observed cumulative case data for the United States, we set
the average efficacies for individuals in the Vi classes (with i = 1, 2, 3) to their respective values in
Table 5. Specifically, the value of the average vaccine efficacy for individuals in the V1 class (εv1) is set
at 85% based on the expression given in Eq (3.17). The estimate for the average vaccine efficacy for
individuals in the V2 class (εv2) was adapted from the empirical studies in [55, 56]. First of all, these
studies show variations in the timing of the attainment of the residual efficacy (after a few months of
receipt of COVID-19 vaccination), which depend on the type of vaccine (Pfizer, Moderna or Johnson
& Johnson). Further, the studies showed that the vaccine-derived efficacy of the Johnson & Johnson
vaccine dropped from the initial 74.8% to 59.4% after five months of the receipt of the single-dose [55].
Similarly, the protective efficacy of the Pfizer vaccine decreased from 94.5% to 75.7% after 8 months
of the receipt of the full doses of the Pfizer vaccine [56]. Finally, the efficacy of the Moderna vaccine
decreased from 95.5% to 84.3% after 5 months of full vaccination [56]. Based on these estimates, we
considered it plausible to set the average vaccine efficacy for individuals in the V2 class to be 50%.

Additionally, numerous empirical studies have shown that the effectiveness of the Pfizer and Mod-
erna vaccines against symptomatic COVID-19 is less than 20% for the Omicron variant after the ad-
ministration of the second dose of the vaccine [57, 58]. Consequently, we deem it reasonable to set
the average vaccine-derived efficacy for individuals in the V3 class to be about 20%. Moreover, an em-
pirical study showed that individuals who received the second booster dose of the Pfizer or Moderna
vaccine have their vaccine effectiveness against the acquisition of breakthrough infection increased
from 19% to 49% [59]. This is in line with the assumption in our model formulation regarding the
transition of individuals from the V3 class (where the average efficacy was set to be 20%) to the V2

class (where the average vaccine efficacy is set at 50%).

5. Numerical simulations

The model (2.1) will now be simulated to assess the population-level impact of waning and boosting
of vaccine-derived and natural immunity on the dynamics of the Omicron variant in the United States.
Unless otherwise stated, the simulations will be carried out using the baseline values of the parameters
tabulated in Tables 3–5.

5.1. Assessing the impact of waning of vaccine-derived immunity: with and without boosting

To assess the impact of waning of vaccine-derived immunity for this scenario, we simulate the
model (2.1) using the following three (arbitrarily-chosen) levels of the parameters related to the waning
of vaccine-derived immunity in the population:

(i) Low level of waning of vaccine-derived immunity: here, we consider vaccine-derived immunity
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Figure 3. (a) Time series illustration of the least squares fit of the model (2.1), showing the
model’s output for the cumulative daily cases in the United States (blue curve) compared to
the observed cumulative confirmed cases for the United States (red dots) from November 28,
2021 to February 23, 2022 (segment to the left of the dashed vertical cyan line). (b) Simula-
tion result of (2.1), showing observed daily confirmed COVID-19 cases for the United States
as a function of time, using the fixed, estimated and assumed baseline parameter values given
in Tables 3, 4 and 5 respectively. The segment from February 24, 2022 to April 30, 2022 (i.e.,
solid green and magenta curves or the entire segment to the right of the dashed cyan vertical
line) illustrates the performance of the model (2.1) in predicting the cumulative and daily
cases in the United States.

to wane within 48 months (i.e., we set ωv1 = ωv2 = ωv3 = 0.0007 per day) but parameters
related to natural immunity and combined natural and vaccine-derived immunity are kept at their
respective baseline levels.

(ii) Baseline level of waning of vaccine-derived immunity: in this case, waning of vaccine-derived
immunity is set to occur within 9 months (so that, ωv1 = ωv2 = ωv3 = 0.0037 per day) but
parameters related to natural immunity and combined natural and vaccine-derived immunity are
kept at their respective baseline levels.

(iii) High level of waning of vaccine-derived immunity: in this scenario, vaccine-derived immunity
wanes within 3 months (i.e., ωv1 = ωv2 = ωv3 = 0.0110 per day), but parameters related to
natural immunity and combined natural and vaccine-derived immunity are kept at their respective
baseline levels.

For these simulations, all other parameters of the model (including those that involve the waning of
natural immunity and combined waning of natural and vaccine-derived immunity) are maintained at
their baseline values (given in Tables 3–5). Furthermore, these simulations are carried in the absence
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Table 3. Baseline values of the fixed parameters of the model (2.1).

Parameter Value Source Parameter Value Source
σE 1/3 day−1 [60] ωv1 1/274 day−1 [61]
σp 1/2 day−1 [62] ωv2 1/365 day−1 [61]
r 0.099 (dimensionless) [63] ωv3 1/365 day−1 [61]
ϕs 1/5 day−1 [27] ωn1 1/274 day−1 [61]
γs 1/10 day−1 [28, 53] ωn2 1/365 day−1 [61]
γa 1/5 day−1 [28, 53] ωn3 1/365 day−1 [61]
γh 1/8 day−1 [28, 53] ωnv1 1/548 day−1 Assumed
ηp 5/4 (dimensionless) [28] ωnv2 1/730 day−1 Assumed
ηs 1/2 (dimensionless) [8] ωnv3 1/730 day−1 Assumed
ηa 3/2 (dimensionless) [28] ρv2 1/14 day−1 [56, 64, 65]
ηh 3/20 (dimensionless) [8] ρv3 1/14 day−1 [56, 64, 65]
ξv 1.9 × 10−5 day−1 [66] ρn2 1/14 day−1 [64]
Π 11400 day−1 [8] ρn3 1/14 day−1 [64]
µ 3.4 × 10−5 day−1 [8] δh 5.0 × 10−5 day−1 [8]
δp 0 day−1 [67] δa 0 day−1 [68]

Table 4. Baseline values of fitted (estimated) parameters of the model (2.1), obtained by
fitting the model with the observed cumulative daily COVID-19 data for the United States
for the period November 28th, 2021 to February 23rd, 2022.

Parameter Estimated Value Parameter Estimated Value
β 0.2120 day−1 ρnv2 0.1996 day−1

ρnv3 0.6398 day−1 δs 4.9804 × 10−5 day−1

Table 5. Assumed baseline levels of the parameters for the efficacy of the average vaccine-
derived and natural immunity.

Vaccine Efficacy of Vn class Vaccine Efficacy of Rn class Vaccine Efficacy of Rnv class
εv1 = 0.85 εn1 = 0.85 εnv1 = 0.95
εv2 = 0.50 εn2 = 0.50 εnv2 = 0.50
εv3 = 0.20 εn3 = 0.20 εnv3 = 0.20

and presence of boosting of vaccine-derived immunity (recall that boosting of vaccine-derived immu-
nity, maintained at baseline level, is achieved via the administration of the required doses of any of the
approved SARS-CoV-2 booster vaccines used in the United States).
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Figure 4. Simulations of the model (2.1) to assess the population-level impact of waning
of vaccine-derived immunity in the absence and presence of boosting of vaccine-derived
immunity (maintained at baseline level). (a) − (d): average number of new daily cases at the
peak in the absence ((a) and (b)) and presence ((c) and (d)) of boosting of vaccine-derived
immunity. (e)−(h): cumulative number of new cases in the absence ((e) and ( f )) and presence
((g) and (h)) of boosting of vaccine-derived immunity (maintained at baseline level). Three
levels of waning of vaccine-derived immunity were considered: vaccine-derived immunity
wanes in three months (magenta curves), nine months (blue curves) and forty eight months
(green curves). Zoomed-in versions of the portions of the curves near the peaks depicted
in Figures (a) and (c) are shown in Figures (b) and (d), respectively. Similarly, zoomed-in
versions of the portions of the curves near the peaks in Figures (e) and (g) are shown in
Figures ( f ) and (h), respectively. The values of the other parameters of the model used in
these simulations are as given in Tables 3–5.

The simulation results obtained, depicted in Figure 4. First of all, these simulations also depict
the fitting of the model’s output for the daily new and cumulative cases with the observed data (used
in Section 4) for the baseline scenario (as shown by the blue curves and the red dots in Figure 4).
Furthermore, these simulations show that, in the absence of boosting of vaccine-derived immunity,
waning of vaccine-derived immunity generally induces only a marginal impact on the average number
of new daily COVID-19 cases in the United States, for each of the three waning levels considered in
our simulations, in comparison to the baseline scenario. For example, under the fast waning scenario
for vaccine-derived immunity (i.e., vaccine-derived immunity wanes within three months, but natural
immunity is maintained at its baseline level) and no boosting of vaccine-derived immunity is imple-
mented, the simulations show a marginal (about 2%) increase in the peak level of the daily new cases,
in comparison to the peak baseline level (this is evident by comparing the blue and magenta curves
in Figure 4(a), and the zoomed-in version of the segments of the curves near the peaks shown in Fig-
ure 4(b)). For the slow waning scenario (i.e., if the vaccine-derived immunity wanes within 48 months,
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but natural immunity is maintained at baseline level), the increase in daily new cases at the peak (in
comparison to the baseline) reduces to about 1.5% (compare the blue and green curves in Figures 4(a)
and (b)).

In the presence of boosting of vaccine-derived immunity (at baseline level), our simulations show
a significant reduction in the average number of daily new cases at the peak recorded under the above
waning scenarios without boosting of vaccine-derived immunity. For instance, for the case where
vaccine-derived immunity wanes within three months (but natural immunity is maintained at baseline
level), boosting of vaccine-derived immunity at the baseline level significantly reduces the increase in
daily new cases at the peak (by about 90%), in comparison to the corresponding case without boosting
of vaccine-derived immunity (compare the blue and magenta curves in Figure 4(c), and the corre-
sponding zoomed-in portions of the curves near the peaks shown in Figure 4(d)). Furthermore, under
the slow waning scenario, boosting of vaccine-derived immunity at baseline level further increases the
reduction in the peak daily new cases (compare the green and blue curves in Figures 4(c) and (d)).
Similar dynamics are observed (and illustrated) with respect to the cumulative number of new cases,
for the three waning scenarios considered in these simulations without (Figures 4(e) and ( f )) and with
(Figures 4(g) and (h)) boosting of vaccine-derived immunity.

We further simulated the model to assess the impact of waning and boosting of vaccine-derived im-
munity (for the case where natural immunity is maintained at baseline) for the following two scenarios:

Scenario (a): Fast waning and slow boosting. Here, we assume that the waning of vaccine-
derived immunity range between 3 to 6 months and the duration of boosting of vaccine-derived
immunity range from 20 days to 180 days.
Scenario (b): Fast waning and boosting near the baseline level. Under this scenario, vaccine-
derived immunity wanes within the same 3 to 6 months period (as in Scenario (a)), but boosting
of vaccine-derived immunity is accelerated to be implemented within 10 to 20 days (i.e., near the
baseline level of 14 days).

The results obtained are depicted in the form of heat maps for the vaccination reproduction number
(Rv) of the model (2.1), as a function of the rates of waning (ωv) and boosting (ρv) of vaccine-derived
immunity in Figure 5. This figure shows that, for the fast waning and slow boosting scenario (i.e.,
Scenario (a)), the values of the vaccination reproduction number lie in the range Rv ∈ [0.82, 1.21]
(with a mean of Rv ≈ 1.015), suggesting that the disease will persist in the population (this is in line
with the theoretical result given in Theorem 3.1). In other words, this result shows that faster waning
and slower boosting, in comparison to waning and boosting at baseline levels, increases the prospect for
disease persistence in the population. For Scenario (b), our simulations (Figure 5(b)) show a marked
decrease in the range of the reproduction number, with R ∈ [0.78, 0.89] (with a mean of Rv = 0.835),
suggesting possible elimination of the pandemic (in line with Theorems 3.1–3.3). Thus, boosting of
vaccine-derived (near the baseline rate) enhances the prospect for pandemic elimination.

In summary, while the simulations in this section show that waning of vaccine-derived immunity
generally induces only a marginal impact in the average number of new cases at the peak of the COVID-
19 pandemic, boosting of vaccine-derived immunity (maintained at its baseline level) resulted in a
dramatic reduction in the average number of new cases at the peak, in comparison to the case where
boosting is not implemented. Furthermore, delay in boosting of vaccine-derived immunity, in compar-
ison to the baseline level of boosting, could alter the trajectory of the disease from possible elimination
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(as measured by the vaccine reproduction number, Rv, taking a value less than one) to persistence of
the disease (as measured by the reproduction number being greater than one).

Figure 5. Effect of waning and boosting of vaccine-derived immunity. Heat maps of the
vaccination reproduction number (Rv), as a function of the rates of waning (ωv) and boosting
(ρv) of vaccine-derived immunity. (a) Waning of vaccine-derived immunity range between
3 to 6 months, and duration of boosting of vaccine-derived immunity range from 20 days
to 180 days (slow boosting). (b) Waning of vaccine-derived immunity range from 3 to 6
months, while duration of boosting of vaccine-derived immunity range from 10 to 20 days
(fast boosting).

5.2. Assessing the effect of waning of natural immunity: with and without boosting

Natural immunity can be boosted via treatment or the use of other immune-boosting supplements
[36, 37]. To assess the impact of waning of natural immunity, we simulated the model (2.1) using the
following (arbitrarily-chosen) waning levels:

(i) Low level of waning of natural immunity: here, too, we consider natural immunity to wane within
48 months (i.e., we set ωn1 = ωn2 = ωn3 = 0.0007 per day), but vaccine-derived immunity and
combined natural and vaccine-derived immunity are kept at their respective baseline levels.

(ii) Baseline waning of natural immunity: in this case, waning of natural immunity is set to occur
within 9 months (so that, ωn1 = ωn2 = ωn3 = 0.0037 per day), but vaccine-derived immunity
and combined natural and vaccine-derived immunity are maintained at their respective baseline
levels.

(iii) High level of waning of natural immunity: here, too, natural immunity is assumed to wane within
3 months (i.e., ωn1 = ωn2 = ωn3 = 0.0110 per day), but vaccine-derived immunity and combined
natural and vaccine-derived immunity are kept at their respective baseline levels.

For the simulations in this section, we set all other parameters (including those related to the waning
of vaccine-derived immunity and combined waning of natural and vaccine-derived immunity) to their
baseline values (given in Tables 3–5). The simulation results obtained, depicted in Figure 6, also
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showed that waning of the natural immunity in general only induces a marginal increase in the average
number of new daily COVID-19 cases in the United States, in comparison to the baseline scenario
(where the waning of natural immunity is assumed to occur within 9 months). In particular, if natural
immunity wanes within three months and no boosting of natural immunity is implemented, the average
number of new daily cases at the peak increases by about 4.2%, in comparison to the baseline scenario
(compare the blue and magenta curves in Figure 6(a), and the zoomed-in portions of the curves near the
peaks, depicted in Figure 6(b)). An additional marginal increase in the average number of new daily
cases at the peak is recorded under the slow waning scenario for the natural immunity, in comparison
to the baseline scenario (compare the blue and green curves in Figures 6(a) and (b)).

Figure 6. Simulations of the model (2.1) to assess the population-level impact of waning of
natural immunity for the case with and without boosting of natural immunity (at the baseline
level). (a) − (d): average number of new daily cases at the peak in the absence ((a) and (b))
presence ((c) and (d)) of boosting of natural immunity. (e) − (h): cumulative number of new
cases in the absence ((e) and ( f )) and presence ((g) and (h)) of boosting of natural immunity
(maintained at baseline level). Three levels of waning of natural immunity were considered:
natural immunity wanes in three months (magenta curves), nine months (blue curves) and
forty eight months (green curves). Zoomed-in versions of the portions of the curves near
the peaks depicted in Figures (a) and (c) are shown in Figures (b) and (d), respectively.
Similarly, zoomed-in versions of the portions of the curves near the peaks in Figures (e) and
(g) are shown in Figures ( f ) and (h), respectively. The values of the other parameters of the
model used in these simulations are as given in Tables 3–5.

However, if natural immunity is boosted (at baseline level), our simulations show a marked re-
duction in the increase in the average daily new cases recorded at the peak, in comparison to the
corresponding scenario without boosting of the natural immunity. Specifically, when natural immu-
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nity wanes within three months and boosting of natural immunity is implemented (maintained at its
baseline level), the increase in the average number of new daily cases at the peak (in comparison to
the baseline) reduces to about 1.6% (compare the blue and magenta curves in Figure 6(c), and the
zoomed-in portions near the peak depicted in Figure 6(d)). This represents an approximately 62.2%
reduction in the average daily new cases at the peak, in comparison to the corresponding scenario
where natural immunity is not boosted. It should be mentioned that boosting of vaccine-derived im-
munity (at baseline) plays a more significant role in reducing the average number of new daily cases,
in comparison to the corresponding boosting of natural immunity (this can be seen by comparing the
corresponding peaks in Figures 4 and 6). In particular, while boosting of vaccine-derived immunity (at
baseline) will lead to about 90% reduction in the number of new daily cases at the peak, boosting of
natural immunity (at baseline) will lead to about 62% reduction in the number of new daily cases at
the peak). Further significant reductions in the average number of new daily cases are recorded if the
natural immunity wanes at a slower rate (compare the blue and green curves in Figures 6(a) and (c)
or (b) and (d), without and with boosting of natural immunity). We illustrated similar dynamics with
respect to the cumulative number of new cases without (Figures 6(e) and ( f )) and with (Figures 6(g)
and (h)) boosting of natural immunity.

In summary, like in the case of waning of vaccine-derived immunity discussed in Section 5.1, the
simulations in this section show that while the waning natural immunity only causes a marginal in-
crease in the average number of new cases at the peak, boosting natural immunity (at baseline) resulted
in a significant reduction in the average number of new cases recorded at the peak, in comparison to
the scenario where a strategy for boosting of natural immunity is not implemented in the community.

6. Discussion and conclusions

The COVID-19 pandemic, caused by SARS-CoV-2, has made a significant impact on public health
and the economy of almost every nation on earth since its emergence in December of 2019. The United
States became the epicenter of the pandemic since late May, 2020 (recording the highest numbers of
cumulative cases, hospitalizations and deaths). As of mid July, 2022, the virus had caused over 88.6
million and 1 million deaths in the United States [2, 3]. The rapid development, deployment, and ad-
ministration of several safe and highly effective vaccines contributed significantly in curbing the spread
of the virus worldwide. Three of these vaccines (the Pfizer-BioNTech, Moderna and Johnson & John-
son vaccines) have been approved by the FDA for use in the United States. The effectiveness of these
vaccines in combating COVID-19 has been negatively affected by the emergence of various variants of
SARS-CoV-2 (e.g., the Delta and Omicron variants). In particular, the Omicron (B.1.1.529) variant was
declared a variant of concern by the World Health Organization in late November, 2021 [69], due to its
exceptionally high transmissibility. Although all the available vaccines were developed for the original
SARS-CoV-2 virus strain, they have been able to offer some level of cross-protection against other
variants of concern. Furthermore, multiple studies have shown that the efficacy of vaccine-derived
immunity wanes over time [28, 35, 70]. In order to overcome the waning effect of vaccine-derived
immunity, booster vaccines were recommended by the CDC in November 2021 [42, 71].

In this study, we developed a mathematical model to assess the population-level impact of the
waning and boosting of vaccine-derived and natural immunity against the Omicron BA.1 variant of
SARS-CoV-2 in the United States. The model was parameterized by fitting it to the observed cumu-
lative COVID-19 case data for the United States for the period from November, 28, 2021 to February
23, 2022 [3]. We used the remaining segment of the available data (i.e., the segment from February 24,
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2022 to March 23, 2022) to cross validate the model. This cross validation, together with simulations
involving the new daily COVID-19 cases, showed a good match to the observed data.

The model was rigorously analyzed to gain qualitative insight into the dynamics and burden of
the diseases. The analysis showed that the disease-free equilibrium (DFE) of the model is locally-
asymptotically stable whenever the vaccination reproduction number (denoted by Rv < 1) is below
one. Using the baseline values of the fixed and estimated parameters of the model, we computed
the numerical value of Rv during the period of the emergence and circulation of the Omicron variant
(starting from late November of 2021). The computed value was Rv = 0.81 (suggesting that Omicron
was on a downward trajectory towards elimination in the United States). The numerical value of the
basic reproduction number of the model (which is computed in the absence of any control measure
implemented) was R0 = 2.051. The computed value of R0 falls within the estimated range of R0

values for Omicron presented in several modeling studies (such as those in [72–75]). We showed that
the disease-free equilibrium of the model is globally-asymptotically for two special cases ((a) when
the vaccines offer 100% protection against acquisition of infection and no reinfection and waning of
immunity occurs and (b) disease-induced mortality is negligible and reinfection does not occur) when
the associated vaccination reproduction number is less than one. The epidemiological implication of
this global asymptotic stability result is that the SARS-CoV-2 pandemic can be eliminated if the the
associated vaccination reproduction number can be brought to (and maintained at) a value less than one
(in other words, having the value of this reproduction threshold less than one is necessary and sufficient
for the elimination of the pandemic in the United States).

Explicit expression for the vaccine-induced herd immunity threshold was derived, and we showed,
using current data for COVID-19 cases in the United States, that, for the case where the three vaccines
offer 85% average protective efficacy against the Omicron variant, vaccine-derived herd immunity
will be achieved in the United States via a combined vaccination-boosting strategy that entails fully-
vaccinating 59% of the wholly-susceptible population combined with the boosting of at least 71.5% of
the population of the fully-vaccinated individuals whose vaccine-derived immunity has waned to mod-
erate or low level. On the other hand, if the average protective efficacy offered by the three vaccines is
reduced to a lower level, such as 55% (as against 85% above), at least 91% of the wholly-susceptible
population need to be vaccinated to achieve herd immunity. Furthermore, if the average vaccine ef-
ficacy offered by the aforementioned three vaccines drops to 50% (or drops to a much lower value,
as presented by Barnard et al. [16], or as stated in several studies on the effectiveness of these vac-
cines against Omicron [57, 72, 76, 77]), then almost 100% of the wholly-susceptible population need
to be vaccinated in order to achieve vaccine-derived herd immunity in the United States. This very
high level of vaccination coverage (i.e., vaccinating almost 100% of the susceptible population) is
not realistically attainable, especially in large populations such as the United States. Data related to
COVID-19 from the United States Centers for Disease Control and Prevention show that, as of May
20, 2022, about 66.5% of the U.S. population was fully-vaccinated and 46.4% of this population re-
ceived a booster [54]. Thus, our study suggests that, for the scenario that the three vaccines offer the
reasonably high average protective efficacy of 85% against acquisition of infection, herd immunity can
realistically achieved in the United States by fully-vaccinating a moderate proportion (about 59%) of
the wholly-susceptible and boosting about 71.5% of this cohort in whom the vaccine-derived immunity
has waned to moderate or low level.

We conducted extensive numerical simulations to assess the impact of waning and boosting of
vaccine-derived and natural immunity for each three arbitrarily selected waning scenarios (slow, base-
line, and fast). Our study showed, based on these simulations, that in the absence of boosting of
vaccine-derived and natural immunity, waning of vaccine-derived and natural immunity only causes
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a marginal increase in the average number of daily cases (at the peak) and the number of cumulative
COVID-19 cases, in comparison to the baseline scenario. In other words, we showed that waning of
either vaccine-derived or natural immunity (or both) has only marginal impact, for each of the three
waning scenarios we considered, on the dynamics of the SARS-CoV-2 pandemic (as measured in terms
of increases in the average number of daily new cases recorded at the peak, in comparison to the case
where baseline values of all the parameters of the model are used).

We also showed that if fully-vaccinated individuals with moderate or low level of vaccine-derived
immunity are boosted (at baseline level), the effect of waning of immunity is a lot less pronounced, in
comparison to the baseline scenario (in other words, dramatic reductions in the increase in the average
number of daily new cases at the peak recorded (under the three waning scenarios) are achieved if
both immunity types are boosted at baseline level, in comparison to the corresponding scenarios where
the immunity wanes but no boosting is implemented. We further showed that boosting of vaccine-
derived immunity is more beneficial (in reducing average number of new cases) than boosting of natural
immunity. Specifically, for the fast waning scenario, boosting of vaccine-derived immunity (at baseline
level) resulted in an approximate 90% reduction in the average number of new daily cases at the peak,
while boosting of natural immunity resulted in about ≈ 62% reduction in the number of new daily cases
at the peak (in comparison to the corresponding scenarios without boosting). Furthermore, this study
shows that boosting of vaccine-derived immunity (implemented near the baseline level) increased the
prospects of altering the trajectory of the COVID-19 pandemic from persistence to possible elimination
(even for the fast waning scenario of the vaccine derived-immunity) of the pandemic in the United
States. Thus, the implementation of vaccination-boosting strategy greatly enhances the prospects of
eliminating the COVID-19 pandemic in the United States.

In addition to the standard assumptions on which the model is built, some of the limitations of this
study include the fact that we did not explicitly account for the impact of other control interventions
(notably, the use of face masks, voluntary testing and detection of SARS-CoV-2 cases, isolation of
confirmed cases, etc.), which also play important roles in the battle against the COVID-19 pandemic.
Furthermore, this study assumes that the population is well-mixed and does not explicitly account for
a number of heterogeneities, including age and risk structure, which may be relevant to gain insight
into the dynamics of the disease. Furthermore, the current study did not account for the effects of
other SARS-CoV-2 variants, including the BA.2 Omicron variant (which is more contiguous than the
original BA.1 Omicron variant) [19, 26]. We fitted our deterministic model to cumulative case data
instead of raw (new daily case) data, which might lead to narrower confidence intervals and/or provide
a misleading measure of uncertainty. Hence, the results of the study should be interpreted with some
caution. Nonetheless, our study shows, overall, that the prospect for the effective control and mitigation
(and, consequently, elimination) of the COVID-19 pandemic in the United States is very promising
using a combined vaccination-boosting strategy, provide the vaccinate and boosting coverages are
moderately high enough.

Acknowledgements

ABG acknowledges the support, in part, of the Simons Foundation (Award #585022) and the Na-
tional Science Foundation (Grant Number: DMS-2052363). CNN acknowledges the support of the
Simons Foundation (Award #627346) and the National Science Foundation (Grant Number: DMS
#2151870). SS acknowledges the support of the Fulbright Foreign Student Program. The authors are
very grateful to the three anonymous reviewers for their very constructive comments.

Mathematical Biosciences and Engineering Volume 20, Issue 1, 179–212.



206

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

References

1. S. T. Liang, L. T. Liang, J. M. Rosen, COVID-19: A comparison to the 1918 influenza and how we
can defeat it, Postgrad Med. J., 97 (2021), 273–274. https://doi.org/10.1136/postgradmedj-2020-
139070

2. Worldometer, COVID-19 coronavirus pandemic, available from: https://www.worldometers
.info/coronavirus/ (Accessed May 12, 2022).

3. E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19 in real time,
Lancet Infect. Dis., 20 (2020), 533–534. https://doi.org/10.1016/S1473-3099(20)30120-1

4. C. N. Ngonghala, E. Iboi, S. Eikenberry, M. Scotch, C. R. MacIntyre, M. H. Bonds, et al., Mathe-
matical assessment of the impact of non-pharmaceutical interventions on curtailing the 2019 novel
coronavirus, Math. Biosci., 325 (2020), 108364. https://doi.org/10.1016/j.mbs.2020.108364

5. C. N. Ngonghala, E. A. Iboi, A. B. Gumel, Could masks curtail the post-
lockdown resurgence of COVID-19 in the US?, Math. Biosci., 329 (2020), 108452.
https://doi.org/10.1016/j.mbs.2020.108452

6. C. N. Ngonghala, P. Goel, D. Kutor, S. Bhattacharyya, Human choice to self-isolate in the face of
the Covid-19 pandemic: a game dynamic modelling approach, J. Theor. Biol., 521 (2021), 110692.
https://doi.org/10.1016/j.jtbi.2021.110692

7. S. E. Eikenberry, M. Mancuso, E. Iboi, T. Phan, K. Eikenberry, Y. Kuang, et al., To mask or not
to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19
pandemic, Infect. Dis. Model., 5 (2020), 293–308. https://doi.org/10.1016/j.idm.2020.04.001

8. C. N. Ngonghala, J. R. Knitter, L. Marinacci, M. H. Bonds, A. B. Gumel, Assessing the impact of
widespread respirator use in curtailing COVID-19 transmission in the USA, Roy. Soc. Open Sci.,
8 (2021), 210699. https://doi.org/10.1098/rsos.210699

9. Pfizer, Pfizer and Biontech to submit emergency use authorization request today to the US FDA
for COVID-19 vaccine, 2020.

10. US Food and Drug Administration, FDA briefing document, in: Oncology Drug Advisory Com-
mittee Meeting, Silver Spring, MD, 2009.

11. E. Mahase, COVID-19: Moderna vaccine is nearly 95% effective, trial involving high risk and
elderly people shows, BMJ- Brit. Med. J., 371 (2020), m4471.

12. W. H. Self, M. W. Tenforde, J. P. Rhoads, M. Gaglani, A. A. Ginde, D. J. Douin, et al.,
Comparative effectiveness of Moderna, Pfizer-Biontech, and Janssen (Johnson & Johnson) vac-
cines in preventing COVID-19 hospitalizations among adults without immunocompromising con-
ditions—United States, March-August 2021, Morb. Mort. Wkly Rep., 70 (2021), 1337–1343.
https://doi.org/10.15585/mmwr.mm7038e1

13. US Food and Drug Administration, FDA issues emergency use authorization for third COVID-19
vaccine, FSA News Release, 2021.

Mathematical Biosciences and Engineering Volume 20, Issue 1, 179–212.

http://dx.doi.org/https://doi.org/10.1136/postgradmedj-2020-139070
http://dx.doi.org/https://doi.org/10.1136/postgradmedj-2020-139070
https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
http://dx.doi.org/https://doi.org/10.1016/S1473-3099(20)30120-1
http://dx.doi.org/https://doi.org/10.1016/j.mbs.2020.108364
http://dx.doi.org/https://doi.org/10.1016/j.mbs.2020.108452
http://dx.doi.org/https://doi.org/10.1016/j.jtbi.2021.110692
http://dx.doi.org/https://doi.org/10.1016/j.idm.2020.04.001
http://dx.doi.org/https://doi.org/10.1098/rsos.210699
http://dx.doi.org/https://doi.org/10.15585/mmwr.mm7038e1


207

14. J. Sargent, S. Kumar, K. Buckley, J. McIntyre, Johnson & Johnson announces real-world evidence
and phase 3 data confirming substantial protection of single-shot COVID-19 vaccine in the US
additional data show a booster increases protection1, 2021.

15. F. P. Polack, S. J. Thomas, N. Kitchin, J. Absalon, A. Gurtman, S. Lockhart, et al., Safety and
efficacy of the BNT162b2 mRNA COVID-19 vaccine, N. Engl. J. Med., 383 (2020), 2603–2615.
https://doi.org/10.1056/NEJMoa2034577

16. Y. M. Bar-On, Y. Goldberg, M. Mandel, O. Bodenheimer, L. Freedman, N. Kalkstein, et al., Pro-
tection of BNT162b2 vaccine booster against COVID-19 in Israel, N. Engl. J. Med., 385 (2021),
1393–1400. https://doi.org/10.1056/NEJMoa2114255

17. E. Mahase, COVID-19: What new variants are emerging and how are they being investigated?,
BMJ-Brit. Med. J., 372 (2021), n158. https://doi.org/10.1136/bmj.n158
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Appendix A Full flow diagram of the model (2.1)

Figure A.1. Complete and connected flow diagram of the model (2.1).
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Appendix B Proof of Theorem 3.3

Proof. Consider the special case of the model (2.1) with δp = δs = δa = δh = 0 and εni = εnvi = 1
(i = 1, 2, 3). Further, let R̂v < 1. The equations for the infected compartments of this special case of
the model can be re-written in terms of the next generation matrices (F̂ and V̂) as follows:

d
dt


E(t)
Ip(t)
Is(t)
Ia(t)
Ih(t)


= (F̂ − V̂)


E(t)
Ip(t)
Is(t)
Ia(t)
Ih(t)


− M̂


E(t)
Ip(t)
Is(t)
Ia(t)
Ih(t)


, (B.1)

where (with S ∗ and A∗ as defined in Section 3),

(F̂ − V̂) =


−(σE + µ) βηp(S ∗ + A∗) βηs(S ∗ + A∗) βηa(S ∗ + A∗) βηh(S ∗ + A∗)
σE −(σp + γp + µ) 0 0 0
0 rσp −(ϕs + γs + µ) 0 0
0 σp (1 − r) 0 −(γa + µ) 0
0 0 ϕs 0 −(γh + µ)


,

and,

M̂ = β[(S ∗−S )+ (1−εv1)(V
∗
1 −V1)+ (1−εv2)(V

∗
2 −V2)+ (1−εv3)(V

∗
3 −V3)]


0 ηp ηs ηa ηh

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


. (B.2)

Since S ≤ S ∗, V1 ≤ V∗1 , V2 ≤ V∗2 and V3 ≤ V∗3 for all t > 0 in Ω∗∗, it follows that the matrix M̂, defined
in (B.2), is non-negative. Hence, Eq (B.1) can be re-written in terms of the following inequality:

d
dt


E(t)
Ip(t)
Is(t)
Ia(t)
Ih(t)


≤ (F̂ − V̂)


E(t)
Ip(t)
Is(t)
Ia(t)
Ih(t)


. (B.3)

The proof is concluded the same way as in the proof of Theorem 3.2. Thus, the DFE (E0) of the
special case of the model (2.1) (with δp = δs = δa = δh = 0 and εni = εnvi = 1 (i = 1, 2, 3)) is
globally-asymptotically stable in Ω∗∗ whenever R̂v < 1. □
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